1
|
Wang Z, Zhu X, Yue Z, Lu J, Pan G, You F. Brunner's gland hamartoma misdiagnosed as a case of duodenal malignancy. Minerva Gastroenterol (Torino) 2024; 70:386-387. [PMID: 37712943 DOI: 10.23736/s2724-5985.23.03524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Zhe Wang
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Xiaoming Zhu
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Zhenying Yue
- Department of Pathology, Shengli Oilfield Central Hospital, Dongying, China
| | - Jun Lu
- PET-CT Inspection Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Guozheng Pan
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Faping You
- Department of Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, China -
| |
Collapse
|
2
|
Tyubaeva PM, Gasparyan KG, Romanov RR, Kolesnikov EA, Martirosyan LY, Larkina EA, Tyubaev MA. Biomimetic Materials Based on Poly-3-hydroxybutyrate and Chlorophyll Derivatives. Polymers (Basel) 2023; 16:101. [PMID: 38201766 PMCID: PMC10780539 DOI: 10.3390/polym16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Electrospinning of biomimetic materials is of particular interest due to the possibility of producing flexible layers with highly developed surfaces from a wide range of polymers. Additionally, electrospinning is characterized by a high simplicity of implementation and the ability to modify the produced fibrous materials, which resemble structures found in living organisms. This study explores new electrospun materials based on polyhydroxyalkanoates, specifically poly-3-hydroxybutyrate, modified with chlorophyll derivatives. The research investigates the impact of chlorophyll derivatives on the morphology, supramolecular structure, and key properties of nonwoven materials. The obtained results are of interest for the development of new flexible materials with low concentrations of chlorophyll derivatives.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Kristina G. Gasparyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Roman R. Romanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Evgeny A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology (MISIS), 119991 Moscow, Russia;
| | - Levon Y. Martirosyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
| | - Ekaterina A. Larkina
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Mikhail A. Tyubaev
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| |
Collapse
|
3
|
Jo J, Kim JY, Yun JJ, Lee YJ, Jeong YIL. β-Cyclodextrin Nanophotosensitizers for Redox-Sensitive Delivery of Chlorin e6. Molecules 2023; 28:7398. [PMID: 37959817 PMCID: PMC10648776 DOI: 10.3390/molecules28217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with β-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu). After that, cystamine was attached to the carboxylic end of bCDsu (bCDsu-ss), and the amine end group of bCDsu-ss was conjugated with Ce6 (bCDsu-ss-Ce6). The chemical composition of bCDsu-ss-Ce6 was confirmed with 1H and 13C NMR spectra. bCDsu-ss-Ce6 nanophotosensitizers were fabricated by a dialysis procedure. They formed small particles with an average particle size of 152.0 ± 23.2 nm. The Ce6 release rate from the bCDsu-ss-Ce6 nanophotosensitizers was accelerated by the addition of glutathione (GSH), indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive photosensitizer delivery capacity. The bCDsu-ss-Ce6 nanophotosensitizers have a low intrinsic cytotoxicity against CCD986Sk human skin fibroblast cells as well as Ce6 alone. However, the bCDsu-ss-Ce6 nanophotosensitizers showed an improved Ce6 uptake ratio, higher reactive oxygen species (ROS) production, and phototoxicity compared to those of Ce6 alone. GSH addition resulted in a higher Ce6 uptake ratio, ROS generation, and phototoxicity than Ce6 alone, indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive biological activity in vitro against HeLa human cervical cancer cells. In a tumor xenograft model using HeLa cells, the bCDsu-ss-Ce6 nanophotosensitizers efficiently accumulated in the tumor rather than in normal organs. In other words, the fluorescence intensity in tumor tissues was significantly higher than that of other organs, while Ce6 alone did not specifically target tumor tissue. These results indicated a higher anticancer activity of bCDsu-ss-Ce6 nanophotosensitizers, as demonstrated by their efficient inhibition of the growth of tumors in an in vivo animal tumor xenograft study.
Collapse
Affiliation(s)
- Jaewon Jo
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Sciences, Jeonnam Bioindustry Foundation, Jeonnam 58275, Republic of Korea;
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
- Tyros Biotechnology Inc., 75 Kneeland St. 14 Floors, Boston, MA 02111, USA
| |
Collapse
|
4
|
Vashishat A, Singh A, Kurmi BD, Gupta GD, Singh D. A short appraisal of polylactic-co-glycolic acid based polymer nanotechnology for colon cancer: recent advances and literature evidences. Ther Deliv 2023; 14:459-472. [PMID: 37559461 DOI: 10.4155/tde-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
The currently available formulations provided non-targeted treatment of colon cancer, the deadliest cancer variant. Due to biopharmaceutical hindrances, the majority of the drugs are unable to reach the target site. Polylactic-co-glycolic acid (PLGA) is one of the versatile polymers in cancer treatment, diagnostics and theranostics. The unique mechanism of surface modifications in PLGA properties in colon cancer has been a keen interest to be used in different nanoparticles for improving biopharmaceutical attributes. The ongoing use of these smart nano-carriers has allowed targeted delivery of several active components on a wide scale. The main goal of this review is to compile information on PLGA-based nanocarriers which possess several desirable properties for drug delivery applications, including biocompatibility, biodegradability and tunable drug-release kinetics.
Collapse
Affiliation(s)
- Abhinav Vashishat
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140417, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Dilpreet Singh
- University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| |
Collapse
|
5
|
El-Gogary RI, Nasr M, Rahsed LA, Hamzawy MA. Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: Preparation and in vitro/in vivo appraisal. Life Sci 2022; 298:120500. [PMID: 35341825 DOI: 10.1016/j.lfs.2022.120500] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
AIMS Ferulic acid is a polyphenolic compound with proven anticancer properties, but it suffers from low solubility and bioavailability. In the current work, polymeric and lipidic nanocapsules of ferulic acid were prepared, characterized, and tested on colorectal cancer (CRC) cell lines (HCT-116 and Caco2 cells), with mechanistic anticancer elucidation using flow cytometry. The selected NCs formulation was further tested in vivo on rats after inducing CRC using 1,2 dimethylhydrazine (DMH), followed by biochemical analysis, molecular and histological examinations. KEY FINDINGS Results revealed that both polymeric and lipidic nanocapsules showed favorable properties, but the latter was smaller in size and presented higher cumulative percent released of FA. The lipidic nanocapsules displayed better anticancer activity than the drug on both cell lines; with apoptosis being the dominant cell death mode. The in vivo study revealed that ferulic acid lipid NCs exhibited significant antioxidant and anti-inflammatory activities. They also downregulated cyclin D1, IGF II, and VEGF, and autoregulated the apoptotic/anti-apoptotic gene BAX/Bcl-2; indicating their apoptotic and anti-angiogenic potential, which was further confirmed by histological examination. SIGNIFICANCE Findings prove that the proposed ferulic acid lipid nanocapsules are an ideal system for treatment of CRC, and can serve as a preventive measure against metastasis.
Collapse
Affiliation(s)
- Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Laila A Rahsed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|