1
|
van der Koog L, Woest ME, Gorter IC, Verschut V, Elferink RAB, Zuidhof AB, Nugraha DF, Koloko Ngassie ML, Bos SIT, Dhakad D, Wolters JC, Horvatovich PL, Prakash YS, Timens W, Yildirim ÖA, Brandsma CA, Frijlink HW, Nagelkerke A, Gosens R. Fibroblast-derived osteoglycin promotes epithelial cell repair. NPJ Regen Med 2025; 10:16. [PMID: 40133363 PMCID: PMC11937367 DOI: 10.1038/s41536-025-00404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
There is an urgent need for innovative therapies targeting defective epithelial repair in chronic diseases like COPD. The mesenchymal niche is a critical regulator in epithelial stem cell activation, suggesting that their secreted factors are possible potent drug targets. Utilizing a proteomics-guided drug discovery strategy, we explored the lung fibroblast secretome to uncover impactful drug targets. Our lung organoid assays identified several regenerative ligands, with osteoglycin (OGN) showing the most profound effects. Transcriptomic analyses revealed that OGN enhances alveolar progenitor differentiation, detoxifies reactive oxygen species, and strengthens fibroblast-epithelial crosstalk. OGN expression was diminished in COPD patients and smoke-exposed mice. An active fragment of OGN (leucine-rich repeat regions 4-7) replicated full-length OGN's regenerative effects, significantly ameliorating elastase-induced lung injury in lung slices and improving lung function in vivo. These findings highlight OGN as a pivotal secreted protein for alveolar epithelial repair, positioning its active fragment as a promising therapeutic for COPD.
Collapse
Affiliation(s)
- Luke van der Koog
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Robin A B Elferink
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
| | - Annet B Zuidhof
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
| | - Dyan F Nugraha
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
| | - Maunick L Koloko Ngassie
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sophie I T Bos
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
| | - Deepesh Dhakad
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter L Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Önder A Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Corry-Anke Brandsma
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anika Nagelkerke
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Easter M, Hirsch MJ, Harris E, Howze PH, Matthews EL, Jones LI, Bollenbecker S, Vang S, Tyrrell DJ, Sanders YY, Birket SE, Barnes JW, Krick S. FGF receptors mediate cellular senescence in the cystic fibrosis airway epithelium. JCI Insight 2024; 9:e174888. [PMID: 38916962 PMCID: PMC11383597 DOI: 10.1172/jci.insight.174888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
The number of adults living with cystic fibrosis (CF) has already increased significantly because of drastic improvements in life expectancy attributable to advances in treatment, including the development of highly effective modulator therapy. Chronic airway inflammation in CF contributes to morbidity and mortality, and aging processes like inflammaging and cell senescence influence CF pathology. Our results show that single-cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr-knockout (Cftr-/-) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1, attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging population with CF.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Elex Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Patrick Henry Howze
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Emma Lea Matthews
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Luke I. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Shia Vang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Daniel J. Tyrrell
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | | | - Susan E. Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| |
Collapse
|
3
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Siddaiah R, Oji-Mmuo CN, Montes DT, Fuentes N, Spear D, Donnelly A, Silveyra P. MicroRNA Signatures Associated with Bronchopulmonary Dysplasia Severity in Tracheal Aspirates of Preterm Infants. Biomedicines 2021; 9:biomedicines9030257. [PMID: 33807742 PMCID: PMC8000397 DOI: 10.3390/biomedicines9030257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/04/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease that develops in neonates as a consequence of preterm birth, arrested fetal lung development, and inflammation. The incidence of BPD remains on the rise as a result of increasing survival of extremely preterm infants. Severe BPD contributes to significant health care costs and is associated with prolonged hospitalizations, respiratory infections, and neurodevelopmental deficits. In this study, we aimed to detect novel biomarkers of BPD severity. We collected tracheal aspirates (TAs) from preterm babies with mild/moderate (n = 8) and severe (n = 17) BPD, and we profiled the expression of 1048 miRNAs using a PCR array. Associations with biological pathways were determined with the Ingenuity Pathway Analysis (IPA) software. We found 31 miRNAs differentially expressed between the two disease groups (2-fold change, false discovery rate (FDR) < 0.05). Of these, 4 miRNAs displayed significantly higher expression levels, and 27 miRNAs had significantly lower expression levels in the severe BPD group when compared to the mild/moderate BPD group. IPA identified cell signaling and inflammation pathways associated with miRNA signatures. We conclude that TAs of extremely premature infants contain miRNA signatures associated with severe BPD. These may serve as potential biomarkers of disease severity in infants with BPD.
Collapse
Affiliation(s)
- Roopa Siddaiah
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
| | - Christiana N. Oji-Mmuo
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
| | - Deborah T. Montes
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Nathalie Fuentes
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Debra Spear
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
| | - Ann Donnelly
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA
- Correspondence:
| |
Collapse
|