1
|
Little Z, Clifford CWG. The effects of feedback and task accuracy in serial dependence to orientation. Vision Res 2025; 227:108536. [PMID: 39708406 DOI: 10.1016/j.visres.2024.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Assimilative serial dependence in perception occurs where responses about a stimulus (e.g., orientation) are biased towards previously seen perceptual information (e.g., the orientation of the stimulus shown on the previous trial). This bias may occur to perceptual information from the previous trial, or to the response or decision made on the previous trial. We asked whether providing response feedback could change the serial dependence effect on the following trial. Twenty-one participants completed a task in which they adjusted an on-screen pointer to reproduce the orientation of a briefly-presented Gabor stimulus. They received feedback about the accuracy of their response that either reflected their actual accuracy or was random. We found significant positive biases to the stimulus and response only when the participant had received positive ("correct!") feedback on that trial. When the inducer response had been incorrect, the effect was significant only to the response itself and not to the stimulus. Overall, we suggest that our participants demonstrated a bias towards the percept from the previous trial, which is better represented by the response than the stimulus for incorrect trials, and that this effect can be modulated post-perceptually by feedback.
Collapse
Affiliation(s)
- Zoë Little
- School of Psychology, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
2
|
Huang Y, Li H, Qiu S, Ding X, Li M, Liu W, Fan Z, Cheng X. Distinct serial dependence between small and large numerosity processing. PSYCHOLOGICAL RESEARCH 2024; 89:41. [PMID: 39739125 DOI: 10.1007/s00426-024-02071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
The serial dependence effect (SDE) is a perceptual bias where current stimuli are perceived as more similar to recently seen stimuli, possibly enhancing the stability and continuity of visual perception. Although SDE has been observed across many visual features, it remains unclear whether humans rely on a single mechanism of SDE to support numerosity processing across two distinct numerical ranges: subitizing (i.e., small numerosity processing, likely related to early object recognition) and estimation (i.e., large numerosity processing, likely related to ensemble numerosity extraction). Here, we show that subitizing and estimation exhibit distinct SDE patterns. Subitizing is characterized by an asymmetric SDE, whereas estimation demonstrates a symmetric SDE. Specifically, in subitizing, the SDE occurs only when the current magnitude is smaller than the previous magnitude but not when it is larger. In contrast, the SDE in estimation is present in both scenarios. We propose that these differences arise from distinct underlying mechanisms. A perceptual mechanism-namely, a 'temporal hysteresis' account, can explain the asymmetrical SDE in subitizing since object individuation resources are easily activated but resistant to deactivation. Conversely, a combination of perceptual and post-perceptual mechanisms can account for the SDEs in estimation, as both perceptual and post-perceptual interference can reduce the SDEs. Critically, a novel type of SDE characterized by reduced processing precision is found in subitizing only, implying that the continuity and stability of numerical processing can be dissociable in dynamic situations where numerical information is integrated over time. Our findings reveal the multifaceted nature of SDE mechanisms and suggest their engagement with cognitive modules likely subserving different functionalities.
Collapse
Affiliation(s)
- Yue Huang
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Haokun Li
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100091, China
| | - Shiming Qiu
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Xianfeng Ding
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Min Li
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Wangjuan Liu
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China
| | - Zhao Fan
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China.
| | - Xiaorong Cheng
- School of Psychology, Central China Normal University (CCNU), Wuhan, 430079, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, Wuhan, 430079, China.
| |
Collapse
|
3
|
Cicchini GM, D'Errico G, Burr DC. Color crowding considered as adaptive spatial integration. J Vis 2024; 24:9. [PMID: 39656167 PMCID: PMC11636666 DOI: 10.1167/jov.24.13.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024] Open
Abstract
Crowding is the inability to recognize an object in clutter, classically considered a fundamental low-level bottleneck to object recognition. Recently, however, it has been suggested that crowding, like predictive phenomena such as serial dependence, may result from optimizing strategies that exploit redundancies in natural scenes. This notion leads to several testable predictions, such as crowding being greater for nonsalient targets and, counterintuitively, that flanker interference should be associated with higher precision in judgements, leading to a lower overall error rate. Here we measured color discrimination for targets flanked by stimuli of variable color. The results verified both predictions, showing that although crowding can affect object recognition, it may be better understood not as a processing bottleneck, but rather as a consequence of mechanisms evolved to efficiently exploit the spatial redundancies of the natural world. Analyses of reaction times of judgments shows that the integration occurs at sensory rather than decisional levels.
Collapse
Affiliation(s)
| | | | - David Charles Burr
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Cheng S, Chen S, Yang X, Shi Z. The impact of task measurements on sequential dependence: a comparison between temporal reproduction and discrimination tasks. PSYCHOLOGICAL RESEARCH 2024; 88:2346-2359. [PMID: 39190157 PMCID: PMC11522143 DOI: 10.1007/s00426-024-02023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Decisions about a current stimulus are influenced by previously encountered stimuli, leading to sequential bias. However, the specific processing levels at which serial dependence emerges remain unclear. Despite considerable evidence pointing to contributions from perceptual and post-perceptual processes, as well as response carryover effects impacting subsequent judgments, research into how different task measurements affect sequential dependencies is limited. To address this gap, the present study investigated the role of task type in shaping sequential effects in time perception, employing a random-dot kinematogram (RDK) in a post-cue paradigm. Participants had to remember both the duration and the direction of the RDK movement and perform the task based on a post-cue, which was equally likely to be direction or duration. To delineate the task type, we employed the temporal bisection task in Experiment 1 and the duration reproduction task in Experiment 2. Both experiments revealed a significant sequential bias: durations were perceived as longer following longer previous durations, and vice versa. Intriguingly, the sequential effect was enhanced in the reproduction task following the same reproduction task (Experiment 2), but did not show significant variation by the task type in the bisection task (Experiment 1). Moreover, comparable response carryover effects were observed across two experiments. We argue that the differential impacts of task types on sequential dependence lies in the involvement of memory reactivation process in the decision stage, while the post-decision response carryover effect may reflect the assimilation by subjective, rather than objective, durations, potentially linking to the sticky pacemaker rate and/or decisional inertia.
Collapse
Affiliation(s)
- Si Cheng
- General and Experimental Psychology, Department of Psychology, LMU Munich, 80802, Munich, Germany
| | - Siyi Chen
- General and Experimental Psychology, Department of Psychology, LMU Munich, 80802, Munich, Germany
| | - Xuefeng Yang
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Department of Psychology, LMU Munich, 80802, Munich, Germany.
| |
Collapse
|
5
|
Liang T, Rong KL, Qiao JD, Ke Y, Yung WH. Automatic Experimental Numerosity Generation and Numerical Training for Rodents. Curr Protoc 2024; 4:e70044. [PMID: 39531170 DOI: 10.1002/cpz1.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Non-symbolic stimuli representing numerosities are invariably associated with continuous magnitudes, complicating the interpretation of experimental studies on numerosity perception. Although various algorithms for experimental numerosity generation have been proposed, they do not consider the quantifiable distribution of values of continuous magnitudes and the degree of numerosity-magnitudes association. Consequently, they cannot thoroughly exclude the possibility of magnitudes integration or strategy switch between different magnitudes in numerical stimulus perception. Here, we introduce a protocol for numerosity generation, animal training, and behavior outcomes analysis that takes the aforementioned issues into consideration. This protocol has been applied to rodents and is applicable to other animals in numerosity studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Algorithm for generating non-symbolic numerical stimuli Alternate Protocol: General algorithm for generating non-symbolic numerical stimuli Basic Protocol 2: Numerical training and testing for rodents.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Da Qiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Croteau J, Fornaciai M, Huber DE, Park J. The divisive normalization model of visual number sense: model predictions and experimental confirmation. Cereb Cortex 2024; 34:bhae418. [PMID: 39441025 DOI: 10.1093/cercor/bhae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Our intuitive sense of number allows rapid estimation for the number of objects (numerosity) in a scene. How does the continuous nature of neural information processing create a discrete representation of number? A neurocomputational model with divisive normalization explains this process and existing data; however, a successful model should not only explain existing data but also generate novel predictions. Here, we experimentally test novel predictions of this model to evaluate its merit for explaining mechanisms of numerosity perception. We did so by consideration of the coherence illusion: the underestimation of number for arrays containing heterogeneous compared to homogeneous items. First, we established the existence of the coherence illusion for homogeneity manipulations of both area and orientation of items in an array. Second, despite the behavioral similarity, the divisive normalization model predicted that these two illusions should reflect activity in different stages of visual processing. Finally, visual evoked potentials from an electroencephalography experiment confirmed these predictions, showing that area and orientation coherence modulate brain responses at distinct latencies and topographies. These results demonstrate the utility of the divisive normalization model for explaining numerosity perception, according to which numerosity perception is a byproduct of canonical neurocomputations that exist throughout the visual pathway.
Collapse
Affiliation(s)
- Jenna Croteau
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA 01003, United States
| | - Michele Fornaciai
- Institute for Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place du Cardinal Mercier 10, Louvain-la-Neuve, 1348, Belgium
| | - David E Huber
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO 80309, United States
| | - Joonkoo Park
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA 01003, United States
- Commonwealth Honors College, University of Massachusetts Amherst, 157 Commonwealth Avenue, Amherst, MA 01003, United States
| |
Collapse
|
7
|
Lõoke M, Guérineau C, Broseghini A, Mongillo P, Marinelli L. Visual continuum in non-human animals: serial dependence revealed in dogs. Proc Biol Sci 2024; 291:20240051. [PMID: 39045690 PMCID: PMC11267470 DOI: 10.1098/rspb.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024] Open
Abstract
Serial dependence is a recently described phenomenon by which the perceptual evaluation of a stimulus is biased by a previously attended one. By integrating stimuli over time, serial dependence is believed to ensure a stable conscious experience. Despite increasing studies in humans, it is unknown if the process occurs also in other species. Here, we assessed whether serial dependence occurs in dogs. To this aim, dogs were trained on a quantity discrimination task before being presented with a discrimination where one of the discriminanda was preceded by a task-irrelevant stimulus. If dogs are susceptible to serial dependence, the task-irrelevant stimulus was hypothesized to influence the perception of the subsequently presented quantity. Our results revealed that dogs perceived the currently presented quantity to be closer to the one presented briefly before, in accordance with serial dependence. The direction and strength of the effect were comparable to those observed in humans. Data regarding dogs' attention during the task suggest that dogs used two different quantity estimation mechanisms, an indication of a higher cognitive mechanism involved in the process. The present results are the first empirical evidence that serial dependence extends beyond humans, suggesting that the mechanism is shared by phylogenetically distant mammals.
Collapse
Affiliation(s)
- Miina Lõoke
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| | - Cécile Guérineau
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| | - Anna Broseghini
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| | - Paolo Mongillo
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| | - Lieta Marinelli
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| |
Collapse
|
8
|
Fu Y, Mei G. Serial dependence requires visual awareness: Evidence from continuous flash suppression. J Vis 2024; 24:9. [PMID: 38787568 PMCID: PMC11129717 DOI: 10.1167/jov.24.5.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The visual system often undergoes a relatively stable perception even in a noisy visual environment. This crucial function was reflected in a visual perception phenomenon-serial dependence, in which recent stimulus history systematically biases current visual decisions. Although serial dependence effects have been revealed in numerous studies, few studies examined whether serial dependence would require visual awareness. By using the continuous flash suppression (CFS) technique to render grating stimuli invisible, we investigated whether serial dependence effects could emerge at the unconscious levels. In an orientation adjustment task, subjects viewed a randomly oriented grating and reported their orientation perception via an adjustment response. Subjects performed a series of three type trial pairs. The first two trial pairs, in which subjects were instructed to make a response or no response toward the first trial of the pairs, respectively, were used to measure serial dependence at the conscious levels; the third trial pair, in which the grating stimulus in the first trial of the pair was masked by a CFS stimulus, was used to measure the serial dependence at the unconscious levels. One-back serial dependence effects for the second trial of the pairs were evaluated. We found significant serial dependence effects at the conscious levels, whether absence (Experiment 1) or presence (Experiment 2) of CFS stimuli, but failed to find the effects at the unconscious levels, corroborating the view that serial dependence requires visual awareness.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Psychology, Guizhou Normal University, Guiyang, PR China
| | - Gaoxing Mei
- School of Psychology, Guizhou Normal University, Guiyang, PR China
| |
Collapse
|
9
|
Liang T, Peng RC, Rong KL, Li JX, Ke Y, Yung WH. Disparate processing of numerosity and associated continuous magnitudes in rats. SCIENCE ADVANCES 2024; 10:eadj2566. [PMID: 38381814 PMCID: PMC10881051 DOI: 10.1126/sciadv.adj2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
The studies of number sense in different species are severely hampered by the inevitable entanglement of non-numerical attributes inherent in nonsymbolic stimuli representing numerosity, resulting in contrasting theories of numerosity processing. Here, we developed an algorithm and associated analytical methods to generate stimuli that not only minimized the impact of non-numerical magnitudes in numerosity perception but also allowed their quantification. We trained number-naïve rats with these stimuli as sound pulses representing two or three numbers and demonstrated that their numerical discrimination ability mainly relied on numerosity. Also, studying the learning process revealed that rats used numerosity before using magnitudes for choices. This numerical processing could be impaired specifically by silencing the posterior parietal cortex. Furthermore, modeling this capacity by neural networks shed light on the separation of numerosity and magnitudes extraction. Our study helps dissect the relationship between magnitude and numerosity processing, and the above different findings together affirm the independent existence of innate number and magnitudes sense in rats.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong-Chao Peng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jia-Xin Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Sadil P, Cowell RA, Huber DE. The push-pull of serial dependence effects: Attraction to the prior response and repulsion from the prior stimulus. Psychon Bull Rev 2024; 31:259-273. [PMID: 37566217 PMCID: PMC11488665 DOI: 10.3758/s13423-023-02320-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/12/2023]
Abstract
In the "serial dependence" effect, responses to visual stimuli appear biased toward the last trial's stimulus. However, several kinds of serial dependence exist, with some reflecting prior stimuli and others reflecting prior responses. One-factor analyses consider the prior stimulus alone or the prior response alone and can consider both variables only via separate analyses. We demonstrate that one-factor analyses are potentially misleading and can reach conclusions that are opposite from the truth if both dependencies exist. To address this limitation, we developed two-factor analyses (model comparison with hierarchical Bayesian modeling and an empirical "quadrant analysis"), which consider trial-by-trial combinations of prior response and prior stimulus. Two-factor analyses can tease apart the two dependencies if applied to a sufficiently large dataset. We applied these analyses to a new study and to four previously published studies. When applying a model that included the possibility of both dependencies, there was no evidence of attraction to the prior stimulus in any dataset, but there was evidence of attraction to the prior response in all datasets. Two of the datasets contained sufficient constraint to determine that both dependencies were needed to explain the results. For these datasets, the dependency on the prior stimulus was repulsive rather than attractive. Our results are consistent with the claim that both dependencies exist in most serial dependence studies (the two-dependence model was not ruled out for any dataset) and, furthermore, that the two dependencies work against each other.
Collapse
Affiliation(s)
- Patrick Sadil
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Rosemary A Cowell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - David E Huber
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
11
|
Morimoto Y, Makioka S. Response boosts serial dependence in the numerosity estimation task. Sci Rep 2024; 14:2059. [PMID: 38267507 PMCID: PMC10808238 DOI: 10.1038/s41598-024-52470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Perceptions of current stimuli are sometimes biased toward or away from past perceptions. This phenomenon is called serial dependence. However, the strength of the effect of past responses on serial dependence has not been fully elucidated. We conducted experiments with a task in which participants estimated the number of dot arrays (numerosity estimation task) and directly compared whether the strength of serial dependence changed in the numerosity estimation task when participants responded or did not respond in the immediately preceding trial. We also examined whether the strength of serial dependence affected the accuracy of the numerosity estimation. We found that attractive serial dependence was stronger when participants responded in the immediately preceding trial than when they only saw the stimulus. The results suggest that the information from the previous stimulus must reach the higher-level processes associated with perceptual decisions to influence the estimation of the current stimulus. However, it is possible that the results of this study are specific to tasks in which participants respond with numeric symbols. The magnitude of the serial dependence effect was not observed to affect numerosity estimation performance, and no evidence was found that serial dependence enhances accuracy in the numerosity estimation task.
Collapse
Affiliation(s)
- Yukihiro Morimoto
- Department of Sustainable System Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Shogo Makioka
- Department of Psychology, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
12
|
Wang SY, Gong XM, Zhan LZ, You FH, Sun Q. Attention influences the effects of the previous form orientation on the current motion direction estimation. Sci Rep 2024; 14:1394. [PMID: 38228771 PMCID: PMC10791700 DOI: 10.1038/s41598-024-52069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Recent studies have found that the estimates of motion directions are biased toward the previous form orientations, showing serial dependence, and the serial dependence does not involve cognitive abilities. In the current study, we conducted two experiments to investigate whether and how attention-a cognitive ability-affected the serial dependence. The results showed that serial dependence was present in the current study, reproducing the previous findings. Importantly, when the attentional load reduced the reliability (i.e., estimation accuracy and precision) of previous form orientations (Experiment 1), the serial dependence decreased, meaning that the biases of motion direction estimates toward previous form orientations were reduced; in contrast, when the attentional load reduced the reliability of current motion directions (Experiment 2), the serial dependence increased, meaning that the biases of motion direction estimates toward previous form orientations were increased. These trends were well consistent with the prediction of the Bayesian inference theory. Therefore, the current study revealed the involvement of attention in the serial dependence of current motion direction estimation on the previous form orientation, demonstrating that the serial dependence was cognitive and the attentional effect can be a Bayesian inference process, initially revealing its computational mechanism.
Collapse
Affiliation(s)
- Si-Yu Wang
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Xiu-Mei Gong
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Lin-Zhe Zhan
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Fan-Huan You
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Qi Sun
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, People's Republic of China.
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, People's Republic of China.
| |
Collapse
|
13
|
Lim J, Lee SH. Spatial correspondence in relative space regulates serial dependence. Sci Rep 2023; 13:18162. [PMID: 37875592 PMCID: PMC10598270 DOI: 10.1038/s41598-023-45505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
Our perception is often attracted to what we have seen before, a phenomenon called 'serial dependence.' Serial dependence can help maintain a stable perception of the world, given the statistical regularity in the environment. If serial dependence serves this presumed utility, it should be pronounced when consecutive elements share the same identity when multiple elements spatially shift across successive views. However, such preferential serial dependence between identity-matching elements in dynamic situations has never been empirically tested. Here, we hypothesized that serial dependence between consecutive elements is modulated more effectively by the spatial correspondence in relative space than by that in absolute space because spatial correspondence in relative coordinates can warrant identity matching invariantly to changes in absolute coordinates. To test this hypothesis, we developed a task where two targets change positions in unison between successive views. We found that serial dependence was substantially modulated by the correspondence in relative coordinates, but not by that in absolute coordinates. Moreover, such selective modulation by the correspondence in relative space was also observed even for the serial dependence defined by previous non-target elements. Our findings are consistent with the view that serial dependence subserves object-based perceptual stabilization over time in dynamic situations.
Collapse
Affiliation(s)
- Jaeseob Lim
- Department of Brain and Cognitive Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Blondé P, Kristjánsson Á, Pascucci D. Tuning perception and decisions to temporal context. iScience 2023; 26:108008. [PMID: 37810242 PMCID: PMC10551895 DOI: 10.1016/j.isci.2023.108008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
Recent work suggests that serial dependence, where perceptual decisions are biased toward previous stimuli, arises from the prior that sensory input is temporally correlated. However, existing studies have mostly used random stimulus sequences that do not involve such temporal consistencies. Here, we manipulated the temporal statistics of visual stimuli to examine the role of true temporal correlations in serial dependence. In two experiments, observers reproduced the orientation of the last stimulus in a sequence, while we varied temporal correlations in the stimulus features at two timescales: stimulus history within the trial and decision history across trials. We found a clear dissociation: increasing temporal correlation in the stimulus history led to adaptation-like repulsive biases, whereas increasing temporal correlation in the decision history reduced attractive biases. Thus, we suggest that temporal correlation enhances the discriminative ability of the visual system, revealing the fundamental role of the broader temporal context.
Collapse
Affiliation(s)
- Philippe Blondé
- Icelandic Vision Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Árni Kristjánsson
- Icelandic Vision Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - David Pascucci
- Laboratory of Psychophysics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Houborg C, Pascucci D, Tanrikulu ÖD, Kristjánsson Á. The effects of visual distractors on serial dependence. J Vis 2023; 23:1. [PMID: 37792362 PMCID: PMC10565705 DOI: 10.1167/jov.23.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Attractive serial dependence occurs when perceptual decisions are attracted toward previous stimuli. This effect is mediated by spatial attention and is most likely to occur when similar stimuli are attended at nearby locations. Attention, however, also involves the suppression of distracting information and of spatial locations where distracting stimuli have frequently appeared. Although distractors form an integral part of our visual experience, how they affect the processing of subsequent stimuli is unknown. Here, in two experiments, we tested serial dependence from distractor stimuli during an orientation adjustment task. We interleaved adjustment trials with a discrimination task requiring observers to ignore a peripheral distractor randomly appearing on half of the trials. Distractors were either similar to the adjustment probe (Experiment 1) or differed in spatial frequency and contrast (Experiment 2) and were shown at predictable or random locations in separate blocks. The results showed that the distractor caused considerable attentional capture in the discrimination task, with observers likely using proactive strategies to anticipate distractors at predictable locations. However, there was no evidence that the distractors affected the perceptual stream leading to positive serial dependence. Instead, they left a weak repulsive trace in Experiment 1 and more generally interfered with the effect of the previous adjustment probe in the serial dependence task. We suggest that this repulsive bias may reflect the operation of mechanisms involved in attentional suppression.
Collapse
Affiliation(s)
- Christian Houborg
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - David Pascucci
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ömer Daglar Tanrikulu
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Psychology, University of New Hampshire, Durham, NH, USA
| | - Árni Kristjánsson
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
16
|
Trübutschek D, Melloni L. Stable perceptual phenotype of the magnitude of history biases even in the face of global task complexity. J Vis 2023; 23:4. [PMID: 37531102 PMCID: PMC10405861 DOI: 10.1167/jov.23.8.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
According to a Bayesian framework, visual perception requires active interpretation of noisy sensory signals in light of prior information. One such mechanism, serial dependence, is thought to promote perceptual stability by assimilating current percepts with recent stimulus history. Combining a delayed orientation-adjustment paradigm with predictable (study 1) or unpredictable (study 2) task structure, we test two key predictions of this account in a novel context: first, that serial dependence should persist even in variable environments, and, second, that, within a given observer and context, this behavioral bias should be stable from one occasion to the next. Relying on data of 41 human volunteers and two separate experimental sessions, we confirm both hypotheses. Group-level, attractive serial dependence remained strong even in the face of volatile settings with multiple, unpredictable types of tasks, and, despite considerable interindividual variability, within-subject patterns of attractive and repulsive stimulus-history biases were highly stable from one experimental session to the next. In line with the hypothesized functional role of serial dependence, we propose that, together with previous work, our findings suggest the existence of a more general individual-specific fingerprint with which the past shapes current perception. Congruent with the Bayesian account, interindividual differences may then result from differential weighting of sensory evidence and prior information.
Collapse
Affiliation(s)
- Darinka Trübutschek
- Research Group Neural Circuits, Consciousness and Cognition, Max Planck Institute for Empirical Aesthetics, Frankfurt/Main, Germany
| | - Lucia Melloni
- Research Group Neural Circuits, Consciousness and Cognition, Max Planck Institute for Empirical Aesthetics, Frankfurt/Main, Germany
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
Manassi M, Murai Y, Whitney D. Serial dependence in visual perception: A meta-analysis and review. J Vis 2023; 23:18. [PMID: 37642639 PMCID: PMC10476445 DOI: 10.1167/jov.23.8.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
Positive sequential dependencies are phenomena in which actions, perception, decisions, and memory of features or objects are systematically biased toward visual experiences from the recent past. Among many labels, serial dependencies have been referred to as priming, sequential dependencies, sequential effects, or serial effects. Despite extensive research on the topic, the field still lacks an operational definition of what counts as serial dependence. In this meta-analysis, we review the vast literature on serial dependence and quantitatively assess its key diagnostic characteristics across several different domains of visual perception. The meta-analyses fully characterize serial dependence in orientation, face, and numerosity perception. They show that serial dependence is defined by four main kinds of tuning: serial dependence decays with time (temporal-tuning), it depends on relative spatial location (spatial-tuning), it occurs only between similar features and objects (feature-tuning), and it is modulated by attention (attentional-tuning). We also review studies of serial dependence that report single observer data, highlighting the importance of individual differences in serial dependence. Finally, we discuss a range of outstanding questions and novel research avenues that are prompted by the meta-analyses. Together, the meta-analyses provide a full characterization of serial dependence as an operationally defined family of visual phenomena, and they outline several of the key diagnostic criteria for serial dependence that should serve as guideposts for future research.
Collapse
Affiliation(s)
- Mauro Manassi
- School of Psychology, University of Aberdeen, King's College, Aberdeen, UK
| | - Yuki Murai
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - David Whitney
- Department of Psychology University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Vision Science Group, University of California, Berkeley, CA, USA
| |
Collapse
|
18
|
Luo J, Collins T. The Representational Similarity between Visual Perception and Recent Perceptual History. J Neurosci 2023; 43:3658-3665. [PMID: 36944487 PMCID: PMC10198448 DOI: 10.1523/jneurosci.2068-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
From moment to moment, the visual properties of objects in the world fluctuate because of external factors like ambient lighting, occlusion and eye movements, and internal (proximal) noise. Despite this variability in the incoming information, our perception is stable. Serial dependence, the behavioral attraction of current perceptual responses toward previously seen stimuli, may reveal a mechanism underlying stability: a spatiotemporally tuned operator that smooths over spurious fluctuations. The current study examined the neural underpinnings of serial dependence by recording the electroencephalographic (EEG) brain response of female and male human observers to prototypical objects (faces, cars, and houses) and morphs that mixed properties of two prototypes. Behavior was biased toward previously seen objects. Representational similarity analysis (RSA) revealed that responses evoked by visual objects contained information about the previous stimulus. The trace of previous representations in the response to the current object occurred immediately on object appearance, suggesting that serial dependence arises from a brain state or set that precedes processing of new input. However, the brain response to current visual objects was not representationally similar to the trace they leave on subsequent object representations. These results reveal that while past stimulus history influences current representations, this influence does not imply a shared neural code between the previous trial (memory) and the current trial (perception).SIGNIFICANCE STATEMENT The perception of visual objects is pulled toward instances of that object seen in the recent past. The neural underpinnings of this serial dependence remain to be fully investigated. The present study examined electroencephalographic (EEG) responses to faces, cars, and houses, and ambiguous between-category morphs. With representational similarity analysis (RSA), we showed (1) object-specific neural patterns that differentiate the three categories; (2) that the response to the current object contains information about the previous object, mirroring behavioral serial dependence; (3) that the object-specific neural pattern about the past was different from that in the current response, revealing that while past stimulus history influences current representations, this does not imply a shared neural code between the previous trial (memory) and the current trial (perception).
Collapse
Affiliation(s)
- Junlian Luo
- Integrative Neuroscience and Cognition Center, Université Paris Cité and Centre Nationale de la Recherche Scientifique, Paris 75006, France
| | - Thérèse Collins
- Integrative Neuroscience and Cognition Center, Université Paris Cité and Centre Nationale de la Recherche Scientifique, Paris 75006, France
| |
Collapse
|
19
|
Saarela TP, Niemi SM, Olkkonen M. Independent short- and long-term dependencies in perception. J Vis 2023; 23:12-1. [PMID: 37184502 DOI: 10.1167/jov.23.5.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Perception is biased by stimulus history. Both long-term effects such as the central-tendency bias (CTB) and short-term effects such as serial dependence (SD) have been described, but research into the two has remained largely separate. The sources of these effects, however, are highly correlated in stimulus statistics, which can result in a misinterpretation of experimental data. We compared CTB and SD in the perception of color and line length. Observers judged the relative hue or length of consecutive stimuli in a delayed-matching task. Two interstimulus intervals were used to investigate whether elapsed time or the number of stimulus occurrences was more important for SD. We estimated biases by fitting psychometric functions to the data split based on the history features, and we also fit generalized linear mixed models with either CTB, SD, or both included as regressors. We found biases to both recent stimulus history and the cumulative average of stimulus values for both color and line length judgments. The strength and pattern of each of the biases depended on whether all sources of bias were included in the analysis. Within the range of interstimulus intervals tested, the number of intervening stimuli was more important than elapsed time for SD. We conclude that both SD and CTB independently affect perceptual judgments, and that one effect is not an artifact caused by the other. Failing to consider both effects in data analysis can give an erroneous picture of the phenomenon under study.
Collapse
Affiliation(s)
- Toni P Saarela
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 University of Helsinki, Helsinki, Finland
| | - Saija M Niemi
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 University of Helsinki, Helsinki, Finland
| | - Maria Olkkonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Eckert AL, Gounitski Y, Guggenmos M, Sterzer P. Cross-Modality Evidence for Reduced Choice History Biases in Psychosis-Prone Individuals. Schizophr Bull 2023; 49:397-406. [PMID: 36440751 PMCID: PMC10016417 DOI: 10.1093/schbul/sbac168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Predictive processing posits that perception emerges from inferential processes within a hierarchical cortical system. Alterations of these processes may result in psychotic experiences, such as hallucinations and delusions. Central to the predictive processing account of psychosis is the notion of aberrant weights attributed to prior information and sensory input. Based on the notion that previous perceptual choices represent a relevant source of prior information, we here asked whether the propensity towards psychotic experiences may be related to altered choice history biases in perceptual decision-making. METHODS We investigated the relationship between choice history biases in perceptual decision-making and psychosis proneness in the general population. Choice history biases and their adaptation to experimentally induced changes in stimulus serial dependencies were investigated in decision-making tasks with auditory (experiment 1) and visual (experiment 2) stimuli. We further explored a potential compensatory mechanism for reduced choice history biases by reliance on predictive cross-modal cues. RESULTS In line with our preregistered hypothesis, psychosis proneness was associated with decreased choice history biases in both experiments. This association is generalized across conditions with and without stimulus serial dependencies. We did not find consistent evidence for a compensatory reliance on cue information in psychosis-prone individuals across experiments. CONCLUSIONS Our results show reduced choice history biases in psychosis proneness. A compensatory mechanism between implicit choice history effects and explicit cue information is not supported unequivocally by our data.
Collapse
Affiliation(s)
- Anna-Lena Eckert
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Unter den Linden 6, 10099 Berlin, Germany.,Department of Psychiatry and Neurosciences, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Yael Gounitski
- Department of Psychiatry and Neurosciences, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Guggenmos
- Department of Psychiatry and Neurosciences, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Health and Medical University, Institute for Mind, Brain and Behavior, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Philipp Sterzer
- Bernstein Center for Computational Neuroscience Berlin, Unter den Linden 6, 10099 Berlin, Germany.,Department of Psychiatry and Neurosciences, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,University of Basel, Department of Psychiatry (UPK), Wilhelm-Klein-Strasse 27, 4002 Basel, Switzerland
| |
Collapse
|
21
|
Rafiei M, Chetverikov A, Hansmann-Roth S, Kristjansson Á. The influence of the tested item on serial dependence in perceptual decisions. Perception 2023; 52:255-265. [PMID: 36919274 DOI: 10.1177/03010066231157582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Serial dependence in vision reflects how perceptual decisions can be biased by what we have recently perceived. Serial dependence studies test single items' effects on perceptual decisions. However, our visual world contains multiple objects at any given moment, so it's important to understand how past experiences affect not only a single object but also perception in a more general sense. Here we asked the question: What effect does a single item have when there is more than one subsequently presented test item? We displayed a single line (inducer) at the screen center, then either a single test-line or two simultaneous test-lines, varying in orientation space to the inducer. Next, participants reported test-line orientation using a left or right located response circle (to indicate which test-line should be reported). The results demonstrated that the inducer influenced subsequent perceptual judgments of a test-line even when two test-lines were presented. Distant items caused repulsive serial dependence, while close items caused attractive serial dependence. This shows how a single inducer can influence test-line judgments, even when two test-lines are presented, and can produce attractive and repulsive serial dependence biases when the item to report is revealed after it has disappeared.
Collapse
Affiliation(s)
- Mohsen Rafiei
- 63541Icelandic Vision Lab, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Andrey Chetverikov
- 6029Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.,63541Icelandic Vision Lab, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Sabrina Hansmann-Roth
- 63541Icelandic Vision Lab, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Árni Kristjansson
- 63541Icelandic Vision Lab, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
22
|
Li B, Wang B, Zaidel A. Modality-specific sensory and decisional carryover effects in duration perception. BMC Biol 2023; 21:48. [PMID: 36882836 PMCID: PMC9993637 DOI: 10.1186/s12915-023-01547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The brain uses recent history when forming perceptual decisions. This results in carryover effects in perception. Although separate sensory and decisional carryover effects have been shown in many perceptual tasks, their existence and nature in temporal processing are unclear. Here, we investigated whether and how previous stimuli and previous choices affect subsequent duration perception, in vision and audition. RESULTS In a series of three experiments, participants were asked to classify visual or auditory stimuli into "shorter" or "longer" duration categories. In experiment 1, visual and auditory stimuli were presented in separate blocks. Results showed that current duration estimates were repelled away from the previous trial's stimulus duration, but attracted towards the previous choice, in both vision and audition. In experiment 2, visual and auditory stimuli were pseudorandomly presented in one block. We found that sensory and decisional carryover effects occurred only when previous and current stimuli were from the same modality. Experiment 3 further investigated the stimulus dependence of carryover effects within each modality. In this experiment, visual stimuli with different shape topologies (or auditory stimuli with different audio frequencies) were pseudorandomly presented in one visual (or auditory) block. Results demonstrated sensory carryover (within each modality) despite task-irrelevant differences in visual shape topology or audio frequency. By contrast, decisional carryover was reduced (but still present) across different visual topologies and completely absent across different audio frequencies. CONCLUSIONS These results suggest that serial dependence in duration perception is modality-specific. Moreover, repulsive sensory carryover effects generalize within each modality, whereas attractive decisional carryover effects are contingent on contextual details.
Collapse
Affiliation(s)
- Baolin Li
- School of Psychology, Shaanxi Normal University, 199 Chang'an South Road, Yanta District, Xi'an, 710062, China.
| | - Biyao Wang
- School of Psychology, Shaanxi Normal University, 199 Chang'an South Road, Yanta District, Xi'an, 710062, China
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| |
Collapse
|
23
|
Pascucci D, Tanrikulu ÖD, Ozkirli A, Houborg C, Ceylan G, Zerr P, Rafiei M, Kristjánsson Á. Serial dependence in visual perception: A review. J Vis 2023; 23:9. [PMID: 36648418 PMCID: PMC9871508 DOI: 10.1167/jov.23.1.9] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023] Open
Abstract
How does the visual system represent continuity in the constantly changing visual input? A recent proposal is that vision is serially dependent: Stimuli seen a moment ago influence what we perceive in the present. In line with this, recent frameworks suggest that the visual system anticipates whether an object seen at one moment is the same as the one seen a moment ago, binding visual representations across consecutive perceptual episodes. A growing body of work supports this view, revealing signatures of serial dependence in many diverse visual tasks. Yet, the variety of disparate findings and interpretations calls for a more general picture. Here, we survey the main paradigms and results over the past decade. We also focus on the challenge of finding a relationship between serial dependence and the concept of "object identity," taking centuries-long history of research into account. Among the seemingly contrasting findings on serial dependence, we highlight common patterns that may elucidate the nature of this phenomenon and attempt to identify questions that are unanswered.
Collapse
Affiliation(s)
- David Pascucci
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ömer Daglar Tanrikulu
- Department of Psychology, University of New Hampshire, Durham, NH, USA
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ayberk Ozkirli
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Houborg
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gizay Ceylan
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paul Zerr
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Mohsen Rafiei
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Árni Kristjánsson
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
24
|
Morimoto Y, Makioka S. Serial dependence in estimates of the monetary value of coins. Sci Rep 2022; 12:20212. [PMID: 36418459 PMCID: PMC9684444 DOI: 10.1038/s41598-022-24236-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Perceptions of current stimuli are sometimes biased toward or away from past perceptions. This phenomenon is called serial dependence. However, it remains unclear whether serial dependence originates from lower-order perceptual processing, higher-order perceptual processing or cognitive processing. We examined the effects of serial dependence when participants estimated the total number of coins or the monetary value of coins displayed and found attractive effects in both tasks. The attractive effect observed in the value estimation task suggests that serial dependence occurs through higher-order cognitive processes during calculation. We also examined the effect of response history (i.e., the responses of participants on previous trials), with multiple regression analyses that simultaneously evaluated the effects of the previous stimuli and responses. In both number and value estimation tasks, the immediately prior response had an attractive effect on current responses, while the immediately prior stimuli exerted a repulsive effect. This pattern suggests that the attractive serial dependence found in the single regression analysis was due to the correlation between stimulus and response in the previous trials and that the effect of past stimuli per se may be an adaptation that increases sensitivity to current stimuli.
Collapse
Affiliation(s)
- Yukihiro Morimoto
- grid.261455.10000 0001 0676 0594Department of Sustainable System Sciences, Osaka Prefecture University, 1-1, Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531 Japan
| | - Shogo Makioka
- Department of Psychology, Osaka Metropolitan University, 1-1, Gakuen-Cho, Naka-Ku, Sakai, Osaka 599-8531 Japan
| |
Collapse
|
25
|
Shukla A, Bapi RS. Number-time interaction: Search for a common magnitude system in a cross-modal setting. Front Behav Neurosci 2022; 16:891311. [PMID: 36090652 PMCID: PMC9448912 DOI: 10.3389/fnbeh.2022.891311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
A theory of magnitude (ATOM) suggests that a generalized magnitude system in the brain processes magnitudes such as space, time, and numbers. Numerous behavioral and neurocognitive studies have provided support to ATOM theory. However, the evidence for common magnitude processing primarily comes from the studies in which numerical and temporal information are presented visually. Our current understanding of such cross-dimensional magnitude interactions is limited to visual modality only. However, it is still unclear whether the ATOM-framework accounts for the integration of cross-modal magnitude information. To examine the cross-modal influence of numerical magnitude on temporal processing of the tone, we conducted three experiments using a temporal bisection task. We presented the numerical magnitude information in the visual domain and the temporal information in the auditory either simultaneously with duration judgment task (Experiment-1), before duration judgment task (Experiment-2), and before duration judgment task but with numerical magnitude also being task-relevant (Experiment-3). The results suggest that the numerical information presented in the visual domain affects temporal processing of the tone only when the numerical magnitudes were task-relevant and available while making a temporal judgment (Experiments-1 and 3). However, numerical information did not interfere with temporal information when presented temporally separated from the duration information (Experiments-2). The findings indicate that the influence of visual numbers on temporal processing in cross-modal settings may not arise from the common magnitude system but instead from general cognitive mechanisms like attention and memory.
Collapse
Affiliation(s)
- Anuj Shukla
- Cognitive Science Lab, Kohli Centre on Intelligent Systems, International Institute of Information Technology, Hyderabad, Telangana, India
- Thapar School of Liberal Arts and Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
- *Correspondence: Anuj Shukla,
| | - Raju S. Bapi
- Cognitive Science Lab, Kohli Centre on Intelligent Systems, International Institute of Information Technology, Hyderabad, Telangana, India
| |
Collapse
|
26
|
Wang X, Song Y, Liao M, Hess RF, Liu L, Reynaud A. Interocular Transfer: The Dichoptic Flash-Lag Effect in Controls and Amblyopes. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 35917133 PMCID: PMC9358296 DOI: 10.1167/iovs.63.9.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose The mammalian brain can take into account the neural delays in visual information transmission from the retina to the cortex when accurately localizing the instantaneous position of moving objects by motion extrapolation. In this study, we wanted to investigate whether such extrapolation mechanism operates in a comparable fashion between the eyes in normally sighted and amblyopic observers. Methods To measure interocular extrapolation, we adapted a dichoptic version of the flash-lag effect (FLE) paradigm, in which a flashed bar is perceived to lag behind a moving bar when their two positions are physically aligned. Twelve adult subjects with amblyopia and 12 healthy controls participated in the experiment. We measured the FLE magnitude of the subjects under binocular, monocular, and dichoptic conditions. Results In controls, the FLE magnitude of binocular condition was significantly smaller than that of monocular conditions (P ≤ 0.023), but there was no difference between monocular and dichoptic conditions. Subject with amblyopia exhibited a smaller FLE magnitude in the dichoptic condition when the moving bar was presented to the amblyopic eye and the flash to the fellow eye (DA condition) compared to the opposite way around (DF condition), consistent with a delay in the processing of the amblyopic eye (P = 0.041). Conclusions Our observations confirm that trajectory extrapolation mechanisms transfer between the eyes of normal observers. However, such transfer may be impaired in amblyopia. The smaller FLE magnitude in DA compared to DF in patients with amblyopia could be due to an interocular delay in the amblyopic visual system. The observation that normal controls present a smaller FLE in binocular conditions raises the question whether a larger FLE is or is not an indicator of better motion processing and extrapolation.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Song
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Liao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Robert F Hess
- McGill Vision Research Unit, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Alexandre Reynaud
- McGill Vision Research Unit, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
The effect of abstract representation and response feedback on serial dependence in numerosity perception. Atten Percept Psychophys 2022; 84:1651-1665. [PMID: 35610413 DOI: 10.3758/s13414-022-02518-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Serial dependence entails an attractive bias based on the recent history of stimulation, making the current stimulus appear more similar to the preceding one. Although serial dependence is ubiquitous in perception, its nature and mechanisms remain unclear. Here, in two independent experiments, we test the hypothesis that this bias originates from high-level processing stages at the level of abstract information processing (Exp. 1) or at the level of judgment (Exp. 2). In Experiment 1, serial dependence was induced by a task-irrelevant "inducer" stimulus in a numerosity discrimination task, similarly to previous studies. Importantly, in this experiment, the inducers were either arrays of dots similar to the task-relevant stimuli (e.g., 12 dots), or symbolic numbers (e.g., the numeral "12"). Both dots and symbol inducers successfully yielded attractive serial dependence biases, suggesting that abstract information about an image is sufficient to bias the perception of the current stimulus. In Experiment 2, participants received feedback about their responses in each trial of a numerosity estimation task, which was designed to assess whether providing external information about the accuracy of judgments would modulate serial dependence. Providing feedback significantly increased the attractive serial dependence effect, suggesting that external information at the level of judgment may modulate the weight of past perceptual information during the processing of the current image. Overall, our results support the idea that, although serial dependence may operate at a perceptual level, it originates from high-level processing stages at the level of abstract information processing and at the level of judgment.
Collapse
|
28
|
Kondo A, Murai Y, Whitney D. The test-retest reliability and spatial tuning of serial dependence in orientation perception. J Vis 2022; 22:5. [PMID: 35293956 PMCID: PMC8944387 DOI: 10.1167/jov.22.4.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Humans perceive objects and scenes consistently, even in situations where visual input is noisy and unstable. One of the mechanisms that underlies this perceptual stability is serial dependence, whereby the perception of objects or features at any given moment is pulled toward what was previously seen. Although recent findings from several studies have reported large individual differences in serial dependence, it is not clear how stable the serial dependence is within an individual. Here, we investigated the stability of serial dependence in orientation perception over two different days within the same observers. In addition, we also examined the visual field location specificity of perceptual serial dependence. On each trial, observers viewed a Gabor patch and then reported its apparent orientation by adjusting the orientation of a bar. For each observer, the Gabor was located in the foveal or peripheral (10° right or left eccentricity) visual field on both days or changed location from day to day. The results showed a very high degree of test-retest reliability in serial dependence measured across days within individual observers. Interestingly, this high within-subject consistency was only found when serial dependence was measured at the same visual field location. These results suggest that individual differences in serial dependence are stable across days, and that the spatiotemporal range in which the previous stimulus assimilates the perception of the current stimulus (the continuity field) may vary across different visual field locations in an observer-specific manner.
Collapse
Affiliation(s)
- Aki Kondo
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Yuki Murai
- University of California, Berkeley, Berkeley, CA, USA
- Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - David Whitney
- University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
29
|
Lou C, Zeng H, Chen L. Asymmetric switch cost between subitizing and estimation in tactile modality. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Abstract
How is what you see influenced by what you saw? The visual system may use recent perception to inform responses to current stimuli. This can cause the perception of current stimuli to be attracted toward previous observations, an effect termed serial dependence. This misperception might well be useful in a noisy visual environment, where minor image distortions over time may not actually represent meaningful change. Previous work has suggested that Bayesian perceptual inference may underlie serial dependence. For this to be true, the relative uncertainty associated with both prior and current sensory input should be taken into account. In an experiment manipulating the level of noise present in orientation stimuli, we found an effect of current stimulus uncertainty on serial dependence. We found no good evidence for an effect of previous stimulus uncertainty. Our results provide only partial evidence for the Bayesian interpretation of serial dependence. Non-Bayesian models may provide a better account of the phenomenon.
Collapse
|
31
|
Manassi M, Ghirardo C, Canas-Bajo T, Ren Z, Prinzmetal W, Whitney D. Serial dependence in the perceptual judgments of radiologists. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2021; 6:65. [PMID: 34648124 PMCID: PMC8517058 DOI: 10.1186/s41235-021-00331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 08/21/2021] [Indexed: 11/10/2022]
Abstract
In radiological screening, clinicians scan myriads of radiographs with the intent of recognizing and differentiating lesions. Even though they are trained experts, radiologists’ human search engines are not perfect: average daily error rates are estimated around 3–5%. A main underlying assumption in radiological screening is that visual search on a current radiograph occurs independently of previously seen radiographs. However, recent studies have shown that human perception is biased by previously seen stimuli; the bias in our visual system to misperceive current stimuli towards previous stimuli is called serial dependence. Here, we tested whether serial dependence impacts radiologists’ recognition of simulated lesions embedded in actual radiographs. We found that serial dependence affected radiologists’ recognition of simulated lesions; perception on an average trial was pulled 13% toward the 1-back stimulus. Simulated lesions were perceived as biased towards the those seen in the previous 1 or 2 radiographs. Similar results were found when testing lesion recognition in a group of untrained observers. Taken together, these results suggest that perceptual judgements of radiologists are affected by previous visual experience, and thus some of the diagnostic errors exhibited by radiologists may be caused by serial dependence from previously seen radiographs.
Collapse
Affiliation(s)
- Mauro Manassi
- School of Psychology, King's College, University of Aberdeen, Aberdeen, UK.
| | - Cristina Ghirardo
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Teresa Canas-Bajo
- Department of Psychology, University of California, Berkeley, CA, USA.,Vision Science Group, University of California, Berkeley, CA, USA
| | - Zhihang Ren
- Department of Psychology, University of California, Berkeley, CA, USA.,Vision Science Group, University of California, Berkeley, CA, USA
| | | | - David Whitney
- Department of Psychology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,Vision Science Group, University of California, Berkeley, CA, USA
| |
Collapse
|
32
|
Rafiei M, Chetverikov A, Hansmann-Roth S, Kristjánsson Á. You see what you look for: Targets and distractors in visual search can cause opposing serial dependencies. J Vis 2021; 21:3. [PMID: 34468704 PMCID: PMC8419872 DOI: 10.1167/jov.21.10.3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023] Open
Abstract
Visual perception is, at any given moment, strongly influenced by its temporal context-what stimuli have recently been perceived and in what surroundings. We have previously shown that to-be-ignored items produce a bias upon subsequent perceptual decisions that acts in parallel with other biases induced by attended items. However, our previous investigations were confined to biases upon the perceived orientation of a visual search target, and it is unclear whether these biases influence perceptual decisions in a more general sense. Here, we test whether the biases from visual search targets and distractors affect the perceived orientation of a neutral test line, one that is neither a target nor a distractor. To do so, we asked participants to search for an oddly oriented line among distractors and report its location for a few trials and next presented a test line irrelevant to the search task. Participants were asked to report the orientation of the test line. Our results indicate that in tasks involving visual search, targets induce a positive bias upon a neutral test line if their orientations are similar, whereas distractors produce an attractive bias for similar test lines and a repulsive bias if the orientations of the test line and the average orientation of the distractors are far apart in feature space. In sum, our results show that both attentional role and proximity in feature space between previous and current stimuli determine the direction of biases in perceptual decisions.
Collapse
Affiliation(s)
- Mohsen Rafiei
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Reykjavík, Iceland
| | - Andrey Chetverikov
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Sabrina Hansmann-Roth
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Reykjavík, Iceland
- Sciences Cognitives et Sciences Affectives (SCALab), Université de Lille, Lille, France
| | - Árni Kristjánsson
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Reykjavík, Iceland
- School of Psychology, National Research University, Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
33
|
Togoli I, Arrighi R. Evidence for an A-Modal Number Sense: Numerosity Adaptation Generalizes Across Visual, Auditory, and Tactile Stimuli. Front Hum Neurosci 2021; 15:713565. [PMID: 34456699 PMCID: PMC8385665 DOI: 10.3389/fnhum.2021.713565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
Humans and other species share a perceptual mechanism dedicated to the representation of approximate quantities that allows to rapidly and reliably estimate the numerosity of a set of objects: an Approximate Number System (ANS). Numerosity perception shows a characteristic shared by all primary visual features: it is susceptible to adaptation. As a consequence of prolonged exposure to a large/small quantity (“adaptor”), the apparent numerosity of a subsequent (“test”) stimulus is distorted yielding a robust under- or over-estimation, respectively. Even if numerosity adaptation has been reported across several sensory modalities (vision, audition, and touch), suggesting the idea of a central and a-modal numerosity processing system, evidence for cross-modal effects are limited to vision and audition, two modalities that are known to preferentially encode sensory stimuli in an external coordinate system. Here we test whether numerosity adaptation for visual and auditory stimuli also distorts the perceived numerosity of tactile stimuli (and vice-versa) despite touch being a modality primarily coded in an internal (body-centered) reference frame. We measured numerosity discrimination of stimuli presented sequentially after adaptation to series of either few (around 2 Hz; low adaptation) or numerous (around 8 Hz; high adaptation) impulses for all possible combinations of visual, auditory, or tactile adapting and test stimuli. In all cases, adapting to few impulses yielded a significant overestimation of the test numerosity with the opposite occurring as a consequence of adaptation to numerous stimuli. The overall magnitude of adaptation was robust (around 30%) and rather similar for all sensory modality combinations. Overall, these findings support the idea of a truly generalized and a-modal mechanism for numerosity representation aimed to process numerical information independently from the sensory modality of the incoming signals.
Collapse
Affiliation(s)
- Irene Togoli
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
34
|
Abstract
Viewing static images depicting movement can result in a motion aftereffect: people tend to categorise direction signals as moving in the opposite direction relative to the implied motion in still photographs. This finding could indicate that inferred motion direction can penetrate sensory processing and change perception. Equally possible, however, is that inferred motion changes decision processes, but not perception. Here we test these two possibilities. Since both categorical decisions and subjective confidence are informed by sensory information, confidence can be informative about whether an aftereffect probably results from changes to perceptual or decision processes. We therefore used subjective confidence as an additional measure of the implied motion aftereffect. In Experiment 1 (implied motion), we find support for decision-level changes only, with no change in subjective confidence. In Experiment 2 (real motion), we find equal changes to decisions and confidence. Our results suggest the implied motion aftereffect produces a bias in decision-making, but leaves perceptual processing unchanged.
Collapse
|
35
|
Hsin CY, Lo YH, Tseng P. Effect of Non-canonical Spatial Symmetry on Subitizing. Front Psychol 2021; 12:562762. [PMID: 34393867 PMCID: PMC8358310 DOI: 10.3389/fpsyg.2021.562762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Subitizing refers to ability of people to accurately and effortlessly enumerate a small number of items, with a capacity around four elements. Previous research showed that "canonical" organizations, such as familiar layouts on a dice, can readily improve subitizing performance of people. However, almost all canonical shapes found in the world are also highly symmetrical; therefore, it is unclear whether previously reported facilitative effect of canonical organization is really due to canonicality, or simply driven by spatial symmetry. Here, we investigated the possible effect of symmetry on subitizing by using symmetrical, yet non-canonical, shape structures. These symmetrical layouts were compared with highly controlled random patterns (Experiment 1), as well as fully random and canonical patterns (Experiment 2). Our results showed that symmetry facilitates subitizing performance, but only at set size of 6, suggesting that the effect is insufficient to improve performance of people in the lower or upper range. This was also true, although weaker, in reaction time (RT), error distance measures, and Weber Fractions. On the other hand, canonical layouts produced faster and more accurate subitizing performances across multiple set sizes. We conclude that, although previous findings mixed symmetry in their canonical shapes, their findings on shape canonicality cannot be explained by symmetry alone. We also propose that our symmetrical and canonical results are best explained by the "groupitizing" and pattern recognition accounts, respectively.
Collapse
Affiliation(s)
- Chih-Yen Hsin
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei City, Taiwan
| | - Yu-Hui Lo
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Center, TMU-Shuang Ho Hospital, Taipei City, Taiwan
| | - Philip Tseng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Center, TMU-Shuang Ho Hospital, Taipei City, Taiwan
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
36
|
Early visual processing relevant to the reduction of adaptation-induced perceptual bias. Sci Rep 2021; 11:15407. [PMID: 34326366 PMCID: PMC8322081 DOI: 10.1038/s41598-021-94091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Visual perception is biased by the preceding visual environment. A well-known perceptual bias is the negative bias where a current percept is biased away from the preceding image (adaptor). The preceding adaptor induces augmentation of early visual evoked potential (the P1 enhancement) of the following test image; the adaptor may invoke certain visual processing for the subsequent test image. However, the visual mechanism underlying P1 enhancement remains unclear. The present study assessed what the P1 alteration reflects in relation to the occurrence of the negative bias. In terms of inter-individual differences, we report that the P1 enhancement of the Necker lattice significantly correlated with the reduction of the reverse-bias effect. Further analyses revealed that the P1 enhancement was insusceptible to neural adaptation to the adaptor at the level of perceptual configuration. The present study suggests that prolonged exposure to a visual image induces modulatory visual processing for the subsequent image (reflected in the P1 enhancement), which is relevant to counteraction of the negative bias.
Collapse
|
37
|
Murai Y, Whitney D. Serial dependence revealed in history-dependent perceptual templates. Curr Biol 2021; 31:3185-3191.e3. [PMID: 34087105 PMCID: PMC8319107 DOI: 10.1016/j.cub.2021.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
In any given perceptual task, the visual system selectively weighs or filters incoming information. The particular set of weights or filters form a kind of template, which reveals the regions or types of information that are particularly useful for a given perceptual decision.1,2 Unfortunately, sensory input is noisy and ever changing. To compensate for these fluctuations, the visual system could adopt a strategy of biasing the templates such that they reflect a temporal smoothing of input, which would be a form of serial dependence.3-5 Here, we demonstrate that perceptual templates are, in fact, altered by serial dependence. Using a simple orientation detection task and classification-image technique, we found that perceptual templates are systematically biased toward previously seen, task-irrelevant orientations. The results of an orientation discrimination task suggest that this shift in perceptual template derives from a change in the perceptual appearance of orientation. Our study reveals how serial dependence biases internal templates of orientation and suggests that the sensitivity of classification-image techniques in general could be improved by taking into account history-dependent fluctuations in templates.
Collapse
Affiliation(s)
- Yuki Murai
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Japan Society for the Promotion of Science.
| | - David Whitney
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Togoli I, Fedele M, Fornaciai M, Bueti D. Serial dependence in time and numerosity perception is dimension-specific. J Vis 2021; 21:6. [PMID: 33956059 PMCID: PMC8107483 DOI: 10.1167/jov.21.5.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The perception of a visual event (e.g., a flock of birds) at the present moment can be biased by a previous perceptual experience (e.g., the perception of an earlier flock). Serial dependence is a perceptual bias whereby a current stimulus appears more similar to a previous one than it actually is. Whereas serial dependence emerges within several visual stimulus dimensions, whether it could simultaneously operate across different dimensions of the same stimulus (e.g., the numerosity and the duration of a visual pattern) remains unclear. Here we address this question by assessing the presence of serial dependence across duration and numerosity, two stimulus dimensions that are often associated and can bias each other. Participants performed either a duration or a numerosity discrimination task, in which they compared a constant reference with a variable test stimulus, varying along the task-relevant dimension (either duration or numerosity). Serial dependence was induced by a task-irrelevant inducer, that is, a stimulus presented before the reference and always varying in both duration and numerosity. The results show systematic serial dependencies only within the task-relevant stimulus dimension, that is, stimulus numerosity affects numerosity perception only, and duration affects duration perception only. Additionally, at least in the numerosity condition, the task-irrelevant dimension of the inducer (duration) had an opposite, repulsive effect. These findings thus show that attractive serial dependence operates in a highly specific fashion and does not transfer across different stimulus dimensions. Instead, the repulsive influence, possibly reflecting perceptual adaptation, can transfer from one dimension to another.
Collapse
Affiliation(s)
- Irene Togoli
- International School for Advanced Studies (SISSA), Trieste, Italy.,
| | - Marta Fedele
- International School for Advanced Studies (SISSA), Trieste, Italy.,KU Leuven, Faculty of Psychology and Educational Science, Leuven, Belgium.,
| | | | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy.,
| |
Collapse
|
39
|
Optimizing perception: Attended and ignored stimuli create opposing perceptual biases. Atten Percept Psychophys 2021; 83:1230-1239. [PMID: 32333372 DOI: 10.3758/s13414-020-02030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Humans have remarkable abilities to construct a stable visual world from continuously changing input. There is increasing evidence that momentary visual input blends with previous input to preserve perceptual continuity. Most studies have shown that such influences can be traced to characteristics of the attended object at a given moment. Little is known about the role of ignored stimuli in creating this continuity. This is important since while some input is selected for processing, other input must be actively ignored for efficient selection of the task-relevant stimuli. We asked whether attended targets and actively ignored distractor stimuli in an odd-one-out search task would bias observers' perception differently. Our observers searched for an oddly oriented line among distractors and were occasionally asked to report the orientation of the last visual search target they saw in an adjustment task. Our results show that at least two opposite biases from past stimuli influence current perception: A positive bias caused by serial dependence pulls perception of the target toward the previous target features, while a negative bias induced by the to-be-ignored distractor features pushes perception of the target away from the distractor distribution. Our results suggest that to-be-ignored items produce a perceptual bias that acts in parallel with other biases induced by attended items to optimize perception. Our results are the first to demonstrate how actively ignored information facilitates continuity in visual perception.
Collapse
|
40
|
Melcher D, Huber-Huber C, Wutz A. Enumerating the forest before the trees: The time courses of estimation-based and individuation-based numerical processing. Atten Percept Psychophys 2021; 83:1215-1229. [PMID: 33000437 PMCID: PMC8049909 DOI: 10.3758/s13414-020-02137-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 11/23/2022]
Abstract
Ensemble perception refers to the ability to report attributes of a group of objects, rather than focusing on only one or a few individuals. An everyday example of ensemble perception is the ability to estimate the numerosity of a large number of items. The time course of ensemble processing, including that of numerical estimation, remains a matter of debate, with some studies arguing for rapid, "preattentive" processing and other studies suggesting that ensemble perception improves with longer presentation durations. We used a forward-simultaneous masking procedure that effectively controls stimulus durations to directly measure the temporal dynamics of ensemble estimation and compared it with more precise enumeration of individual objects. Our main finding was that object individuation within the subitizing range (one to four items) took about 100-150 ms to reach its typical capacity limits, whereas estimation (six or more items) showed a temporal resolution of 50 ms or less. Estimation accuracy did not improve over time. Instead, there was an increasing tendency, with longer effective durations, to underestimate the number of targets for larger set sizes (11-35 items). Overall, the time course of enumeration for one or a few single items was dramatically different from that of estimating numerosity of six or more items. These results are consistent with the idea that the temporal resolution of ensemble processing may be as rapid as, or even faster than, individuation of individual items, and support a basic distinction between the mechanisms underlying exact enumeration of small sets (one to four items) from estimation.
Collapse
Affiliation(s)
- David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, 38068, Rovereto, Italy.
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Christoph Huber-Huber
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, 38068, Rovereto, Italy
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Andreas Wutz
- Center for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| |
Collapse
|
41
|
Adaptation to visual numerosity changes neural numerosity selectivity. Neuroimage 2021; 229:117794. [PMID: 33497778 DOI: 10.1016/j.neuroimage.2021.117794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Perceiving numerosity, i.e. the set size of a group of items, is an evolutionarily preserved ability found in humans and animals. A useful method to infer the neural underpinnings of a given perceptual property is sensory adaptation. Like other primary perceptual attributes, numerosity is susceptible to adaptation. Recently, we have shown numerosity-selective neural populations with a topographic organization in the human brain. Here, we investigated whether numerosity adaptation can affect the numerosity selectivity of these populations using ultra-high field (7 Tesla) functional magnetic resonance imaging (fMRI). Participants viewed stimuli of changing numerosity (1 to 7 dots), which allowed the mapping of numerosity selectivity. We interleaved a low or high numerosity adapter stimulus with these mapping stimuli, repeatedly presenting 1 or 20 dots respectively to adapt the numerosity-selective neural populations. We analyzed the responses using custom-build population receptive field neural models of numerosity encoding and compared estimated numerosity preferences between adaptation conditions. We replicated our previous studies where we found several topographic maps of numerosity-selective responses. We found that overall, numerosity adaptation altered the preferred numerosities within the numerosity maps, resulting in predominantly attractive biases towards the numerosity of the adapter. The differential biases could be explained by the difference between the unadapted preferred numerosity and the numerosity of the adapter, with attractive biases being observed with higher difference. The results could link perceptual numerosity adaptation effects to changes in neural numerosity selectivity.
Collapse
|
42
|
Feigin H, Baror S, Bar M, Zaidel A. Perceptual decisions are biased toward relevant prior choices. Sci Rep 2021; 11:648. [PMID: 33436900 PMCID: PMC7804133 DOI: 10.1038/s41598-020-80128-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Perceptual decisions are biased by recent perceptual history-a phenomenon termed 'serial dependence.' Here, we investigated what aspects of perceptual decisions lead to serial dependence, and disambiguated the influences of low-level sensory information, prior choices and motor actions. Participants discriminated whether a brief visual stimulus lay to left/right of the screen center. Following a series of biased 'prior' location discriminations, subsequent 'test' location discriminations were biased toward the prior choices, even when these were reported via different motor actions (using different keys), and when the prior and test stimuli differed in color. By contrast, prior discriminations about an irrelevant stimulus feature (color) did not substantially influence subsequent location discriminations, even though these were reported via the same motor actions. Additionally, when color (not location) was discriminated, a bias in prior stimulus locations no longer influenced subsequent location discriminations. Although low-level stimuli and motor actions did not trigger serial-dependence on their own, similarity of these features across discriminations boosted the effect. These findings suggest that relevance across perceptual decisions is a key factor for serial dependence. Accordingly, serial dependence likely reflects a high-level mechanism by which the brain predicts and interprets new incoming sensory information in accordance with relevant prior choices.
Collapse
Affiliation(s)
- Helen Feigin
- grid.22098.310000 0004 1937 0503The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Shira Baror
- grid.22098.310000 0004 1937 0503The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Moshe Bar
- grid.22098.310000 0004 1937 0503The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Adam Zaidel
- grid.22098.310000 0004 1937 0503The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002 Ramat Gan, Israel
| |
Collapse
|
43
|
Fornaciai M, Park J. Disentangling feedforward versus feedback processing in numerosity representation. Cortex 2020; 135:255-267. [PMID: 33412370 DOI: 10.1016/j.cortex.2020.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/26/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
Numerosity is a fundamental aspect of the external environment, needed to guide our behavior in an effective manner. Previous studies show that numerosity processing involves at least two temporal stages (~100 and ~150 msec after stimulus onset) in early visual cortex. One possibility is that the two stages reflect an initial feedforward processing followed by feedback signals from higher-order cortical areas that underlie segmentation of visual inputs into perceptual units that define numerosity. Alternatively, multiple stages of feedforward processing might progressively refine the input leading to the segmented representation. Here, we distinguish these two hypotheses by exploiting the connectedness illusion (i.e., the systematic underestimation of pairwise-connected dots), backward masking (to suppress feedback signals), and serial dependence (i.e., a perceptual bias making a stimulus appear to be more similar to its preceding one). Our results show that a connected dot array biases the numerosity representation of the subsequent dot array based on its illusory perception, irrespective of whether it is visible or suppressed by masking. These findings demonstrate that feedback processing is not strictly necessary for the perceptual segmentation that gives rise to perceived numerosity, and instead suggest that different stages of feedforward activity presumably carrying low and high spatial frequency information are sufficient to create a numerosity representation in early visual areas.
Collapse
Affiliation(s)
- Michele Fornaciai
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, MA, USA.
| | - Joonkoo Park
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, MA, USA; Commonwealth Honors College, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
44
|
Fornaciai M, Park J. Attractive serial dependence between memorized stimuli. Cognition 2020; 200:104250. [DOI: 10.1016/j.cognition.2020.104250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 11/27/2022]
|
45
|
Abstract
The storage mechanisms of working memory are the matter of an ongoing debate. The sensory recruitment hypothesis states that memory maintenance and perceptual encoding rely on the same neural substrate. This suggests that the same cortical mechanisms that shape object perception also apply to maintained memory content. We tested this prediction using the Direction Illusion, i.e., the mutual repulsion of two concurrently visible motion directions. Participants memorized the directions of two random dot patterns for later recall. In Experiments 1 and 2, we varied the temporal separation of spatially distinct stimuli to manipulate perceptual concurrency, while keeping concurrency within working memory constant. We observed mutual motion repulsion only under simultaneous stimulus presentation, but proactive repulsion and retroactive attraction under immediate stimulus succession. At inter-stimulus intervals of 0.5 and 2 s, however, proactive repulsion vanished, while the retroactive attraction remained. In Experiment 3, we presented both stimuli at the same spatial position and observed a reappearance of the repulsion effect. Our results indicate that the repulsive mechanisms that shape object perception across space fade during the transition from a perceptual representation to a consolidated memory content. This suggests differences in the underlying structure of perceptual and mnemonic representations. The persistence of local interactions, however, indicates different mechanisms of spatially global and local feature interactions.
Collapse
|
46
|
Fischer C, Czoschke S, Peters B, Rahm B, Kaiser J, Bledowski C. Context information supports serial dependence of multiple visual objects across memory episodes. Nat Commun 2020; 11:1932. [PMID: 32321924 PMCID: PMC7176712 DOI: 10.1038/s41467-020-15874-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/31/2020] [Indexed: 01/14/2023] Open
Abstract
Serial dependence is thought to promote perceptual stability by compensating for small changes of an object’s appearance across memory episodes. So far, it has been studied in situations that comprised only a single object. The question of how we selectively create temporal stability of several objects remains unsolved. In a memory task, objects can be differentiated by their to-be-memorized feature (content) as well as accompanying discriminative features (context). We test whether congruent context features, in addition to content similarity, support serial dependence. In four experiments, we observe a stronger serial dependence between objects that share the same context features across trials. Apparently, the binding of content and context features is not erased but rather carried over to the subsequent memory episode. As this reflects temporal dependencies in natural settings, our findings reveal a mechanism that integrates corresponding content and context features to support stable representations of individualized objects over time. Visual cognition compensates for small changes in an object’s appearance to ensure its perceived continuity. We show that in situations with multiple objects, context features like color, temporal or spatial position are used as anchors to selectively integrate corresponding objects over time.
Collapse
Affiliation(s)
- Cora Fischer
- Institute of Medical Psychology, Goethe-University, Heinrich-Hoffmann-Strasse 10, 60528, Frankfurt am Main, Germany
| | - Stefan Czoschke
- Institute of Medical Psychology, Goethe-University, Heinrich-Hoffmann-Strasse 10, 60528, Frankfurt am Main, Germany
| | - Benjamin Peters
- Institute of Medical Psychology, Goethe-University, Heinrich-Hoffmann-Strasse 10, 60528, Frankfurt am Main, Germany.,Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Benjamin Rahm
- Medical Psychology and Medical Sociology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Rheinstraße 12, 79104, Freiburg, Germany
| | - Jochen Kaiser
- Institute of Medical Psychology, Goethe-University, Heinrich-Hoffmann-Strasse 10, 60528, Frankfurt am Main, Germany
| | - Christoph Bledowski
- Institute of Medical Psychology, Goethe-University, Heinrich-Hoffmann-Strasse 10, 60528, Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Fritsche M, de Lange FP. The role of feature-based attention in visual serial dependence. J Vis 2020; 19:21. [PMID: 31770772 DOI: 10.1167/19.13.21] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Perceptual decisions about current sensory input are biased toward input of the recent past-a phenomenon termed serial dependence. Serial dependence may serve to stabilize neural representations in the face of external and internal noise. However, it is unclear under which circumstances previous input attracts subsequent perceptual decisions, and thus whether serial dependence reflects a broad smoothing or selective stabilization operation. Here we investigated whether focusing attention on particular features of the previous stimulus modulates serial dependence. We found an attractive bias in orientation estimations when previous and current stimuli had similar orientations, and a repulsive bias when they had dissimilar orientations. The attractive bias was markedly reduced-to less than half of its original magnitude-when observers attended to the size, rather than the orientation, of the previous stimulus. Conversely, the repulsive bias for stimuli with large orientation differences was not modulated by feature-based attention. This suggests separate sources of these positive and negative perceptual biases.
Collapse
Affiliation(s)
- Matthias Fritsche
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
48
|
Messina A, Potrich D, Schiona I, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Response to change in the number of visual stimuli in zebrafish:A behavioural and molecular study. Sci Rep 2020; 10:5769. [PMID: 32238844 PMCID: PMC7113307 DOI: 10.1038/s41598-020-62608-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/13/2020] [Indexed: 11/29/2022] Open
Abstract
Evidence has shown that a variety of vertebrates, including fish, can discriminate collections of visual items on the basis of their numerousness using an evolutionarily conserved system for approximating numerical magnitude (the so-called Approximate Number System, ANS). Here we combine a habituation/dishabituation behavioural task with molecular biology assays to start investigating the neural bases of the ANS in zebrafish. Separate groups of zebrafish underwent a habituation phase with a set of 3 or 9 small red dots, associated with a food reward. The dots changed in size, position and density from trial to trial but maintained their numerousness, and the overall areas of the stimuli was kept constant. During the subsequent dishabituation test, zebrafish faced a change (i) in number (from 3 to 9 or vice versa with the same overall surface), or (ii) in shape (with the same overall surface and number), or (iii) in size (with the same shape and number). A control group of zebrafish was shown the same stimuli as during the habituation. RT-qPCR revealed that the telencephalon and thalamus were characterized by the most consistent modulation of the expression of the immediate early genes c-fos and egr-1 upon change in numerousness; in contrast, the retina and optic tectum responded mainly to changes in stimulus size.
Collapse
Affiliation(s)
- Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | - Davide Potrich
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Ilaria Schiona
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, USA
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University, London, UK
| | | |
Collapse
|
49
|
Wehrman JJ, Kaplan DM, Sowman PF. Local context effects in the magnitude-duration illusion: Size but not numerical value sequentially alters perceived duration. Acta Psychol (Amst) 2020; 204:103016. [PMID: 32000063 DOI: 10.1016/j.actpsy.2020.103016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022] Open
Abstract
Many aspects of an event can change perceived duration. A common example of this is the magnitude-duration illusion, in which a high magnitude (e.g. large or high value) stimulus will be perceived to last longer than a low magnitude stimulus. The effects of magnitude on perceived duration are normally considered in terms of global context effects; what is large depends on the stimuli used throughout the experiment. In the current article, we examine local context effects in the magnitude-duration illusion, how trial-by-trial changes in magnitude affect the subjective duration of an event. We performed two experiments in which numerical magnitude and stimulus size were varied within either the example phase or reproduction phase of a temporal reproduction task. We showed that in the current trial the combined value-size magnitude presented in the example phase affected subsequent reproductions, while the magnitude presented in the reproduction phase did not. The size magnitude presented in the reproduction phase also affected the reproduction in the following trial, such that a larger stimulus in the current reproduction phase resulted in shorter reproductions in the next reproduction phase. This indicates that low level stimulus properties (i.e. size) can act to contextualize subsequent stimulus properties, which in turn affect perceived duration. The findings of our experiments add local, low-level, context effects to the known modifiers of perceived duration, as well as provide evidence with regards to the role of magnitude in interval timing.
Collapse
|
50
|
Fornaciai M, Park J. Neural Dynamics of Serial Dependence in Numerosity Perception. J Cogn Neurosci 2020; 32:141-154. [DOI: 10.1162/jocn_a_01474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Serial dependence—an attractive perceptual bias whereby a current stimulus is perceived to be similar to previously seen ones—is thought to represent the process that facilitates the stability and continuity of visual perception. Recent results demonstrate a neural signature of serial dependence in numerosity perception, emerging very early in the time course during perceptual processing. However, whether such a perceptual signature is retained after the initial processing remains unknown. Here, we address this question by investigating the neural dynamics of serial dependence using a recently developed technique that allowed a reactivation of hidden memory states. Participants performed a numerosity discrimination task during EEG recording, with task-relevant dot array stimuli preceded by a task-irrelevant stimulus inducing serial dependence. Importantly, the neural network storing the representation of the numerosity stimulus was perturbed (or pinged) so that the hidden states of that representation can be explicitly quantified. The results first show that a neural signature of serial dependence emerges early in the brain signals, starting soon after stimulus onset. Critical to the central question, the pings at a later latency could successfully reactivate the biased representation of the initial stimulus carrying the signature of serial dependence. These results provide one of the first pieces of empirical evidence that the biased neural representation of a stimulus initially induced by serial dependence is preserved throughout a relatively long period.
Collapse
|