1
|
Leinonen H, Fu Z, Bull E. Neural and Müller glial adaptation of the retina to photoreceptor degeneration. Neural Regen Res 2023; 18:701-707. [DOI: 10.4103/1673-5374.354511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Völkner M, Pavlou M, Büning H, Michalakis S, Karl MO. Optimized Adeno-Associated Virus Vectors for Efficient Transduction of Human Retinal Organoids. Hum Gene Ther 2021; 32:694-706. [PMID: 33752467 DOI: 10.1089/hum.2020.321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The most widely used vectors for gene delivery in the retina are recombinant adeno-associated virus (rAAV) vectors. They have proven to be safe and effective in retinal gene therapy studies aimed to treat inherited retinal dystrophies, although with various limitations in transduction efficiency. Novel variants with modified capsid sequences have been engineered to improve transduction and overcome limitations of naturally occurring variants. Although preclinical evaluation of rAAV vectors based on such novel capsids is mostly done in animal models, the use of human induced pluripotent stem cell (hiPSC)-derived organoids offers an accessible and abundant human testing platform for rAAV evaluation. In this study, we tested the novel capsids, AAV9.GL and AAV9.NN, for their tropism and transduction efficiency in hiPSC-derived human retinal organoids (HROs) with all major neuronal and glial cell types in a laminated structure. These variants are based on the AAV9 capsid and were engineered to display specific surface-exposed peptide sequences, previously shown to improve the retinal transduction properties in the context of AAV2. To this end, HROs were transduced with increasing concentrations of rAAV9, rAAV9.GL, or rAAV9.NN carrying a self-complementary genome with a cytomegalovirus-enhanced green fluorescent protein (eGFP) cassette and were monitored for eGFP expression. The rAAV vectors transduced HROs in a dose-dependent manner, with rAAV9.NN achieving the highest efficiency and fastest onset kinetics, leading to detectable eGFP signals in photoreceptors, some interneurons, and Müller glia already at 2 days post-transduction. The potency-enhancing effect of the NN peptide insert was replicated when using the corresponding AAV2-based version (rAAV2.NN). Taken together, we report the application of an HRO system for screening novel AAV vectors and introduce novel vector candidates with enhanced transduction efficiency for human retinal cells.
Collapse
Affiliation(s)
- Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Marina Pavlou
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mike O Karl
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,CRTD-Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.,TU Dresden, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
3
|
Contreras EO, Dearing CG, Ashinhurst CA, Fish BA, Hossain SN, Rey AM, Silva PD, Thompson S. Pupillary reflex and behavioral masking responses to light as functional measures of retinal degeneration in mice. PLoS One 2021; 16:e0244702. [PMID: 33493166 PMCID: PMC7833141 DOI: 10.1371/journal.pone.0244702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pre-clinical testing of retinal pathology and treatment efficacy depends on reliable and valid measures of retinal function. The electroretinogram (ERG) and tests of visual acuity are the ideal standard, but can be unmeasurable while useful vision remains. Non-image-forming responses to light such as the pupillary light reflex (PLR) are attractive surrogates. However, it is not clear how accurately such responses reflect changes in visual capability in specific disease models. The purpose of this study was to test whether measures of non-visual responses to light correlate with previously determined visual function in two photoreceptor degenerations. METHODS The sensitivity of masking behavior (light induced changes in running wheel activity) and the PLR were measured in 3-month-old wild-type mice (WT) with intact inner retinal circuitry, Pde6b-rd1/rd1 mice (rd1) with early and rapid loss of rods and cones, and Prph2-Rd2/Rd2 mice (Rd2) with a slower progressive loss of rods and cones. RESULTS In rd1 mice, negative masking had increased sensitivity, positive masking was absent, and the sensitivity of the PLR was severely reduced. In Rd2 mice, positive masking identified useful vision at higher light levels, but there was a limited decrease in the irradiance sensitivity of negative masking and the PLR, and the amplitude of change for both underestimated the reduction in irradiance sensitivity of image-forming vision. CONCLUSIONS Together these data show that in a given disease, two responses to light can be affected in opposite ways, and that for a given response to light, the change in the response does not accurately represent the degree of pathology. However, the extent of the deficit in the PLR means that even a limited rescue of rod/cone function might be measured by increased PLR amplitude. In addition, positive masking has the potential to measure effective treatment in both models by restoring responses or shifting thresholds to lower irradiances.
Collapse
Affiliation(s)
- Ethan O. Contreras
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Carley G. Dearing
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
- College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, United States of America
| | - Crystal A. Ashinhurst
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Betty A. Fish
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Sajila N. Hossain
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Ariana M. Rey
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Primal D. Silva
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Stewart Thompson
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| |
Collapse
|
4
|
Subramaniam MD, Iyer M, Nair AP, Venkatesan D, Mathavan S, Eruppakotte N, Kizhakkillach S, Chandran MK, Roy A, Gopalakrishnan AV, Vellingiri B. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis 2020; 9:610-637. [PMID: 35782976 PMCID: PMC9243399 DOI: 10.1016/j.gendis.2020.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ocular cells like, retinal pigment epithelium (RPE) is a highly specialized pigmented monolayer of post-mitotic cells, which is located in the posterior segment of the eye between neuro sensory retina and vascular choroid. It functions as a selective barrier and nourishes retinal visual cells. As a result of high-level oxygen consumption of retinal cells, RPE cells are vulnerable to chronic oxidative stress and an increased level of reactive oxygen species (ROS) generated from mitochondria. These oxidative stress and ROS generation in retinal cells lead to RPE degeneration. Various sources including mtDNA damage could be an important factor of oxidative stress in RPE. Gene therapy and mitochondrial transfer studies are emerging fields in ocular disease research. For retinal degenerative diseases stem cell-based transplantation methods are developed from basic research to preclinical and clinical trials. Translational research contributions of gene and cell therapy would be a new strategy to prevent, treat and cure various ocular diseases. This review focuses on the effect of oxidative stress in ocular cell degeneration and recent translational researches on retinal degenerative diseases to cure blindness.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Corresponding author.
| | - Mahalaxmi Iyer
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Aswathy P. Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sinnakaruppan Mathavan
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Nimmisha Eruppakotte
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Soumya Kizhakkillach
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manoj kumar Chandran
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Punjab 144411, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 600127, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Corresponding author. Human Molecular Cytogenetics and Stem Cell, Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.Fax: +91 422 2422387.
| |
Collapse
|
5
|
Aboualizadeh E, Phillips MJ, McGregor JE, DiLoreto DA, Strazzeri JM, Dhakal KR, Bateman B, Jager LD, Nilles KL, Stuedemann SA, Ludwig AL, Hunter JJ, Merigan WH, Gamm DM, Williams DR. Imaging Transplanted Photoreceptors in Living Nonhuman Primates with Single-Cell Resolution. Stem Cell Reports 2020; 15:482-497. [PMID: 32707075 PMCID: PMC7419740 DOI: 10.1016/j.stemcr.2020.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Stem cell-based transplantation therapies offer hope for currently untreatable retinal degenerations; however, preclinical progress has been largely confined to rodent models. Here, we describe an experimental platform for accelerating photoreceptor replacement therapy in the nonhuman primate, which has a visual system much more similar to the human. We deployed fluorescence adaptive optics scanning light ophthalmoscopy (FAOSLO) to noninvasively track transplanted photoreceptor precursors over time at cellular resolution in the living macaque. Fluorescently labeled photoreceptors generated from a CRX+/tdTomato human embryonic stem cell (hESC) reporter line were delivered subretinally to macaques with normal retinas and following selective ablation of host photoreceptors using an ultrafast laser. The fluorescent reporter together with FAOSLO allowed transplanted photoreceptor precursor survival, migration, and neurite formation to be monitored over time in vivo. Histological examination suggested migration of photoreceptor precursors to the outer plexiform layer and potential synapse formation in ablated areas in the macaque eye.
Collapse
Affiliation(s)
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | | | - David A DiLoreto
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Jennifer M Strazzeri
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Kamal R Dhakal
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Brittany Bateman
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | | | - Kelsy L Nilles
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | | | | | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Flaum Eye Institute, University of Rochester, Rochester, NY, USA; The Institute of Optics, University of Rochester, Rochester, NY, USA
| | - William H Merigan
- Center for Visual Science, University of Rochester, Rochester, NY, USA; Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, NY, USA; The Institute of Optics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
6
|
Barnea-Cramer AO, Singh M, Fischer D, De Silva S, McClements ME, Barnard AR, MacLaren RE. Repair of Retinal Degeneration following Ex Vivo Minicircle DNA Gene Therapy and Transplantation of Corrected Photoreceptor Progenitors. Mol Ther 2020; 28:830-844. [PMID: 32027843 DOI: 10.1016/j.ymthe.2020.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022] Open
Abstract
The authors describe retinal reconstruction and restoration of visual function in heritably blind mice missing the rhodopsin gene using a novel method of ex vivo gene therapy and cell transplantation. Photoreceptor precursors with the same chromosomal genetic mutation were treated ex vivo using minicircle DNA, a non-viral technique that does not present the packaging limitations of adeno-associated virus (AAV) vectors. Following transplantation, genetically modified cells reconstructed a functional retina and supported vision in blind mice harboring the same founder gene mutation. Gene delivery by minicircles showed comparable long-term efficiency to AAV in delivering the missing gene, representing the first non-viral system for robust treatment of photoreceptors. This important proof-of-concept finding provides an innovative convergence of cell and gene therapies for the treatment of hereditary neurodegenerative disease and may be applied in future studies toward ex vivo correction of patient-specific cells to provide an autologous source of tissue to replace lost photoreceptors in inherited retinal blindness. This is the first report using minicircles in photoreceptor progenitors and the first to transplant corrected photoreceptor precursors to restore vision in blind animals.
Collapse
Affiliation(s)
| | - Mandeep Singh
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dominik Fischer
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK; University Eye Hospital and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Samantha De Silva
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
7
|
Thompson S, Blodi FR, Larson DR, Anderson MG, Stasheff SF. The Efemp1R345W Macular Dystrophy Mutation Causes Amplified Circadian and Photophobic Responses to Light in Mice. Invest Ophthalmol Vis Sci 2019; 60:2110-2117. [PMID: 31095679 PMCID: PMC6735810 DOI: 10.1167/iovs.19-26881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The R345W mutation in EFEMP1 causes malattia leventinese, an autosomal dominant eye disease with pathogenesis similar to an early-onset age-related macular degeneration. In mice, Efemp1R345W does not cause detectable degeneration but small subretinal deposits do accumulate. The purpose of this study was to determine whether there were abnormal responses to light at this presymptomatic stage in Efemp1R345W mice. Methods Responses to light were assessed by visual water task, circadian phase shifting, and negative masking behavior. The mechanism of abnormal responses was investigated by anterior eye exam, electroretinogram, melanopsin cell quantification, and multielectrode recording of retinal ganglion cell activity. Results Visual acuity was not different in Efemp1R345W mice. However, amplitudes of circadian phase shifting (P = 0.016) and negative masking (P < 0.0001) were increased in Efemp1R345W mice. This phenotype was not explained by anterior eye defects or amplified outer retina responses. Instead, we identified increased melanopsin-generated responses to light in the ganglion cell layer of the retina (P < 0.01). Conclusions Efemp1R345W increases the sensitivity to light of behavioral responses driven by detection of irradiance. An amplified response to light in melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) is consistent with this phenotype. The major concern with this effect of the malattia leventinese mutation is the potential for abnormal regulation of physiology by light to negatively affect health.
Collapse
Affiliation(s)
- Stewart Thompson
- Department of Psychology, New Mexico Tech, Socorro, New Mexico, United States.,Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Frederick R Blodi
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Demelza R Larson
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,Biology Department, College of St. Benedict & St. John's University, Collegeville, Minnesota, United States
| | - Michael G Anderson
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,VA Center for Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Steven F Stasheff
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Unit on Retinal Neurophysiology, National Eye Institute, Bethesda, Maryland, United States.,Center for Neurosciences and Behavioral Medicine, Children's National Medical Center, Washington, DC, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
8
|
Barnea-Cramer AO, Wang W, Lu SJ, Singh MS, Luo C, Huo H, McClements ME, Barnard AR, MacLaren RE, Lanza R. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep 2016; 6:29784. [PMID: 27405580 PMCID: PMC4942817 DOI: 10.1038/srep29784] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
Photoreceptor degeneration due to retinitis pigmentosa (RP) is a primary cause of inherited retinal blindness. Photoreceptor cell-replacement may hold the potential for repair in a completely degenerate retina by reinstating light sensitive cells to form connections that relay information to downstream retinal layers. This study assessed the therapeutic potential of photoreceptor progenitors derived from human embryonic and induced pluripotent stem cells (ESCs and iPSCs) using a protocol that is suitable for future clinical trials. ESCs and iPSCs were cultured in four specific stages under defined conditions, resulting in generation of a near-homogeneous population of photoreceptor-like progenitors. Following transplantation into mice with end-stage retinal degeneration, these cells differentiated into photoreceptors and formed a cell layer connected with host retinal neurons. Visual function was partially restored in treated animals, as evidenced by two visual behavioral tests. Furthermore, the magnitude of functional improvement was positively correlated with the number of engrafted cells. Similar efficacy was observed using either ESCs or iPSCs as source material. These data validate the potential of human pluripotent stem cells for photoreceptor replacement therapies aimed at photoreceptor regeneration in retinal disease.
Collapse
Affiliation(s)
| | - Wei Wang
- Astellas Institute for Regenerative Medicine, 33 Locke Dr, Marlborough, MA 01752, USA
| | - Shi-Jiang Lu
- Astellas Institute for Regenerative Medicine, 33 Locke Dr, Marlborough, MA 01752, USA
| | - Mandeep S Singh
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, England.,Moorfields Eye Hospital NHS Foundation Trust NIHR Biomedical Research Centre, London, England
| | - Chenmei Luo
- Astellas Institute for Regenerative Medicine, 33 Locke Dr, Marlborough, MA 01752, USA
| | - Hongguang Huo
- Astellas Institute for Regenerative Medicine, 33 Locke Dr, Marlborough, MA 01752, USA
| | | | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, England
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, England.,Moorfields Eye Hospital NHS Foundation Trust NIHR Biomedical Research Centre, London, England.,Oxford University Hospitals NHS Trust Biomedical Research Centre, Oxford, England
| | - Robert Lanza
- Astellas Institute for Regenerative Medicine, 33 Locke Dr, Marlborough, MA 01752, USA
| |
Collapse
|
9
|
Ahl M, Avdic U, Skoug C, Ali I, Chugh D, Johansson UE, Ekdahl CT. Immune response in the eye following epileptic seizures. J Neuroinflammation 2016; 13:155. [PMID: 27346214 PMCID: PMC4922060 DOI: 10.1186/s12974-016-0618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epileptic seizures are associated with an immune response in the brain. However, it is not known whether it can extend to remote areas of the brain, such as the eyes. Hence, we investigated whether epileptic seizures induce inflammation in the retina. METHODS Adult rats underwent electrically induced temporal status epilepticus, and the eyes were studied 6 h, 1, and 7 weeks later with biochemical and immunohistochemical analyses. An additional group of animals received CX3CR1 antibody intracerebroventricularly for 6 weeks after status epilepticus. RESULTS Biochemical analyses and immunohistochemistry revealed no increased cell death and unaltered expression of several immune-related cytokines and chemokines as well as no microglial activation, 6 h post-status epilepticus compared to non-stimulated controls. At 1 week, again, retinal cytoarchitecture appeared normal and there was no cell death or micro- or macroglial reaction, apart from a small decrease in interleukin-10. However, at 7 weeks, even if the cytoarchitecture remained normal and no ongoing cell death was detected, the numbers of microglia were increased ipsi- and contralateral to the epileptic focus. The microglia remained within the synaptic layers but often in clusters and with more processes extending into the outer nuclear layer. Morphological analyses revealed a decrease in surveying and an increase in activated microglia. In addition, increased levels of the chemokine KC/GRO and cytokine interleukin-1β were found. Furthermore, macroglial activation was noted in the inner retina. No alterations in numbers of phagocytic cells, infiltrating macrophages, or vascular pericytes were observed. Post-synaptic density-95 cluster intensity was reduced in the outer nuclear layer, reflecting seizure-induced synaptic changes without disrupted cytoarchitecture in areas with increased microglial activation. The retinal gliosis was decreased by a CX3CR1 immune modulation known to reduce gliosis within epileptic foci, suggesting a common immunological reaction. CONCLUSIONS Our results are the first evidence that epileptic seizures induce an immune response in the retina. It has a potential to become a novel non-invasive tool for detecting brain inflammation through the eyes.
Collapse
Affiliation(s)
- Matilda Ahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Una Avdic
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Cecilia Skoug
- Division of Ophthalmology, Department of Clinical Sciences, Lund University, SE-221 85, Lund, Sweden
| | - Idrish Ali
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Deepti Chugh
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Ulrica Englund Johansson
- Division of Ophthalmology, Department of Clinical Sciences, Lund University, SE-221 85, Lund, Sweden
| | - Christine T Ekdahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden. .,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden.
| |
Collapse
|
10
|
Iwabe S, Ying GS, Aguirre GD, Beltran WA. Assessment of visual function and retinal structure following acute light exposure in the light sensitive T4R rhodopsin mutant dog. Exp Eye Res 2016; 146:341-353. [PMID: 27085210 DOI: 10.1016/j.exer.2016.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 01/12/2023]
Abstract
The effect of acute exposure to various intensities of white light on visual behavior and retinal structure was evaluated in the T4R RHO dog, a naturally-occurring model of autosomal dominant retinitis pigmentosa due to a mutation in the Rhodopsin gene. A total of 14 dogs (ages: 4-5.5 months) were used in this study: 3 homozygous mutant RHO(T4R/T4R), 8 heterozygous mutant RHO(T4R/+), and 3 normal wild-type (WT) dogs. Following overnight dark adaptation, the left eyes were acutely exposed to bright white light with a monocular Ganzfeld dome, while the contralateral right eye was shielded. Each of the 3 homozygous (RHO(T4R/T4R)) mutant dogs had a single unilateral light exposure (LE) to a different (low, moderate, and high) dose of white light (corneal irradiance/illuminance: 0.1 mW/cm(2), 170 lux; 0.5 mW/cm(2), 820 lux; or 1 mW/cm(2), 1590 lux) for 1 min. All 8 heterozygous (RHO(T4R/+)) mutant dogs were exposed once to the same moderate dose of light. The 3 WT dogs had their left eyes exposed 1, 2, or 3 times to the same highest dose of light. Visual function prior to LE and at 2 weeks and 33 weeks after exposure was objectively assessed in the RHO(T4R/T4R) and WT dogs by using an obstacle-avoidance course. Transit time through the obstacle course was measured under different scotopic to photopic ambient illuminations. Morphological retinal changes were evaluated by non-invasive in vivo cSLO/sdOCT imaging and histology before and at several time-points (2-36 weeks) after light exposure. The analysis of the transit time through the obstacle course showed that no differences were observed in any of mutant or WT dogs at 2 weeks and 33 weeks post LE. The RHO(T4R/T4R) retina exposed to the lowest dose of white light showed no obvious changes in ONL thickness at 2 weeks, but mild decrease was noted 36 weeks after LE. The RHO(T4R/T4R) retina that received a moderate dose (showed an obvious decrease in ONL thickness along the superior and temporal meridians at 2 weeks post LE with more severe damage at 36 weeks post LE in all four meridians. The RHO(T4R/T4R) retina exposed to the high dose showed at 2 weeks after LE extensive ONL damage in all four meridians. This light intensity did not cause any retinal damage in WT dogs even after repeated (up to 3) LE. Analysis of ONL thickness in heterozygous mutant dogs exposed to the moderate dose of light confirmed the increased sensitivity to light damage of the superior/tapetal retina, and the occurrence of an ongoing cell death process several weeks after the acute LE. In conclusion, a short single exposure to a dose of white light that is not retinotoxic in WT dogs causes in the T4R RHO retina an acute loss of ONL in the central to mid peripheral region that keeps progressing over the course of several weeks. However, this severe retinal damage does not affect visual behavior presumably because of islands of surviving photoreceptors found in the area centralis including the newly discovered canine fovea-like area, and the lack of damage to peripheral photoreceptors.
Collapse
Affiliation(s)
- Simone Iwabe
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gui-Shuang Ying
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Gustavo D Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - William A Beltran
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
11
|
Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res 2015; 48:1-39. [PMID: 26113213 DOI: 10.1016/j.preteyeres.2015.06.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
|
12
|
Psychophysical testing in rodent models of glaucomatous optic neuropathy. Exp Eye Res 2015; 141:154-63. [PMID: 26144667 DOI: 10.1016/j.exer.2015.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 06/08/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022]
Abstract
Processing of visual information begins in the retina, with photoreceptors converting light stimuli into neural signals. Ultimately, signals are transmitted to the brain through signaling networks formed by interneurons, namely bipolar, horizontal and amacrine cells providing input to retinal ganglion cells (RGCs), which form the optic nerve with their axons. As part of the chronic nature of glaucomatous optic neuropathy, the increasing and irreversible damage and ultimately loss of neurons, RGCs in particular, occurs following progressive damage to the optic nerve head (ONH), eventually resulting in visual impairment and visual field loss. There are two behavioral assays that are typically used to assess visual deficits in glaucoma rodent models, the visual water task and the optokinetic drum. The visual water task can assess an animal's ability to distinguish grating patterns that are associated with an escape from water. The optokinetic drum relies on the optomotor response, a reflex turning of the head and neck in the direction of the visual stimuli, which usually consists of rotating black and white gratings. This reflex is a physiological response critical for keeping the image stable on the retina. Driven initially by the neuronal input from direction-selective RGCs, this reflex is comprised of a number of critical sensory and motor elements. In the presence of repeatable and defined stimuli, this reflex is extremely well suited to analyze subtle changes in the circuitry and performance of retinal neurons. Increasing the cycles of these alternating gratings per degree, or gradually reducing the contrast of the visual stimuli, threshold levels can be determined at which the animal is no longer tracking the stimuli, and thereby visual function of the animal can be determined non-invasively. Integrating these assays into an array of outcome measures that determine multiple aspects of visual function is a central goal in vision research and can be realized, for example, by the combination of measuring optomotor reflex function with electroretinograms (ERGs) and optical coherence tomography (OCT) of the retina. These structure-function correlations in vivo are urgently needed to identify disease mechanisms as potential new targets for drug development. Such a combination of the experimental assessment of the optokinetic reflex (OKR) or optomotor response (OMR) with other measures of retinal structure and function is especially valuable for research on GON. The chronic progression of the disease is characterized by a gradual decrease in function accompanied by a concomitant increase in structural damage to the retina, therefore the assessment of subtle changes is key to determining the success of novel intervention strategies.
Collapse
|
13
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
14
|
Dutca LM, Stasheff SF, Hedberg-Buenz A, Rudd DS, Batra N, Blodi FR, Yorek MS, Yin T, Shankar M, Herlein JA, Naidoo J, Morlock L, Williams N, Kardon RH, Anderson MG, Pieper AA, Harper MM. Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243. Invest Ophthalmol Vis Sci 2014; 55:8330-41. [PMID: 25468886 DOI: 10.1167/iovs.14-15468] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. METHODS Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. RESULTS We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. CONCLUSIONS Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at an earlier stage when treatments may be more effective in preventing these sequelae. In addition, treatment with the neuroprotective agent P7C3-S243 after TBI protects from visual system dysfunction after TBI.
Collapse
Affiliation(s)
- Laura M Dutca
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States
| | - Steven F Stasheff
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States
| | - Adam Hedberg-Buenz
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States
| | - Danielle S Rudd
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Nikhil Batra
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Frederick R Blodi
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States
| | - Matthew S Yorek
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Terry Yin
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States
| | - Malini Shankar
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States
| | - Judith A Herlein
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Lorraine Morlock
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Noelle Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Randy H Kardon
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States
| | - Michael G Anderson
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States
| | - Andrew A Pieper
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States Department of Neurology, The University of Iowa, Iowa City, Iowa, United States Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States
| | - Matthew M Harper
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
15
|
Busskamp V, Krol J, Nelidova D, Daum J, Szikra T, Tsuda B, Jüttner J, Farrow K, Scherf BG, Alvarez CPP, Genoud C, Sothilingam V, Tanimoto N, Stadler M, Seeliger M, Stoffel M, Filipowicz W, Roska B. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron 2014; 83:586-600. [PMID: 25002228 DOI: 10.1016/j.neuron.2014.06.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged. The loss of the outer segments occurred gradually over 1 month, and during this time the genetic signature of cones decreased. Reexpression of the sensory-cell-specific miR-182 and miR-183 prevented outer segment loss. These miRNAs were also necessary and sufficient for the formation of inner segments, connecting cilia and short outer segments, as well as light responses in stem-cell-derived retinal cultures. Our results show that miR-182- and miR-183-regulated pathways are necessary for cone outer segment maintenance in vivo and functional outer segment formation in vitro.
Collapse
Affiliation(s)
- Volker Busskamp
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jacek Krol
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Dasha Nelidova
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4058 Basel, Switzerland
| | - Janine Daum
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4058 Basel, Switzerland
| | - Tamas Szikra
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Ben Tsuda
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Josephine Jüttner
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Karl Farrow
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Brigitte Gross Scherf
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Christel Genoud
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Department of Ophthalmology, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Department of Ophthalmology, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Michael Stadler
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Mathias Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Department of Ophthalmology, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Markus Stoffel
- Institute for Molecular Health Sciences, ETH, 8093 Zürich
| | - Witold Filipowicz
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4058 Basel, Switzerland.
| | - Botond Roska
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|