1
|
Schallmayer E, Isigkeit L, Elson L, Müller S, Knapp S, Marschner JA, Merk D. Chemogenomics for steroid hormone receptors (NR3). Commun Chem 2025; 8:29. [PMID: 39900826 PMCID: PMC11790914 DOI: 10.1038/s42004-025-01427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
The nine human NR3 nuclear receptors translate steroid hormone signals in transcriptomic responses and operate multiple highly important processes ranging from development over reproductive tissue function to inflammatory and metabolic homeostasis. Although several NR3 ligands such as glucocorticoids are invaluable drugs, this family is only partially explored, for example, in autoimmune diseases and neurodegeneration, but may hold therapeutic potential in new areas. Here we report a chemogenomics (CG) library to reveal elusive effects of NR3 receptor modulation in phenotypic settings. 34 highly annotated and chemically diverse ligands covering all NR3 receptors were selected considering complementary modes of action and activity, selectivity and lack of toxicity. Endoplasmic reticulum stress resolving effects of N3 CG subsets in proof-of-concept application validate suitability of the set to connect phenotypic outcomes with targets and to explore NR3 receptors from a translational perspective.
Collapse
Affiliation(s)
- Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany.
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Gong L, Wang R, Wang X, Liu J, Han Z, Li Q, Jin Y, Liao H. Research progress of natural active compounds on improving podocyte function to reduce proteinuria in diabetic kidney disease. Ren Fail 2023; 45:2290930. [PMID: 38073545 PMCID: PMC11001328 DOI: 10.1080/0886022x.2023.2290930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a primary cause of end-stage renal disease. Proteinuria is a clinical indicator of the different stages of DKD, and podocyte injury is a major cause of proteinuria. Podocyte-specific proteins (PSPs) play important roles in the normal filtration of podocytes. Studies have shown that natural active compounds (NACs) can ameliorate proteinuria; however, the mechanism related to PSPs needs to be explored. In this study, the five stages of DKD related to proteinuria and the functions of PSPs are displayed separately. Mechanisms for ameliorating proteinuria and improving the PSPs of the 15 NACs are summarized. The in vitro and in vivo mechanistic research showed that five compounds, astragaloside IV, ligustrazine, berberine, emodin and resveratrol, exerted renal protective effects via AMPK signaling, icariin and berberine via TLR4 signaling, hirudin and baicalin via MAPK signaling, curcumin and baicalin via NF-κB signaling, and emodin via protein kinase RNA-like endoplasmic reticulum kinase signaling. The 13 PSPs were divided into five categories: actin cytoskeleton, basal domain, apical domain, slit diaphragm, and others. In conclusion, anti-inflammatory effects, anti-oxidative stress, and enhanced autophagy are the main mechanisms underlying the ameliorative effects of NACs. Podocyte apoptosis is mainly related to nephrin and podocin, which are the most studied slit diaphragm PSPs.
Collapse
Affiliation(s)
- Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Rui Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xinyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Qian Li
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Yi Jin
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| |
Collapse
|
3
|
Fehsel K. Why Is Iron Deficiency/Anemia Linked to Alzheimer's Disease and Its Comorbidities, and How Is It Prevented? Biomedicines 2023; 11:2421. [PMID: 37760862 PMCID: PMC10526115 DOI: 10.3390/biomedicines11092421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Impaired iron metabolism has been increasingly observed in many diseases, but a deeper, mechanistic understanding of the cellular impact of altered iron metabolism is still lacking. In addition, deficits in neuronal energy metabolism due to reduced glucose import were described for Alzheimer's disease (AD) and its comorbidities like obesity, depression, cardiovascular disease, and type 2 diabetes mellitus. The aim of this review is to present the molecular link between both observations. Insufficient cellular glucose uptake triggers increased ferritin expression, leading to depletion of the cellular free iron pool and stabilization of the hypoxia-induced factor (HIF) 1α. This transcription factor induces the expression of the glucose transporters (Glut) 1 and 3 and shifts the cellular metabolism towards glycolysis. If this first line of defense is not adequate for sufficient glucose supply, further reduction of the intracellular iron pool affects the enzymes of the mitochondrial electron transport chain and activates the AMP-activated kinase (AMPK). This enzyme triggers the translocation of Glut4 to the plasma membrane as well as the autophagic recycling of cell components in order to mobilize energy resources. Moreover, AMPK activates the autophagic process of ferritinophagy, which provides free iron urgently needed as a cofactor for the synthesis of heme- and iron-sulfur proteins. Excessive activation of this pathway ends in ferroptosis, a special iron-dependent form of cell death, while hampered AMPK activation steadily reduces the iron pools, leading to hypoferremia with iron sequestration in the spleen and liver. Long-lasting iron depletion affects erythropoiesis and results in anemia of chronic disease, a common condition in patients with AD and its comorbidities. Instead of iron supplementation, drugs, diet, or phytochemicals that improve energy supply and cellular glucose uptake should be administered to counteract hypoferremia and anemia of chronic disease.
Collapse
Affiliation(s)
- Karin Fehsel
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich-Heine-University, 240629 Düsseldorf, Germany
| |
Collapse
|
4
|
Su BL, Wang LL, Zhang LY, Zhang S, Li Q, Chen GY. Potential role of microRNA-503 in Icariin-mediated prevention of high glucose-induced endoplasmic reticulum stress. World J Diabetes 2023; 14:1234-1248. [PMID: 37664468 PMCID: PMC10473951 DOI: 10.4239/wjd.v14.i8.1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Dysregulated microRNA (miRNA) is crucial in the progression of diabetic nephropathy (DN). AIM To investigate the potential molecular mechanism of Icariin (ICA) in regulating endoplasmic reticulum (ER) stress-mediated apoptosis in high glucose (HG)-induced primary rat kidney cells (PRKs), with emphasis on the role of miR-503 and sirtuin 4 (SIRT4) in this process. METHODS Single intraperitoneal injection of streptozotocin (65 mg/kg) in Sprague-Dawley rats induce DN in the in vivo hyperglycemic model. Glucose-treated PRKs were used as an in vitro HG model. An immunofluorescence assay identified isolated PRKs. Cell Counting Kit-8 and flow cytometry analyzed the effect of ICA treatment on cell viability and apoptosis, respectively. Real-time quantitative polymerase chain reaction and western blot analyzed the levels of ER stress-related proteins. Dual luciferase analysis of miR-503 binding to downstream SIRT4 was performed. RESULTS ICA treatment alleviated the upregulated miR-503 expression in vivo (DN) and in vitro (HG). Mechanistically, ICA reduced HG-induced miR-503 overexpression, thereby counteracting its function in downregulating SIRT4 levels. ICA regulated the miR-503/SIRT4 axis and subsequent ER stress to alleviate HG-induced PRKs injury. CONCLUSION ICA reduced HG-mediated inhibition of cell viability, promotion of apoptosis, and ER stress in PRKs. These effects involved regulation of the miR-503/SIRT4 axis. These findings indicate the potential of ICA to treat DN, and implicate miR-503 as a viable target for therapeutic interventions in DN.
Collapse
Affiliation(s)
- Bao-Lin Su
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Liang-Liang Wang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Liang-You Zhang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Shu Zhang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Qiang Li
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Gang-Yi Chen
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| |
Collapse
|
5
|
Wu LD, Liu Y, Li F, Chen JY, Zhang J, Qian LL, Wang RX. Glucose fluctuation promotes cardiomyocyte apoptosis by triggering endoplasmic reticulum (ER) stress signaling pathway in vivo and in vitro. Bioengineered 2022; 13:13739-13751. [PMID: 35707846 PMCID: PMC9275931 DOI: 10.1080/21655979.2022.2080413] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Glucose fluctuation is more harmful than sustained hyperglycemia, but the effect on cardiomyocyte apoptosis have not yet been clarified. In this study, we aim to identify the effect of glucose fluctuation on cardiomyocyte apoptosis and explore the underlying mechanism. Sprague-Dawley rats were intraperitoneally injected with streptozotocin (STZ) and divided into three groups: controlled diabetic group (C-STZ); uncontrolled diabetic group (U-STZ) and glucose fluctuated diabetic group (GF-STZ). After twelve weeks, echocardiography, Hematoxylin-eosin (HE) staining, and Masson staining were adopted to assess the cardiac function and pathological changes. TUNEL staining was used to detect apoptotic cells. Expressions of apoptosis-related proteins and key molecules in the endoplasmic reticulum (ER) stress pathway were determined via western blots. Further, primary cardiomyocytes incubated in different glucose conditions were treated with the inhibitor of ER stress to explore the causative role of ER stress in glucose fluctuation-induced cardiomyocyte apoptosis. In vivo, we demonstrated that glucose fluctuation promoted cardiomyocyte apoptosis, and were more harmful to cardiomyocytes than sustained hyperglycemia. Moreover, glucose fluctuation significantly triggered ER stress signaling pathway. In vitro, primary cardiomyocyte apoptosis induced by glucose fluctuation and the activation of ER stress were significantly attenuated by 4-PBA, which is an ER stress inhibitor. Above all, glucose fluctuation can promote cardiomyocyte apoptosis through triggering the ER stress signaling pathway in diabetic rats and in primary cardiomyocytes.
Collapse
Affiliation(s)
- Li-Da Wu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ying Liu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Feng Li
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jia-Yi Chen
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jie Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|