1
|
Ye D, Liu Q, Zhang C, Dai E, Fan J, Wu L. Relationship between immune cells and the development of chronic lung allograft dysfunction. Int Immunopharmacol 2024; 137:112381. [PMID: 38865754 DOI: 10.1016/j.intimp.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
A major cause of death for lung transplant recipients (LTRs) is the advent of chronic lung allograft dysfunction (CLAD), which has long plagued the long-term post-transplant prognosis and quality of survival of transplant patients. The intricacy of its pathophysiology and the irreversibility of its illness process present major obstacles to the clinical availability of medications. Immunotherapeutic medications are available, but they only aim to slow down the course of CLAD rather than having any therapeutic impact on the disease's development. For this reason, understanding the pathophysiology of CLAD is essential for both disease prevention and proven treatment. The immunological response in particular, in relation to chronic lung allograft dysfunction, has received a great deal of interest recently. Innate immune cells like natural killer cells, eosinophils, neutrophils, and mononuclear macrophages, as well as adaptive immunity cells like T and B cells, play crucial roles in this process through the release of chemokines and cytokines. The present review delves into changes and processes within the immune microenvironment, with a particular focus on the quantity, subtype, and characteristics of effector immune cells in the peripheral and transplanted lungs after lung transplantation. We incorporate and solidify the documented role of immune cells in the occurrence and development of CLAD with the advancements in recent years.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongliang Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Bos S, Pradère P, Beeckmans H, Zajacova A, Vanaudenaerde BM, Fisher AJ, Vos R. Lymphocyte Depleting and Modulating Therapies for Chronic Lung Allograft Dysfunction. Pharmacol Rev 2023; 75:1200-1217. [PMID: 37295951 PMCID: PMC10595020 DOI: 10.1124/pharmrev.123.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic lung rejection, also called chronic lung allograft dysfunction (CLAD), remains the major hurdle limiting long-term survival after lung transplantation, and limited therapeutic options are available to slow the progressive decline in lung function. Most interventions are only temporarily effective in stabilizing the loss of or modestly improving lung function, with disease progression resuming over time in the majority of patients. Therefore, identification of effective treatments that prevent the onset or halt progression of CLAD is urgently needed. As a key effector cell in its pathophysiology, lymphocytes have been considered a therapeutic target in CLAD. The aim of this review is to evaluate the use and efficacy of lymphocyte depleting and immunomodulating therapies in progressive CLAD beyond usual maintenance immunosuppressive strategies. Modalities used include anti-thymocyte globulin, alemtuzumab, methotrexate, cyclophosphamide, total lymphoid irradiation, and extracorporeal photopheresis, and to explore possible future strategies. When considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin and total lymphoid irradiation appear to offer the best treatment options currently available for progressive CLAD patients. SIGNIFICANCE STATEMENT: Effective treatments to prevent the onset and progression of chronic lung rejection after lung transplantation are still a major shortcoming. Based on existing data to date, considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin, and total lymphoid irradiation are currently the most viable second-line treatment options. However, it is important to note that interpretation of most results is hampered by the lack of randomized controlled trials.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Pauline Pradère
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Hanne Beeckmans
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Andrea Zajacova
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Bart M Vanaudenaerde
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Robin Vos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| |
Collapse
|
3
|
Tian D, Zheng X, Tang H, Huang H, Wang J, Xu L, Li C, Yan H, Yu R, Nan J, Liu M, Guo X, Jian S, Wang T, Deng S, Pu Q, Liu L. Metformin attenuates chronic lung allograft dysfunction: evidence in rat models. Respir Res 2023; 24:192. [PMID: 37516880 PMCID: PMC10386298 DOI: 10.1186/s12931-023-02492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) directly causes an abysmal long-term prognosis after lung transplantation (LTx), but effective and safe drugs are not available. Metformin exhibits high therapeutic potential due to its antifibrotic and immunomodulatory effects; however, it is unclear whether metformin exerts a therapeutic effect in CLAD. We sought to investigate the effect of metformin on CLAD based on rat models. METHODS Allogeneic LTx rats were treated with Cyclosporin A (CsA) in the first week, followed by metformin, CsA, or vehicle treatment. Syngeneic LTx rats received only vehicles. All rats were sacrificed on post-transplant week 4. Pathology of lung graft, spleen, and thymus, extent of lung fibrosis, activity of profibrotic cytokines and signaling pathway, adaptive immunity, and AMPK activity were then studied. RESULTS Allogeneic recipients without maintenance CsA treatment manifested CLAD pathological characteristics, but these changes were not observed in rats treated with metformin. For the antifibrotic effect, metformin suppressed the fibrosis extent and profibrotic cytokine expression in lung grafts. Regarding immunomodulatory effect, metformin reduced T- and B-cell infiltration in lung grafts, spleen and thymus weights, the T- and B-cell zone areas in the spleen, and the thymic medullary area. In addition, metformin activated AMPK in lung allografts and in α-SMA+ cells and T cells in the lung grafts. CONCLUSIONS Metformin attenuates CLAD in rat models, which could be attributed to the antifibrotic and immunomodulatory effects. AMPK activation suggests the potential molecular mechanism. Our study provides an experimental rationale for further clinical trials.
Collapse
Affiliation(s)
- Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangyun Zheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Hongtao Tang
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Heng Huang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Junjie Wang
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Lin Xu
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Caihan Li
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Haoji Yan
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Ruixuan Yu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Nan
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Menggen Liu
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoguang Guo
- Department of Pathology, Nanchong Central Hospital, Nanchong, 637000, China
| | - Shunhai Jian
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
- Department of Respiratory and Critical Care Medicine, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, 518000, China
| | - Senyi Deng
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
4
|
Sharma D, Krishnan GS, Sharma N, Chandrashekhar A. Current perspective of immunomodulators for lung transplant. Indian J Thorac Cardiovasc Surg 2022; 38:497-505. [PMID: 36050971 PMCID: PMC9424406 DOI: 10.1007/s12055-022-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Lung transplantation is an effective treatment option for selected patients suffering from end-stage lung disease. More intensive immunosuppression is enforced after lung transplants owing to a greater risk of rejection than after any other solid organ transplants. The commencing of lung transplantation in the modern era was in 1983 when the Toronto Lung Transplant Group executed the first successful lung transplant. A total of 43,785 lung transplants and 1365 heart-lung transplants have been performed from 1 Jan 1988 until 31 Jan 2021. The aim of this review article is to discuss the existing immunosuppressive strategies and emerging agents to prevent acute and chronic rejection in lung transplantation.
Collapse
Affiliation(s)
- Dhruva Sharma
- Department of Cardiothoracic and Vascular Surgery, SMS Medical College & Attached Hospitals, J L N Marg, Jaipur, 302001 Rajasthan India
| | - Ganapathy Subramaniam Krishnan
- Institute of Heart and Lung Transplant and Mechanical Circulatory Support, MGM Healthcare, No. 72, Nelson Manickam Road, Aminjikarai, Chennai, 600029 Tamil Nadu India
| | - Neha Sharma
- Department of Pharmacology, SMS Medical College & Attached Hospitals, J L N Marg, Jaipur, 302001 Rajasthan India
| | - Anitha Chandrashekhar
- Institute of Heart and Lung Transplant and Mechanical Circulatory Support, MGM Healthcare, No. 72, Nelson Manickam Road, Aminjikarai, Chennai, 600029 Tamil Nadu India
| |
Collapse
|
5
|
Tian D, Shiiya H, Takahashi M, Terasaki Y, Urushiyama H, Shinozaki-Ushiku A, Yan HJ, Sato M, Nakajima J. Noninvasive monitoring of allograft rejection in a rat lung transplant model: Application of machine learning-based 18F-fluorodeoxyglucose positron emission tomography radiomics. J Heart Lung Transplant 2022; 41:722-731. [DOI: 10.1016/j.healun.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022] Open
|
6
|
Jin X, Kaes J, Van Slambrouck J, Inci I, Arni S, Geudens V, Heigl T, Jansen Y, Carlon MS, Vos R, Van Raemdonck D, Zhang Y, Vanaudenaerde BM, Ceulemans LJ. A Comprehensive Review on the Surgical Aspect of Lung Transplant Models in Mice and Rats. Cells 2022; 11:cells11030480. [PMID: 35159289 PMCID: PMC8833959 DOI: 10.3390/cells11030480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Lung transplantation improves the outcome and quality of life of patients with end-stage pulmonary disease. However, the procedure is still hampered by the lack of suitable donors, the complexity of the surgery, and the risk of developing chronic lung allograft dysfunction. Over the past decades, translational experiments in animal models have led to a better understanding of physiology and immunopathology following the lung transplant procedure. Small animal models (e.g., rats and mice) are mostly used in experiments regarding immunology and pathobiology and are preferred over large animal models due to the ethical aspects, the cost-benefit balance, and the high throughput possibility. In this comprehensive review, we summarize the reported surgical techniques for lung transplantation in rodent models and the management of perioperative complications. Furthermore, we propose a guide to help identify the appropriate species for a given experiment and discuss recent experimental findings in small animal lung transplant models.
Collapse
Affiliation(s)
- Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (I.I.); (S.A.)
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (I.I.); (S.A.)
| | - Vincent Geudens
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
| | - Tobias Heigl
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
| | - Yanina Jansen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
- Department of Pharmaceutical and Pharmacological Sciences, Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Correspondence: (Y.Z.); (L.J.C.); Tel.: +32-16-34-68-20 (L.J.C.)
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium; (X.J.); (J.K.); (J.V.S.); (V.G.); (T.H.); (Y.J.); (M.S.C.); (R.V.); (D.V.R.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence: (Y.Z.); (L.J.C.); Tel.: +32-16-34-68-20 (L.J.C.)
| |
Collapse
|
7
|
Itamura H, Shindo T, Muranushi H, Kitaura K, Okada S, Shin-I T, Suzuki R, Takaori-Kondo A, Kimura S. Pharmacological MEK inhibition promotes polyclonal T-cell reconstitution and suppresses xenogeneic GVHD. Cell Immunol 2021; 367:104410. [PMID: 34274730 DOI: 10.1016/j.cellimm.2021.104410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Rapid immune reconstitution without developing graft-versus-host disease (GVHD) is required for the success of allogeneic hematopoietic stem cell transplantation. Here, we analyzed the effects of pharmacological MEK inhibition on human polyclonal T-cell reconstitution in a humanized mouse GVHD model utilizing deep sequencing-based T-cell receptor (TCR) repertoire analysis. GVHD mice exhibited a skewed TCR repertoire with a common clone within target organs. The MEK inhibitor trametinib ameliorated GVHD and enabled engraftment of diverse T-cell clones. Furthermore, trametinib also ameliorated GVHD sparing diverse T cell repertoire, even when it was given from day 15 through 28. Although tacrolimus also reduced development of GVHD, it disturbed diverse T cell reconstitution and resulted in skewed TCR repertoire. Thus, trametinib not only suppresses GVHD-inducing T cells but also promotes human T cell reconstitution in vivo, providing a novel rationale for translational studies targeting human GVHD.
Collapse
Affiliation(s)
- Hidekazu Itamura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Takero Shindo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Hiroyuki Muranushi
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc., Ibaraki, Japan; Department of Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
8
|
Phosphorylated ERK1/2 in CD4 T cells is associated with acute GVHD in allogeneic hematopoietic stem cell transplantation. Blood Adv 2021; 4:667-671. [PMID: 32078679 DOI: 10.1182/bloodadvances.2019000343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
To diagnose graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is sometimes difficult. We showed previously that MEK inhibitors selectively suppress murine GVHD while retaining antiviral and antitumor immunity. Here, we asked whether the RAS/MEK/ERK pathway is activated in human allo-HSCT recipients with GVHD, and whether the phosphorylated ERK1/2 can be a biomarker of GVHD. Peripheral blood was sequentially collected from 20 allo-HSCT recipients: 1 bone marrow transplant, 7 peripheral blood stem cell transplants (PBSCT), and 12 cord blood transplants. Ten of the 20 allo-HSCT recipients developed GVHD, and phosphorylation of ERK1/2 in T and B cells was analyzed by flow cytometry. Occurrence of acute GVHD was associated with phosphorylation of ERK1/2 in CD4+ T cells at day 30 (P < .001), which was suppressed by ex vivo exposure to a MEK inhibitor trametinib at clinically achievable concentrations. In particular, ERK1/2 was phosphorylated preferentially in naive/central memory CD4+ T cells. Notably, phosphorylation of ERK1/2 fell as GVHD improved. These results suggest that phosphorylation status of ERK1/2 in peripheral blood CD4+ T cells may be a future biomarker for diagnosing human GVHD, and the potential efficacy of MEK inhibitors against human GVHD.
Collapse
|
9
|
Erratum: Trametinib Attenuates Delayed Rejection and Preserves Thymic Function in Rat Lung Transplantation. Am J Respir Cell Mol Biol 2021; 64:394. [PMID: 33646094 PMCID: PMC7909334 DOI: 10.1165/rcmb.v64erratum5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
The MEK Inhibitor Trametinib Suppresses Major Histocompatibility Antigen-mismatched Rejection Following Pancreatic Islet Transplantation. Transplant Direct 2020; 6:e591. [PMID: 32851124 PMCID: PMC7423917 DOI: 10.1097/txd.0000000000001045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022] Open
Abstract
Background. Potential adverse effects, such as functional impairment of islets, render conventional immunosuppressive drugs unsuitable for use in islet transplantation. In addition, as a single therapy, they cannot prolong islet allograft survival. Here, we investigated the utility of the mitogen-activated protein kinase inhibitor trametinib and asked whether it ameliorates acute rejection of transplanted islets without the need for conventional immunosuppressants. Methods. Islets from fully major histocompatibility complex-mismatched BALB/c mice were transplanted into streptozotocin-induced diabetic C57BL/6 mice via the portal vein. These mice received trametinib or vehicle (orally) for 28 days. Isolated islets from BALB/c mice were incubated in vitro with different concentrations of trametinib to determine viability and function. Results. Trametinib (0.1 and 0.3 mg/kg) prolonged graft survival significantly (P = 0.0007 and P = 0.005, respectively) when compared with vehicle. Histologic analyses revealed that cellular infiltration of the graft by lymphocytes was inhibited significantly on day 7 (P < 0.05). In addition, trametinib suppressed functional differentiation of naive CD4+ T cells in recipients. Expression of mRNA encoding inflammatory cytokines interleukin (IL)-2, tumor necrosis factor α, and interferon γ in recipients treated with trametinib was also inhibited (P < 0.001, P < 0.05, and P < 0.01, respectively). Trametinib also increased production of IL-4 and IL-10 (P < 0.05 and P = 0.20, respectively). In vitro, islets incubated with different concentrations of trametinib exhibited no harmful effects with respect to viability and function. Conclusions. Trametinib delayed islet graft rejection by inhibiting functional differentiation of naive CD4+ T cells and regulating inflammatory cytokines. Trametinib might be a promising candidate for maintenance immunosuppressive therapy after allogeneic islet transplantation.
Collapse
|
11
|
Tian D, Shiiya H, Sato M, Nakajima J. Rat lung transplantation model: modifications of the cuff technique. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:407. [PMID: 32355851 PMCID: PMC7186686 DOI: 10.21037/atm.2020.02.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Although the cuff technique in rat lung transplantation (LTx) has a long history, it remains technically challenging. We have developed key tricks and modifications in the devices and the cuff technique that optimize the rat LTx model to achieve successful operations during a short learning period. Methods Altogether, 180 consecutive rats underwent orthotopic left LTx performed by a single surgeon using our modified devices and procedures. Allogeneic and syngeneic transplantation were performed using Lewis rats as recipients and Brown Norway and Lewis rats as donors. Allogeneic recipients were treated with cyclosporine during the first week. Recipients were sacrificed at various time points after ≥2 weeks. Results A special cuff-preparation plate was created using a petri dish and two foam blocks. This modified plate stabilizes the preparation and prevents donor lung compression. A "┴"-shaped incision was carved into the front wall of the pulmonary artery (PA) using micro-scissors. "V"-shaped incisions were made from the inferior-to-superior branches of the pulmonary vein (PV) and bronchus. A "pendulum model" was applied at implantation to make the hilar anastomosis tension-free and technically easier to perform. There were no intraoperative complications. Ten rats (5.6%) experienced partial or full pulmonary atelectasis. Five deaths (2.8%) due to pleural effusion occurred during the follow-up period. The operative times for heart-lung block retrieval, cuff preparation, cold ischemia, warm ischemia, and total procedure time were 8.4±0.8, 11.6±1.5, 25.1±2.2, 8.1±1.2, and 46.7±2.8 min, respectively. Conclusions The key tricks and improvements we made in the cuff technique for rat LTx provided the advantages of expeditiousness, a low complication rate, and a high success rate.
Collapse
Affiliation(s)
- Dong Tian
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haruhiko Shiiya
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Bharat A. A Need for Targeted Immunosuppression after Lung Transplantation. Am J Respir Cell Mol Biol 2019; 61:279-280. [PMID: 30958700 PMCID: PMC6839934 DOI: 10.1165/rcmb.2019-0100ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ankit Bharat
- Department of Surgeryand.,Department of MedicineNorthwestern University Feinberg School of MedicineChicago, Illinois
| |
Collapse
|