1
|
Costantino AI, Pelzer BO, Williams MA, Crossley MJ. Partial information transfer from peripheral visual streams to foveal visual streams may be mediated through local primary visual circuits. Neuroimage 2025; 311:121147. [PMID: 40154647 DOI: 10.1016/j.neuroimage.2025.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
Visual object recognition is driven through the what pathway, a hierarchy of visual areas processing features of increasing complexity and abstractness. The primary visual cortex (V1), this pathway's origin, exhibits retinotopic organization: neurons respond to stimuli in specific visual field regions. A neuron responding to a central stimulus will not respond to a peripheral one, and vice versa. However, despite this organization, task-relevant feedback about peripheral stimuli can be decoded in unstimulated foveal cortex, and disrupting this feedback impairs discrimination behavior. The information encoded by this feedback remains unclear, as prior studies used computer-generated objects ill-suited to dissociate different representation types. To address this knowledge gap, we investigated the nature of information encoded in periphery-to-fovea feedback using real-world stimuli. Participants performed a same/different discrimination task on peripherally displayed images of vehicles and faces. Using fMRI multivariate decoding, we found that both peripheral and foveal V1 could decode images separated by low-level perceptual models (vehicles) but not those separated by semantic models (faces). This suggests the feedback primarily carries low-level perceptual information. In contrast, higher visual areas resolved semantically distinct images. A functional connectivity analysis revealed foveal V1 connections to both peripheral V1 and later-stage visual areas. These findings indicate that while both early and late visual areas may contribute to information transfer from peripheral to foveal processing streams, higher-to-lower area transfer may involve information loss.
Collapse
Affiliation(s)
- Andrea I Costantino
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
| | - Benjamin O Pelzer
- Wee Kim Wee School of Communication and Information, Nanyang Technological University, Singapore, Singapore
| | - Mark A Williams
- School of Psychological Sciences, Macquarie University, Sydney, Australia; Macquarie University Performance and Expertise Research center, Macquarie University, Sydney, Australia
| | - Matthew J Crossley
- School of Psychological Sciences, Macquarie University, Sydney, Australia; Macquarie University Performance and Expertise Research center, Macquarie University, Sydney, Australia
| |
Collapse
|
2
|
Liang J, Zhaoping L. Trans-saccadic integration for object recognition peters out with pre-saccadic object eccentricity as target-directed saccades become more saliency-driven. Vision Res 2025; 226:108500. [PMID: 39608201 DOI: 10.1016/j.visres.2024.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/23/2024] [Accepted: 10/02/2024] [Indexed: 11/30/2024]
Abstract
Bringing objects from peripheral locations to fovea via saccades facilitates their recognition. Human observers integrate pre- and post-saccadic information for recognition. This integration has only been investigated using instructed saccades to prescribed locations. Typically, the target has a fixed pre-saccadic location in an uncluttered scene and is viewed by a pre-determined post-saccadic duration. Consequently, whether trans-saccadic integration is limited or absent when the pre-saccadic target eccentricity is too large in cluttered scenes in unknown. Our study revealed this limit during visual exploration, when observers decided themselves when and to where to make their saccades. We asked thirty observers (400 trials each) to find and report as quickly as possible a target amongst 404 non-targets in an image spanning 57.3°×33.8° in visual angle. We measured the target's pre-saccadic eccentricity e, the duration Tpre of the fixation before the saccade, and the post-saccadic foveal viewing duration Tpost. This Tpost increased with e before starting to saturate around eccentricity ep=10°-20°. Meanwhile, Tpre increased much more slowly with e and started decreasing before ep. These observations imply the following at sufficiently large pre-saccadic eccentricities: the trans-saccadic integration ceases, target recognition relies exclusively on post-saccadic foveal vision, decision to saccade to the target relies exclusively on target saliency rather than identification. These implications should be applicable to general behavior, although ep should depend on object and scene properties. They are consistent with the Central-peripheral Dichotomy that central and peripheral vision are specialized for seeing and looking, respectively.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Li Zhaoping
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.
| |
Collapse
|
3
|
Sharvashidze N, Valsecchi M, Schütz AC. Transsaccadic perception of changes in object regularity. J Vis 2024; 24:3. [PMID: 39630465 PMCID: PMC11627247 DOI: 10.1167/jov.24.13.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
The visual system compensates for differences between peripheral and foveal vision using different mechanisms. Although peripheral vision is characterized by higher spatial uncertainty and lower resolution than foveal vision, observers reported objects to be less distorted and less blurry in the periphery than the fovea in a visual matching task during fixation (Valsecchi et al., 2018). Here, we asked whether a similar overcompensation could be found across saccadic eye movements and whether it would bias the detection of transsaccadic changes in object regularity. The blur and distortion levels of simple geometric shapes were manipulated in the Eidolons algorithm (Koenderink et al., 2017). In an appearance discrimination task, participants had to judge the appearance of blur (experiment 1) and distortion (experiment 2) separately before and after a saccade. Objects appeared less blurry before a saccade (in the periphery) than after a saccade (in the fovea). No differences were found in the appearance of distortion. In a change discrimination task, participants had to judge if blur (experiment 1) and distortion (experiment 2) either increased or decreased during a saccade. Overall, they showed a tendency to report an increase in both blur and distortion across saccades. The precision of the responses was improved by a 200-ms postsaccadic blank. Results from the change discrimination task of both experiments suggest that a transsaccadic decrease in regularity is more visible, compared to an increase in regularity. In line with the previous study that reported a peripheral overcompensation in the visual matching task, we found a similar mechanism, exhibiting a phenomenological sharpening of blurry edges before a saccade. These results generalize peripheral-foveal differences observed during fixation to the here tested dynamic, transsaccadic conditions where they contribute to biases in transsaccadic change detection.
Collapse
Affiliation(s)
- Nino Sharvashidze
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Matteo Valsecchi
- Dipartimento di Psicologia, Università di Bologna, Bologna, Italy
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Giessen, and Darmstadt, Germany
- https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
4
|
Luo J, Yokoi I, Dumoulin SO, Takemura H. Bistable perception of symbolic numbers. J Vis 2024; 24:12. [PMID: 39287596 PMCID: PMC11421664 DOI: 10.1167/jov.24.9.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
Numerals, that is, semantic expressions of numbers, enable us to have an exact representation of the amount of things. Visual processing of numerals plays an indispensable role in the recognition and interpretation of numbers. Here, we investigate how visual information from numerals is processed to achieve semantic understanding. We first found that partial occlusion of some digital numerals introduces bistable interpretations. Next, by using the visual adaptation method, we investigated the origin of this bistability in human participants. We showed that adaptation to digital and normal Arabic numerals, as well as homologous shapes, but not Chinese numerals, biases the interpretation of a partially occluded digital numeral. We suggest that this bistable interpretation is driven by intermediate shape processing stages of vision, that is, by features more complex than local visual orientations, but more basic than the abstract concepts of numerals.
Collapse
Affiliation(s)
- Junxiang Luo
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Isao Yokoi
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
- Technical Division, National Institute for Physiological Sciences, Okazaki, Japan
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Experimental Psychology, Utrecht University, Utrecht, the Netherlands
| | - Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| |
Collapse
|
5
|
Sharvashidze N, Hübner C, Schütz AC. A bias in transsaccadic perception of spatial frequency changes. Vision Res 2024; 222:108453. [PMID: 38991467 DOI: 10.1016/j.visres.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Visual processing differs between the foveal and peripheral visual field. These differences can lead to different appearances of objects in the periphery and the fovea, posing a challenge to perception across saccades. Differences in the appearance of visual features between the peripheral and foveal visual field may bias change discrimination across saccades. Previously it has been reported that spatial frequency (SF) appears higher in the periphery compared to the fovea (Davis et al., 1987). In this study, we investigated the visual appearance of SF before and after a saccade and the discrimination of SF changes during saccades. In addition, we tested the contributions of pre- and postsaccadic information to change discrimination performance. In the first experiment, we found no differences in the appearance of SF before and after a saccade. However, participants showed a clear bias to report SF increases. Interestingly, a 200-ms postsaccadic blank improved the precision of the responses but did not affect the bias. In the second experiment, participants showed lower thresholds for SF increases than for decreases, suggesting that the bias in the first experiment was not just a response bias. Finally, we asked participants to discriminate the SF of stimuli presented before a saccade. Thresholds in the presaccadic discrimination task were lower than in the change discrimination task, suggesting that transsaccadic change discrimination is not merely limited by presaccadic discrimination in the periphery. The change direction bias might stem from more effective masking or overwriting of the presaccadic stimulus by the postsaccadic low SF stimulus.
Collapse
Affiliation(s)
- Nino Sharvashidze
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Carolin Hübner
- Allgemeine Psychologie & Human Factors, Technische Universität Chemnitz, Chemnitz, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
6
|
Grzeczkowski L, Shi Z, Rolfs M, Deubel H. Perceptual learning across saccades: Feature but not location specific. Proc Natl Acad Sci U S A 2023; 120:e2303763120. [PMID: 37844238 PMCID: PMC10614914 DOI: 10.1073/pnas.2303763120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
Perceptual learning is the ability to enhance perception through practice. The hallmark of perceptual learning is its specificity for the trained location and stimulus features, such as orientation. For example, training in discriminating a grating's orientation improves performance only at the trained location but not in other untrained locations. Perceptual learning has mostly been studied using stimuli presented briefly while observers maintained gaze at one location. However, in everyday life, stimuli are actively explored through eye movements, which results in successive projections of the same stimulus at different retinal locations. Here, we studied perceptual learning of orientation discrimination across saccades. Observers were trained to saccade to a peripheral grating and to discriminate its orientation change that occurred during the saccade. The results showed that training led to transsaccadic perceptual learning (TPL) and performance improvements which did not generalize to an untrained orientation. Remarkably, however, for the trained orientation, we found a complete transfer of TPL to the untrained location in the opposite hemifield suggesting high flexibility of reference frame encoding in TPL. Three control experiments in which participants were trained without saccades did not show such transfer, confirming that the location transfer was contingent upon eye movements. Moreover, performance at the trained location, but not at the untrained location, was also improved in an untrained fixation task. Our results suggest that TPL has both, a location-specific component that occurs before the eye movement and a saccade-related component that involves location generalization.
Collapse
Affiliation(s)
- Lukasz Grzeczkowski
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität, Munich80802, Germany
- Department Psychologie, Humboldt-Universität zu Berlin, Berlin12489, Germany
| | - Zhuanghua Shi
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität, Munich80802, Germany
| | - Martin Rolfs
- Department Psychologie, Humboldt-Universität zu Berlin, Berlin12489, Germany
| | - Heiner Deubel
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität, Munich80802, Germany
| |
Collapse
|
7
|
Goktepe N, Schütz AC. Familiar objects benefit more from transsaccadic feature predictions. Atten Percept Psychophys 2023; 85:1949-1961. [PMID: 36720784 PMCID: PMC10545618 DOI: 10.3758/s13414-022-02651-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/02/2023]
Abstract
The transsaccadic feature prediction mechanism associates peripheral and foveal information belonging to the same object to make predictions about how an object seen in the periphery would appear in the fovea or vice versa. It is unclear if such transsaccadic predictions require experience with the object such that only familiar objects benefit from this mechanism by virtue of having peripheral-foveal associations. In two experiments, we tested whether familiar objects have an advantage over novel objects in peripheral-foveal matching and transsaccadic change detection tasks. In both experiments, observers were unknowingly familiarized with a small set of stimuli by completing a sham orientation change detection task. In the first experiment, observers subsequently performed a peripheral-foveal matching task, where they needed to pick the foveal test object that matched a briefly presented peripheral target. In the second experiment, observers subsequently performed a transsaccadic object change detection task where a peripheral target was exchanged or not exchanged with another target after the saccade, either immediately or after a 300-ms blank period. We found an advantage of familiar objects over novel objects in both experiments. While foveal-peripheral associations explained the familiarity effect in the matching task of the first experiment, the second experiment provided evidence for the advantage of peripheral-foveal associations in transsaccadic object change detection. Introducing a postsaccadic blank improved change detection performance in general but more for familiar than for novel objects. We conclude that familiar objects benefit from additional object-specific predictions.
Collapse
Affiliation(s)
- Nedim Goktepe
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Alexander C Schütz
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
8
|
Men H, Altin A, Schütz AC. Underestimation of the number of hidden objects. J Vis 2023; 23:1. [PMID: 36723930 PMCID: PMC9904329 DOI: 10.1167/jov.23.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The perceptual representation of our environment does not only involve what we actually can see, but also inferences about what is hidden from our sight. For example, in amodal completion, simple contours or surfaces are filled-in behind occluding objects allowing for a complete representation. This is important for many everyday tasks, such as visual search, foraging, and object handling. Although there is support for completion of simple patterns from behavioral and neurophysiological studies, it is unclear if these mechanisms extend to complex, irregular patterns. Here, we show that the number of hidden objects on partially occluded surfaces is underestimated. Observers did not consider accurately the number of visible objects and the proportion of occlusion to infer the number of hidden objects, although these quantities were perceived accurately and reliably. However, visible objects were not simply ignored: estimations of hidden objects increased when the visible objects formed a line across the occluder and decreased when the visible objects formed a line outside of the occluder. Confidence ratings for numerosity estimation were similar for fully visible and partially occluded surfaces. These results suggest that perceptual inferences about what is hidden in our environment can be very inaccurate und underestimate the complexity of the environment.
Collapse
Affiliation(s)
- Hui Men
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,
| | - Anna Altin
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,
| | - Alexander C. Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany,Center for Mind, Brain and Behaviour, Philipps-Universität Marburg, Marburg, Germany,https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
9
|
Hübner C, Schütz AC. A bias in saccadic suppression of shape change. Vision Res 2021; 186:112-123. [PMID: 34089922 PMCID: PMC7611036 DOI: 10.1016/j.visres.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Processing of visual information in the central (foveal) and peripheral visual field is vastly different. To achieve a homogeneous representation of the visual world across eye movements, the visual system needs to compensate for these differences. By introducing subtle changes between peripheral and foveal inputs across saccades, one can test this compensation. We morphed shapes between a triangle and a circle and presented two different change directions (circularity decrease or increase) at varying magnitudes across a saccade. In a change-discrimination task, observers disproportionally often reported percepts of circularity increase. To test the relationship with visual-field differences, we measured perception when shapes were exclusively presented either in the periphery (before a saccade), or in the fovea (after a saccade). We found that overall shapes were perceived as more circular before than after a saccade and the more pronounced this difference was for a participant, the smaller was their circularity-increase bias in the change-discrimination task. We propose that visual-field differences have a direct and an indirect influence on transsaccadic perception of shape change. The direct influence is based on the distinct appearance of shape in the central and peripheral visual field in a trial, causing an increase of the perceptual magnitude of circularity-decrease changes. The indirect influence is based on long-term build-up of transsaccadic expectations; if a change is opposite (circularity increase) to the expectation (circularity decrease), it should elicit a strong error signal facilitating change detection. We discuss the concept of transsaccadic expectations and theoretical implications for transsaccadic perception of other feature changes.
Collapse
Affiliation(s)
- Carolin Hübner
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behaviour, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
10
|
Kong G, Aagten-Murphy D, McMaster JMV, Bays PM. Transsaccadic integration operates independently in different feature dimensions. J Vis 2021; 21:7. [PMID: 34264290 PMCID: PMC8288057 DOI: 10.1167/jov.21.7.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our knowledge about objects in our environment reflects an integration of current visual input with information from preceding gaze fixations. Such a mechanism may reduce uncertainty but requires the visual system to determine which information obtained in different fixations should be combined or kept separate. To investigate the basis of this decision, we conducted three experiments. Participants viewed a stimulus in their peripheral vision and then made a saccade that shifted the object into the opposite hemifield. During the saccade, the object underwent changes of varying magnitude in two feature dimensions (Experiment 1, color and location; Experiments 2 and 3, color and orientation). Participants reported whether they detected any change and estimated one of the postsaccadic features. Integration of presaccadic with postsaccadic input was observed as a bias in estimates toward the presaccadic feature value. In all experiments, presaccadic bias weakened as the magnitude of the transsaccadic change in the estimated feature increased. Changes in the other feature, despite having a similar probability of detection, had no effect on integration. Results were quantitatively captured by an observer model where the decision whether to integrate information from sequential fixations is made independently for each feature and coupled to awareness of a feature change.
Collapse
Affiliation(s)
- Garry Kong
- Department of Psychology, University of Cambridge, Cambridge, UK.,
| | | | | | - Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, UK.,
| |
Collapse
|
11
|
Abstract
Visual processing varies dramatically across the visual field. These differences start in the retina and continue all the way to the visual cortex. Despite these differences in processing, the perceptual experience of humans is remarkably stable and continuous across the visual field. Research in the last decade has shown that processing in peripheral and foveal vision is not independent, but is more directly connected than previously thought. We address three core questions on how peripheral and foveal vision interact, and review recent findings on potentially related phenomena that could provide answers to these questions. First, how is the processing of peripheral and foveal signals related during fixation? Peripheral signals seem to be processed in foveal retinotopic areas to facilitate peripheral object recognition, and foveal information seems to be extrapolated toward the periphery to generate a homogeneous representation of the environment. Second, how are peripheral and foveal signals re-calibrated? Transsaccadic changes in object features lead to a reduction in the discrepancy between peripheral and foveal appearance. Third, how is peripheral and foveal information stitched together across saccades? Peripheral and foveal signals are integrated across saccadic eye movements to average percepts and to reduce uncertainty. Together, these findings illustrate that peripheral and foveal processing are closely connected, mastering the compromise between a large peripheral visual field and high resolution at the fovea.
Collapse
Affiliation(s)
- Emma E M Stewart
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,
| | - Matteo Valsecchi
- Dipartimento di Psicologia, Universitá di Bologna, Bologna, Italy.,
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg, Marburg, Germany., https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
12
|
Tas AC, Mordkoff JT, Hollingworth A. Object-mediated overwriting across saccades. J Vis 2021; 21:3. [PMID: 33538771 PMCID: PMC7862732 DOI: 10.1167/jov.21.2.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/19/2020] [Indexed: 11/24/2022] Open
Abstract
How are visual sensory representations that are acquired peripherally from a saccade target related to sensory representations generated foveally after the saccade? We tested the hypothesis that, when the two representations are perceived to belong to the same object, the post-saccadic value tends to overwrite the pre-saccadic value. Participants executed a saccade to a colored target object, which sometimes changed during the saccade by ±15°, 30°, or 45° in color space. They were post-cued to report either the pre-saccadic or post-saccadic color in a continuous report procedure. Substantial overwriting of the pre-saccadic color by the post-saccadic color was observed. Moreover, the introduction of a brief post-saccadic blank interval (which disrupted the perception of object correspondence) led to a substantial reduction in overwriting. The results provide the first direct evidence for an object-mediated overwriting mechanism across saccades, in which post-saccadic values automatically replace pre-saccadic values.
Collapse
Affiliation(s)
- A Caglar Tas
- Department of Psychology, University of Tennessee - Knoxville, TN, USA
| | - J Toby Mordkoff
- Department of Psychological and Brain Sciences, University of Iowa, IA, USA
| | | |
Collapse
|
13
|
Stewart EEM, Hübner C, Schütz AC. Stronger saccadic suppression of displacement and blanking effect in children. J Vis 2020; 20:13. [PMID: 33052408 PMCID: PMC7571331 DOI: 10.1167/jov.20.10.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
Humans do not notice small displacements to objects that occur during saccades, termed saccadic suppression of displacement (SSD), and this effect is reduced when a blank is introduced between the pre- and postsaccadic stimulus (Bridgeman, Hendry, & Stark, 1975; Deubel, Schneider, & Bridgeman, 1996). While these effects have been studied extensively in adults, it is unclear how these phenomena are characterized in children. A potentially related mechanism, saccadic suppression of contrast sensitivity-a prerequisite to achieve a stable percept-is stronger for children (Bruno, Brambati, Perani, & Morrone, 2006). However, the evidence for how transsaccadic stimulus displacements may be suppressed or integrated is mixed. While they can integrate basic visual feature information from an early age, they cannot integrate multisensory information (Gori, Viva, Sandini, & Burr, 2008; Nardini, Jones, Bedford, & Braddick, 2008), suggesting a failure in the ability to integrate more complex sensory information. We tested children 7 to 12 years old and adults 19 to 23 years old on their ability to perceive intrasaccadic stimulus displacements, with and without a postsaccadic blank. Results showed that children had stronger SSD than adults and a larger blanking effect. Children also had larger undershoots and more variability in their initial saccade endpoints, indicating greater intrinsic uncertainty, and they were faster in executing corrective saccades to account for these errors. Together, these results suggest that children may have a greater internal expectation or prediction of saccade error than adults; thus, the stronger SSD in children may be due to higher intrinsic uncertainty in target localization or saccade execution.
Collapse
Affiliation(s)
- Emma E M Stewart
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Carolin Hübner
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behaviour, Philipps-Universität Marburg, Marburg, Germany
- https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
14
|
Grzeczkowski L, van Leeuwen J, Belopolsky AV, Deubel H. Spatiotopic and saccade-specific transsaccadic memory for object detail. J Vis 2020; 20:2. [PMID: 38755791 PMCID: PMC7424120 DOI: 10.1167/jov.20.7.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
The content and nature of transsaccadic memory are still a matter of debate. Brief postsaccadic target blanking was demonstrated to recover transsaccadic memory and defeat saccadic suppression of displacement. We examined whether blanking would also support transsaccadic transfer of detailed form information. Observers saccaded to a peripheral, checkerboard-like stimulus and reported whether an intrasaccadic change had occurred in its upper or lower half. On half of the trials, the stimulus was blanked for 200 ms with saccade onset. In a fixation condition, observers kept fixation but the stimulus was displaced from periphery to fixation, mimicking the retinal events of the saccade condition. Results show that stimulus blanking improves transsaccadic change detection, with performance being far superior to the retinally equivalent fixation condition. Our findings argue in favor of a remapped memory trace that can be accessed only in the blanking condition, when not being overwritten by the salient postsaccadic stimulus.
Collapse
Affiliation(s)
- Lukasz Grzeczkowski
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität München , Germany
| | - Jonathan van Leeuwen
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam , The Netherlands
| | - Artem V Belopolsky
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam , The Netherlands
| | - Heiner Deubel
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität München , Germany
| |
Collapse
|
15
|
Drissi-Daoudi L, Ögmen H, Herzog MH, Cicchini GM. Object identity determines trans-saccadic integration. J Vis 2020; 20:33. [PMID: 32729906 PMCID: PMC7424110 DOI: 10.1167/jov.20.7.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Humans make two to four rapid eye movements (saccades) per second, which, surprisingly, does not lead to abrupt changes in vision. To the contrary, we perceive a stable world. Hence, an important question is how information is integrated across saccades. To investigate this question, we used the sequential metacontrast paradigm (SQM), where two expanding streams of lines are presented. When one line is spatially offset, the other lines are perceived as being offset, too. When more lines are offset, all offsets integrate mandatorily; that is, observers cannot report the individual offsets but perceive one integrated offset. Here, we asked observers to make a saccade during the SQM. Even though the saccades caused a highly disrupted motion trajectory on the retina, offsets presented before and after the saccade integrated mandatorily. When observers made no saccade and the streams were displaced on the screen so that a similarly disrupted retinal image occurred as in the previous condition, no integration occurred. We suggest that trans-saccadic integration and perception are determined by object identity in spatiotopic coordinates and not by the retinal image.
Collapse
|
16
|
Abstract
Humans are able to integrate pre- and postsaccadic percepts of an object across saccades to maintain perceptual stability. Previous studies have used Maximum Likelihood Estimation (MLE) to determine that integration occurs in a near-optimal manner. Here, we compared three different models to investigate the mechanism of integration in more detail: an early noise model, where noise is added to the pre- and postsaccadic signals before integration occurs; a late-noise model, where noise is added to the integrated signal after integration occurs; and a temporal summation model, where integration benefits arise from the longer transsaccadic presentation duration compared to pre- and postsaccadic presentation only. We also measured spatiotemporal aspects of integration to determine whether integration can occur for very brief stimulus durations, across two hemifields, and in spatiotopic and retinotopic coordinates. Pre-, post-, and transsaccadic performance was measured at different stimulus presentation durations, both at the saccade target and a location where the pre- and postsaccadic stimuli were presented in different hemifields across the saccade. Results showed that for both within- and between-hemifields conditions, integration could occur when pre- and postsaccadic stimuli were presented only briefly, and that the pattern of integration followed an early noise model. Whereas integration occurred when the pre- and post-saccadic stimuli were presented in the same spatiotopic coordinates, there was no integration when they were presented in the same retinotopic coordinates. This contrast suggests that transsaccadic integration is limited by early, independent, sensory noise acting separately on pre- and postsaccadic signals.
Collapse
Affiliation(s)
- Emma E M Stewart
- Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Alexander C Schütz
- Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| |
Collapse
|
17
|
Stewart EEM, Schütz AC. Transsaccadic integration benefits are not limited to the saccade target. J Neurophysiol 2019; 122:1491-1501. [PMID: 31365324 PMCID: PMC6783298 DOI: 10.1152/jn.00420.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Across saccades, humans can integrate the low-resolution presaccadic information of an upcoming saccade target with the high-resolution postsaccadic information. There is converging evidence to suggest that transsaccadic integration occurs at the saccade target. However, given divergent evidence on the spatial specificity of related mechanisms such as attention, visual working memory, and remapping, it is unclear whether integration is also possible at locations other than the saccade target. We tested the spatial profile of transsaccadic integration, by testing perceptual performance at six locations around the saccade target and between the saccade target and initial fixation. Results show that integration benefits do not differ between the saccade target and surrounding locations. Transsaccadic integration benefits are not specific to the saccade target and can occur at other locations when they are behaviorally relevant, although there is a trend for worse performance for the location above initial fixation compared with those in the direction of the saccade. This suggests that transsaccadic integration may be a more general mechanism used to reconcile task-relevant pre- and postsaccadic information at attended locations other than the saccade target. NEW & NOTEWORTHY This study shows that integration of pre- and postsaccadic information across saccades is not restricted to the saccade target. We found performance benefits of transsaccadic integration at attended locations other than the saccade target, and these benefits did not differ from those found at the saccade target. This suggests that transsaccadic integration may be a more general mechanism used to reconcile pre- and postsaccadic information at task-relevant locations.
Collapse
Affiliation(s)
- Emma E M Stewart
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
18
|
Fornaciai M, Park J. Serial dependence generalizes across different stimulus formats, but not different sensory modalities. Vision Res 2019; 160:108-115. [DOI: 10.1016/j.visres.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
|
19
|
He T, Fritsche M, de Lange FP. Predictive remapping of visual features beyond saccadic targets. J Vis 2019; 18:20. [PMID: 30593063 DOI: 10.1167/18.13.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual stability is thought to be mediated by predictive remapping of the relevant object information from its current, presaccadic location to its future, postsaccadic location on the retina. However, it is heavily debated whether and what feature information is predictively remapped during the presaccadic interval. Here we examined the spatial and featural properties of predictive remapping in a set of three psychophysical studies. We made use of an orientation-adaptation paradigm, in which we induced a tilt aftereffect by prolonged exposure to an oriented adaptor stimulus. Following this adaptation phase, a test stimulus was presented shortly before saccade onset. We found strong evidence for predictive remapping of the features of this test stimulus presented shortly before saccade onset, evidenced by a large tilt aftereffect elicited when the adaptor was positioned at the postsaccadic retinal location of the test stimulus. Conversely, the adaptation state itself, caused by the exposure to the adaptor stimulus, was not predictively remapped. Furthermore, we establish that predictive remapping also occurs for stimuli that are not saccade targets, pointing toward a forward remapping process operating across the whole visual field. Together, our findings suggest that predictive feature remapping of object information plays an important role in mediating visual stability.
Collapse
Affiliation(s)
- Tao He
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Matthias Fritsche
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Abstract
Several times per second, humans make rapid eye movements called saccades which redirect their gaze to sample new regions of external space. Saccades present unique challenges to both perceptual and motor systems. During the movement, the visual input is smeared across the retina and severely degraded. Once completed, the projection of the world onto the retina has undergone a large-scale spatial transformation. The vector of this transformation, and the new orientation of the eye in the external world, is uncertain. Memory for the pre-saccadic visual input is thought to play a central role in compensating for the disruption caused by saccades. Here, we review evidence that memory contributes to (1) detecting and identifying changes in the world that occur during a saccade, (2) bridging the gap in input so that visual processing does not have to start anew, and (3) correcting saccade errors and recalibrating the oculomotor system to ensure accuracy of future saccades. We argue that visual working memory (VWM) is the most likely candidate system to underlie these behaviours and assess the consequences of VWM's strict resource limitations for transsaccadic processing. We conclude that a full understanding of these processes will require progress on broader unsolved problems in psychology and neuroscience, in particular how the brain solves the object correspondence problem, to what extent prior beliefs influence visual perception, and how disparate signals arriving with different delays are integrated.
Collapse
|
21
|
Stewart EEM, Schütz AC. Optimal trans-saccadic integration relies on visual working memory. Vision Res 2018; 153:70-81. [PMID: 30312623 PMCID: PMC6241852 DOI: 10.1016/j.visres.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022]
Abstract
Saccadic eye movements alter the visual processing of objects of interest by bringing them from the periphery, where there is only low-resolution vision, to the high-resolution fovea. Evidence suggests that people are able to achieve trans-saccadic integration in a near-optimal manner; however the mechanisms underlying integration are still unclear. Visual working memory (VWM) is sustained across a saccade, and it has been suggested that this memory resource is used to store and compare the pre- and post- saccadic percepts. This study directly tested the hypothesis that VWM is necessary for optimal trans-saccadic integration, by introducing memory load during a saccade, and testing subsequent integration performance on feature similar and dissimilar stimuli. Results show that integration performance was impaired when there was an additional memory task. Additionally, performance on the memory task was affected by feature-specific integration stimuli. Our results suggest that VWM supports the integration of pre- and post- saccadic stimuli because integration performance is impaired under VWM load.
Collapse
Affiliation(s)
- Emma E M Stewart
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
22
|
Schut MJ, Van der Stoep N, Fabius JH, Van der Stigchel S. Feature integration is unaffected by saccade landing point, even when saccades land outside of the range of regular oculomotor variance. J Vis 2018; 18:6. [PMID: 30029270 DOI: 10.1167/18.7.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The experience of our visual surroundings appears continuous, contradicting the erratic nature of visual processing due to saccades. A possible way the visual system can construct a continuous experience is by integrating presaccadic and postsaccadic visual input. However, saccades rarely land exactly at the intended location. Feature integration would therefore need to be robust against variations in saccade execution to facilitate visual continuity. In the current study, observers reported a feature (color) of the saccade target, which occasionally changed slightly during the saccade. In transsaccadic change-trials, observers reported a mixture of the pre- and postsaccadic color, indicating transsaccadic feature integration. Saccade landing distance was not a significant predictor of the reported color. Next, to investigate the influence of more extreme deviations of saccade landing point on color reports, we used a global effect paradigm in a second experiment. In global effect trials, a distractor appeared together with the saccade target, causing most saccades to land in between the saccade target and the distractor. Strikingly, even when saccades land further away (up to 4°) from the saccade target than one would expect under single target conditions, there was no effect of saccade landing point on the reported color. We reason that saccade landing point does not affect feature integration, due to dissociation between the intended saccade target and the actual saccade landing point. Transsaccadic feature integration seems to be a mechanism that is dependent on visual spatial attention, and, as a result, is robust against variance in saccade landing point.
Collapse
Affiliation(s)
- Martijn J Schut
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Nathan Van der Stoep
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Jasper H Fabius
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
23
|
Abstract
We investigated how the approximate perceived numerosity of ensembles of visual elements is modulated by the numerosity of previously viewed ensembles depending on whether the first ensemble is held in visual working memory or not. We show that the numerosity of the previously seen ensemble has a repulsive effect, that is, a stimulus with high numerosity induces an underestimation of the following one and vice versa. This repulsive effect is present regardless of whether the first stimulus is memorized or not. While subtle changes of the experimental paradigm can have major consequences for the nature of interstimulus dependencies in perception, generally speaking the fact that we found such effects in a visual numerosity estimation task confirms that the process by which human observers produce estimates of the number of elements bears analogies to the processes that lead to the perception of visual dimensions such as orientation.
Collapse
Affiliation(s)
- Matteo Valsecchi
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Natale Stucchi
- Dipartimento di Psicologia, Universitá degli Studi di Milano-Bicocca, Milano, Italy
| | - Lisa Scocchia
- Dipartimento di Psicologia, Universitá degli Studi di Milano-Bicocca, Milano, Italy
| |
Collapse
|
24
|
Stewart EEM, Schütz AC. Attention modulates trans-saccadic integration. Vision Res 2017; 142:1-10. [PMID: 29183779 PMCID: PMC5757795 DOI: 10.1016/j.visres.2017.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 11/16/2022]
Abstract
With every saccade, humans must reconcile the low resolution peripheral information available before a saccade, with the high resolution foveal information acquired after the saccade. While research has shown that we are able to integrate peripheral and foveal vision in a near-optimal manner, it is still unclear which mechanisms may underpin this important perceptual process. One potential mechanism that may moderate this integration process is visual attention. Pre-saccadic attention is a well documented phenomenon, whereby visual attention shifts to the location of an upcoming saccade before the saccade is executed. While it plays an important role in other peri-saccadic processes such as predictive remapping, the role of attention in the integration process is as yet unknown. This study aimed to determine whether the presentation of an attentional distractor during a saccade impaired trans-saccadic integration, and to measure the time-course of this impairment. Results showed that presenting an attentional distractor impaired integration performance both before saccade onset, and during the saccade, in selected subjects who showed integration in the absence of a distractor. This suggests that visual attention may be a mechanism that facilitates trans-saccadic integration.
Collapse
Affiliation(s)
- Emma E M Stewart
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|