1
|
Heymann JB, Vijayasarathy C, Fariss RN, Sieving PA. Advances in understanding the molecular structure of retinoschisin while questions remain of biological function. Prog Retin Eye Res 2023; 95:101147. [PMID: 36402656 PMCID: PMC10185713 DOI: 10.1016/j.preteyeres.2022.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Retinoschisin (RS1) is a secreted protein that is essential for maintaining integrity of the retina. Numerous mutations in RS1 cause X-linked retinoschisis (XLRS), a progressive degeneration of the retina that leads to vision loss in young males. A key manifestation of XLRS is the formation of cavities (cysts) in the retina and separation of the layers (schisis), disrupting synaptic transmission. There are currently no approved treatments for patients with XLRS. Strategies using adeno-associated viral (AAV) vectors to deliver functional copies of RS1 as a form of gene augmentation therapy, are under clinical evaluation. To improve therapeutic strategies for treating XLRS, it is critical to better understand the secretion of RS1 and its molecular function. Immunofluorescence and immunoelectron microscopy show that RS1 is located on the surfaces of the photoreceptor inner segments and bipolar cells. Sequence homology indicates a discoidin domain fold, similar to many other proteins with demonstrated adhesion functions. Recent structural studies revealed the tertiary structure of RS1 as two back-to-back octameric rings, each cross-linked by disulfides. The observation of higher order structures in vitro suggests the formation of an adhesive matrix spanning the distance between cells (∼100 nm). Several studies indicated that RS1 readily binds to other proteins such as the sodium-potassium ATPase (NaK-ATPase) and extracellular matrix proteins. Alternatively, RS1 may influence fluid regulation via interaction with membrane proteins such as the NaK-ATPase, largely inferred from the use of carbonic anhydrase inhibitors to shrink the typical intra-retinal cysts in XLRS. We discuss these models in light of RS1 structure and address the difficulty in understanding the function of RS1.
Collapse
Affiliation(s)
- J Bernard Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA.
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration, NIDCD, NIH, Bethesda, MD, 20892, USA
| | - Robert N Fariss
- Biological Imaging Core Facility, NEI, NIH, Bethesda, MD, 20892, USA
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, Ophthalmology, U C Davis Health, Sacramento, CA, 95817, USA
| |
Collapse
|
2
|
Abstract
The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau (MAPT) plays a central role in the pathogenesis of several forms of dementia known as tauopathies, including Alzheimer’s disease (AD), frontotemporal dementia (FTD) and chronic traumatic encephalopathy (CTE)1. Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity2. This observation and complementary experimental studies3,4 have suggested that tau can spread in a prion-like manner by passing to naïve cells where it templates misfolding and aggregation. However, while tau propagation has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) controls tau endocytosis and subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and iPS-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule binding repeat region of tau. Furthermore, we find that downregulation of LRP1 in an in vivo mouse model of tau spread effectively reduced tau propagation between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain and, thus, as a novel target for diseases of tau spread and aggregation.
Collapse
|
3
|
Hernandez I, Luna G, Rauch JN, Reis SA, Giroux M, Karch CM, Boctor D, Sibih YE, Storm NJ, Diaz A, Kaushik S, Zekanowski C, Kang AA, Hinman CR, Cerovac V, Guzman E, Zhou H, Haggarty SJ, Goate AM, Fisher SK, Cuervo AM, Kosik KS. A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci Transl Med 2019; 11:eaat3005. [PMID: 30918111 PMCID: PMC7961212 DOI: 10.1126/scitranslmed.aat3005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/15/2018] [Accepted: 11/30/2018] [Indexed: 11/02/2022]
Abstract
Tau inclusions are a shared feature of many neurodegenerative diseases, among them frontotemporal dementia caused by tau mutations. Treatment approaches for these conditions include targeting posttranslational modifications of tau proteins, maintaining a steady-state amount of tau, and preventing its tendency to aggregate. We discovered a new regulatory pathway for tau degradation that operates through the farnesylated protein, Rhes, a GTPase in the Ras family. Here, we show that treatment with the farnesyltransferase inhibitor lonafarnib reduced Rhes and decreased brain atrophy, tau inclusions, tau sumoylation, and tau ubiquitination in the rTg4510 mouse model of tauopathy. In addition, lonafarnib treatment attenuated behavioral abnormalities in rTg4510 mice and reduced microgliosis in mouse brain. Direct reduction of Rhes in the rTg4510 mouse by siRNA reproduced the results observed with lonafarnib treatment. The mechanism of lonafarnib action mediated by Rhes to reduce tau pathology was shown to operate through activation of lysosomes. We finally showed in mouse brain and in human induced pluripotent stem cell-derived neurons a normal developmental increase in Rhes that was initially suppressed by tau mutations. The known safety of lonafarnib revealed in human clinical trials for cancer suggests that this drug could be repurposed for treating tauopathies.
Collapse
Affiliation(s)
- Israel Hernandez
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Gabriel Luna
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jennifer N Rauch
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Surya A Reis
- Department of Neurology, Massachusetts General Hospital, Chemical Neurobiology Lab, and Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Michel Giroux
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Daniel Boctor
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Youssef E Sibih
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nadia J Storm
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Cezary Zekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland
| | - Alexander A Kang
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cassidy R Hinman
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Vesna Cerovac
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Honjun Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stephen J Haggarty
- Department of Neurology, Massachusetts General Hospital, Chemical Neurobiology Lab, and Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Alison M Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven K Fisher
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ana M Cuervo
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Transl Res 2017; 188:40-57.e4. [PMID: 28754419 DOI: 10.1016/j.trsl.2017.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/30/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
Several approaches have been developed for gene therapy in RPE65-related Leber congenital amaurosis. To date, strategies that have reached the clinical stages rely on adeno-associated viral vectors and two of them documented limited long-term effect. We have developed a lentiviral-based strategy of RPE65 gene transfer that efficiently restored protein expression and cone function in RPE65-deficient mice. In this study, we evaluated the ocular and systemic tolerances of this lentiviral-based therapy (LV-RPE65) on healthy nonhuman primates (NHPs), without adjuvant systemic anti-inflammatory prophylaxis. For the first time, we describe the early kinetics of retinal detachment at 2, 4, and 7 days after subretinal injection using multimodal imaging in 5 NHPs. We revealed prolonged reattachment times in LV-RPE65-injected eyes compared to vehicle-injected eyes. Low- (n = 2) and high-dose (n = 2) LV-RPE65-injected eyes presented a reduction of the outer nuclear and photoreceptor outer segment layer thickness in the macula, that was more pronounced than in vehicle-injected eyes (n = 4). All LV-RPE65-injected eyes showed an initial perivascular reaction that resolved spontaneously within 14 days. Despite foveal structural changes, full-field electroretinography indicated that the overall retinal function was preserved over time and immunohistochemistry identified no difference in glial, microglial, or leucocyte ocular activation between low-dose, high-dose, and vehicle-injected eyes. Moreover, LV-RPE65-injected animals did not show signs of vector shedding or extraocular targeting, confirming the safe ocular restriction of the vector. Our results evidence a limited ocular tolerance to LV-RPE65 after subretinal injection without adjuvant anti-inflammatory prophylaxis, with complications linked to this route of administration necessitating to block this transient inflammatory event.
Collapse
|
5
|
Luna G, Lewis GP, Linberg KA, Chang B, Hu Q, Munson PJ, Maminishkis A, Miller SS, Fisher SK. Anatomical and Gene Expression Changes in the Retinal Pigmented Epithelium Atrophy 1 (rpea1) Mouse: A Potential Model of Serous Retinal Detachment. Invest Ophthalmol Vis Sci 2017; 57:4641-54. [PMID: 27603725 PMCID: PMC5113314 DOI: 10.1167/iovs.15-19044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The purpose of this study was to examine the rpea1 mouse whose retina spontaneously detaches from the underlying RPE as a potential model for studying the cellular effects of serous retinal detachment (SRD). Methods Optical coherence tomography (OCT) was performed immediately prior to euthanasia; retinal tissue was subsequently prepared for Western blotting, microarray analysis, immunocytochemistry, and light and electron microscopy (LM, EM). Results By postnatal day (P) 30, OCT, LM, and EM revealed the presence of small shallow detachments that increased in number and size over time. By P60 in regions of detachment, there was a dramatic loss of PNA binding around cones in the interphotoreceptor matrix and a concomitant increase in labeling of the outer nuclear layer and rod synaptic terminals. Retinal pigment epithelium wholemounts revealed a patchy loss in immunolabeling for both ezrin and aquaporin 1. Anti-ezrin labeling was lost from small regions of the RPE apical surface underlying detachments at P30. Labeling for tight-junction proteins provided a regular array of profiles outlining the periphery of RPE cells in wild-type tissue, however, this pattern was disrupted in the mutant as early as P30. Microarray analysis revealed a broad range of changes in genes involved in metabolism, signaling, cell polarity, and tight-junction organization. Conclusions These data indicate changes in this mutant mouse that may provide clues to the underlying mechanisms of SRD in humans. Importantly, these changes include the production of multiple spontaneous detachments without the presence of a retinal tear or significant degeneration of outer segments, changes in the expression of proteins involved in adhesion and fluid transport, and a disrupted organization of RPE tight junctions that may contribute to the formation of focal detachments.
Collapse
Affiliation(s)
- Gabriel Luna
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States 2Center for Bio-Image Informatics, University of California Santa Barbara, Santa Barbara, California, United States
| | - Geoffrey P Lewis
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States 2Center for Bio-Image Informatics, University of California Santa Barbara, Santa Barbara, California, United States
| | - Kenneth A Linberg
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Quiri Hu
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States
| | - Arvydas Maminishkis
- The National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sheldon S Miller
- The National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Steven K Fisher
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States 2Center for Bio-Image Informatics, University of California Santa Barbara, Santa Barbara, California, United States 6Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States
| |
Collapse
|
6
|
Syed J, Chandran A, Pandian GN, Taniguchi J, Sato S, Hashiya K, Kashiwazaki G, Bando T, Sugiyama H. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts. Chembiochem 2015; 16:1497-501. [DOI: 10.1002/cbic.201500140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/30/2023]
|
7
|
Kim B, Abdel-Rahman MH, Wang T, Pouly S, Mahmoud AM, Cebulla CM. Retinal MMP-12, MMP-13, TIMP-1, and TIMP-2 expression in murine experimental retinal detachment. Invest Ophthalmol Vis Sci 2014; 55:2031-40. [PMID: 24526442 DOI: 10.1167/iovs.13-13374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Matrix metalloproteinases (MMPs) and their inhibitors play a role in the pathobiology of retinal detachment (RD) and proliferative vitreoretinopathy (PVR). Proliferative vitreoretinopathy is facilitated by chronic retinal detachment and involves excessive deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinase-2 and -13 are important modulators of the ECM which have not been evaluated in RD. The purpose of this study was to investigate the retinal expression of select MMPs, including MMP-12, MMP-13, and associated inhibitors in a murine model of retinal detachment. METHODS Transient or chronic retinal detachments (RDs) were induced by subretinal injection of either saline (SA) or hyaluronic acid (HA) in C57BL/6 mice. To confirm that the HA-RD model has features consistent with PVR-like changes, glial activation and subretinal fibrosis were evaluated with immunofluorescence, dilated fundus examination, and spectral-domain optical coherence tomography (SD-OCT). Gene expression was quantified by qRT-PCR. Proteins were assayed by immunoblot and immunohistochemistry. RESULTS Hyaluronic acid RD eyes developed gliosis and subretinal fibrosis on dilated exam, SD-OCT, and immunofluorescence analysis. Gene expression of Mmp-12 and Mmp-13, and Timp-1 was strongly upregulated at all time points in RD compared with controls. Timp-2, Mmp-2, and Mmp-9 expression was modest. Hyaluronic acid RDs exhibited more MMP and TIMP expression than SA-RDs. MMP-12, -13, and TIMP-1 proteins were elevated in RDs compared with controls. Immunohistochemistry revealed moderate to strong MMP-13 levels in subretinal space macrophages. CONCLUSIONS Fibrosis can develop in the HA-RD model. There is an upregulation of select MMPs that may modulate the wound healing process following RD.
Collapse
Affiliation(s)
- Bongsu Kim
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, United States
| | | | | | | | | | | |
Collapse
|
8
|
Salvatore S, Fishman GA, Genead MA. Treatment of cystic macular lesions in hereditary retinal dystrophies. Surv Ophthalmol 2013; 58:560-84. [DOI: 10.1016/j.survophthal.2012.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 12/25/2022]
|
9
|
Abstract
BACKGROUND Development of retinal detachment models in small animals can be difficult and expensive. Here we create and characterize a novel, cone-rich retinal detachment (RD) model in the chick. METHODOLOGY/PRINCIPAL FINDINGS Retinal detachments were created in chicks between postnatal days 7 and 21 by subretinal injections of either saline (SA) or hyaluronic acid (HA). Injections were performed through a dilated pupil with observation via surgical microscope, using the fellow eye as a control. Immunohistochemical analyses were performed at days 1, 3, 7, 10 and 14 after retinal detachment to evaluate the cellular responses of photoreceptors, Müller glia, microglia and nonastrocytic inner retinal glia (NIRG). Cell proliferation was detected with bromodeoxyuridine (BrdU)-incorporation and by the expression of proliferating cell nuclear antigen (PCNA). Cell death was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). As in mammalian models of RD, there is shortening of photoreceptor outer segments and mis-trafficking of photoreceptor opsins in areas of RD. Photoreceptor cell death was maximal 1 day after RD, but continued until 14 days after RD. Müller glia up-regulated glial fibriliary acidic protein (GFAP), proliferated, showed interkinetic nuclear migration, and migrated to the subretinal space in areas of detachment. Microglia became reactive; they up-regulated CD45, acquired amoeboid morphology, and migrated toward outer retina in areas of RD. Reactive NIRG cells accumulated in detached areas. CONCLUSIONS/SIGNIFICANCE Subretinal injections of SA or HA in the chick eye successfully produced retinal detachments and cellular responses similar to those seen in standard mammalian models. Given the relatively large eye size, and considering the low cost, the chick model of RD offers advantages for high-throughput studies.
Collapse
|
10
|
Luna G, Lewis GP, Banna CD, Skalli O, Fisher SK. Expression profiles of nestin and synemin in reactive astrocytes and Müller cells following retinal injury: a comparison with glial fibrillar acidic protein and vimentin. Mol Vis 2010; 16:2511-23. [PMID: 21139996 PMCID: PMC2997333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 11/23/2010] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To examine the expression patterns of the intermediate filament (IF) proteins nestin and synemin following retinal injury. METHODS Wide-scale retinal injuries were created by experimental retinal detachment of 1, 3, 7, or 30 days' duration. Injuries were induced in the right eyes of Long Evans rats, while the left eyes served as internal controls. Vibratome sections of control and injured retinas were labeled with fluorescent probes using a combination of anti-glial fibrillary acidic protein, -vimentin, -nestin, -synemin, -bromodeoxyuridine, and the lectin probe, isolectin B4. Additionally, antibody specificity, as well as protein and mRNA levels of nestin and synemin were determined and quantified using standard western blotting and real time polymerase chain reaction (RT-PCR) techniques. RESULTS Immunocytochemistry showed increased Müller cell labeling at 1, 3, and 7 days post injury for all four IFs, although the relative levels of nestin expression varied dramatically between individual Müller cells. Nestin was consistently observed in the foremost processes of those Müller cells that grew into the subretinal space, forming glial scars. Elevated levels of nestin expression were also observed in bromodeoxyuridine-labeled Müller cells following retinal insult. Quantitative polymerase chain reaction (qPCR) showed a twofold increase in nestin mRNA 1 day after injury, a level maintained at 3 and 7 days. Western blotting using anti-nestin showed a single band at 220 kDa and the intensity of this band increased following injury. Anti-synemin labeling of control retinas revealed faint labeling of astrocytes; this increased after injury, demonstrating an association with blood vessels. Additionally, there was an upregulation of synemin in Müller cells. qPCR and western blotting with anti-synemin showed a continuous increase in both gene and protein expression over time. CONCLUSIONS Retinal injury induces an upregulation of a complement of four intermediate filament proteins, including synemin and nestin, in Müller cells. The latter provides suggestive support for the concept that these cells may revert to a more developmentally immature state, since these two IF proteins are developmentally regulated and expressed, and thus may serve as cell cycle reentry markers. Nestin and its differential expression patterns with glial fibrillary acidic protein and vimentin networks, as well as its association with proliferating Müller cells and those extending into the subretinal space, suggest a significant role of this protein in glial scar formation and perhaps gliogenesis. Synemin immunopositive astrocytes demonstrate a close relationship to the retinal vasculature, and illustrate a remarkable ability to reorganize their morphology in response to injury. Further examination of the changes in the cytoskeletal signatures of both of these glial cell types may lead to a more comprehensive understanding of mechanisms underway following retinal and other central nervous system injuries.
Collapse
Affiliation(s)
- Gabriel Luna
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
| | - Geoffrey P. Lewis
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
| | - Christopher D. Banna
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis TN
| | - Steven K. Fisher
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA
| |
Collapse
|
11
|
Aartsen WM, van Cleef KWR, Pellissier LP, Hoek RM, Vos RM, Blits B, Ehlert EME, Balaggan KS, Ali RR, Verhaagen J, Wijnholds J. GFAP-driven GFP expression in activated mouse Müller glial cells aligning retinal blood vessels following intravitreal injection of AAV2/6 vectors. PLoS One 2010; 5:e12387. [PMID: 20808778 PMCID: PMC2927518 DOI: 10.1371/journal.pone.0012387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/27/2010] [Indexed: 12/25/2022] Open
Abstract
Background Müller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Müller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy. Methodology/Principal Findings We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Müller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Müller glial cells, several other inner retinal cell types were transduced. To obtain Müller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1−/− retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Müller glial cells aligning retinal blood vessels. Conclusions/Significance Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells.
Collapse
Affiliation(s)
- Wendy M. Aartsen
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Koen W. R. van Cleef
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Lucie P. Pellissier
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Robert M. Hoek
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Rogier M. Vos
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Bas Blits
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Amsterdam Molecular Therapeutics, Amsterdam, The Netherlands
| | - Erich M. E. Ehlert
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Kamaljit S. Balaggan
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Robin R. Ali
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|