1
|
Morales LD, Av-Gay Y, Murphy MEP. Acidic pH modulates Burkholderia cenocepacia antimicrobial susceptibility in the cystic fibrosis nutritional environment. Microbiol Spectr 2023; 11:e0273123. [PMID: 37966209 PMCID: PMC10714822 DOI: 10.1128/spectrum.02731-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Burkholderia cenocepacia causes severe infections in cystic fibrosis (CF) patients. CF patients are prone to reoccurring infections due to the accumulation of mucus in their lungs, where bacteria can adhere and grow. Some of the antibiotics that inhibit B. cenocepacia in the laboratory are not effective for CF patients. A major contributor to poor clinical outcomes is that antibiotic testing in laboratories occurs under conditions that are different from those of sputum. CF sputum may be acidic and have increased concentrations of iron and zinc. Here, we used a medium that mimics CF sputum and found that acidic pH decreased the activity of many of the antibiotics used against B. cenocepacia. In addition, we assessed susceptibility to more than 500 antibiotics and found four active compounds against B. cenocepacia. Our findings give a better understanding of the lack of a relationship between susceptibility testing and the clinical outcome when treating B. cenocepacia infections.
Collapse
Affiliation(s)
- L. Daniela Morales
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yossef Av-Gay
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Infectious Diseases, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E. P. Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Widder S, Zhao J, Carmody LA, Zhang Q, Kalikin LM, Schloss PD, LiPuma JJ. Association of bacterial community types, functional microbial processes and lung disease in cystic fibrosis airways. THE ISME JOURNAL 2022; 16:905-914. [PMID: 34689185 PMCID: PMC8941020 DOI: 10.1038/s41396-021-01129-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Bacterial infection and inflammation of the airways are the leading causes of morbidity and mortality in persons with cystic fibrosis (CF). The ecology of the bacterial communities inhabiting CF airways is poorly understood, especially with respect to how community structure, dynamics, and microbial metabolic activity relate to clinical outcomes. In this study, the bacterial communities in 818 sputum samples from 109 persons with CF were analyzed by sequencing bacterial 16S rRNA gene amplicons. We identified eight alternative community types (pulmotypes) by using a Dirichlet multinomial mixture model and studied their temporal dynamics in the cohort. Across patients, the pulmotypes displayed chronological patterns in the transition among each other. Furthermore, significant correlations between pulmotypes and patient clinical status were detected by using multinomial mixed effects models, principal components regression, and statistical testing. Constructing pulmotype-specific metabolic activity profiles, we found that pulmotype microbiota drive distinct community functions including mucus degradation or increased acid production. These results indicate that pulmotypes are the result of ordered, underlying drivers such as predominant metabolism, ecological competition, and niche construction and can form the basis for quantitative, predictive models supporting clinical treatment decisions.
Collapse
Affiliation(s)
- Stefanie Widder
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria.
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Lisa A Carmody
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qingyang Zhang
- Department of Mathematical Science, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Linda M Kalikin
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|