1
|
Burnett C, Bergfeld WF, Belsito DV, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Fiume M, Heldreth B. Imidazolidinyl Urea. Int J Toxicol 2023; 42:53S-55S. [PMID: 37776363 DOI: 10.1177/10915818231204614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The Expert Panel for Cosmetic Ingredient Safety reviewed updated information that has become available since their original assessment from 1980, along with updated information regarding product types, and frequency and concentrations of use, and reaffirmed their original conclusion that Imidazolidinyl Urea is safe as a cosmetic ingredient in the practices of use and concentration as described in this report.
Collapse
Affiliation(s)
- Christina Burnett
- Cosmetic Ingredient Review Senior Scientific Analyst/Writer, Washington, DC, USA
| | | | | | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | - Ronald C Shank
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | |
Collapse
|
2
|
Qin D, Han Y, Wang L, Yin H. Recent advances in medicinal compounds related to corneal crosslinking. Front Pharmacol 2023; 14:1232591. [PMID: 37841929 PMCID: PMC10570464 DOI: 10.3389/fphar.2023.1232591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Corneal crosslinking (CXL) is the recognized technique to strengthen corneal collagen fibers through photodynamic reaction, aiming to halt progressive and irregular changes in corneal shape. CXL has greatly changed the treatment for keratoconus (KCN) since it was introduced in the late 1990's. Numerous improvements of CXL have been made during its developing course of more than 20 years. CXL involves quite a lot of materials, including crosslinking agents, enhancers, and supplements. A general summary of existing common crosslinking agents, enhancers, and supplements helps give a more comprehensive picture of CXL. Either innovative use of existing materials or research and development of new materials will further improve the safety, effectiveness, stability, and general applicability of CXL, and finally benefit the patients.
Collapse
Affiliation(s)
- Danyi Qin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yi Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute and Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Hoang QV, Wen Q, Paik DC, Chun YY, Silverman R, Nagasaki T, Trokel SL, Zyablitskaya M. Scleral growth stunting via sub-Tenon injection of cross-linking solutions in live rabbits. Br J Ophthalmol 2023; 107:889-894. [PMID: 34670748 PMCID: PMC9018885 DOI: 10.1136/bjophthalmol-2021-319427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Scleral cross-linking is a potential method to inhibit axial elongation of the eye, preventing the progression of pathological myopia. Formaldehyde releasers, which are common preservatives found in cosmetics and ophthalmic solutions, have been shown to be not only effective in cross-linking corneal collagen in vitro and in vivo, but also have minimal toxicity effects on the eye. The present study aims to evaluate the efficacy of scleral cross-linking using sodium hydroxymethylglycinate (SMG) to inhibit eye growth using an in vivo rabbit model. METHODS A cross-linking solution containing 40 mM SMG was delivered to the sub-Tenon's space behind the equator. The application regimen included a two-quadrant injection performed five times over 2 weeks on New Zealand White rabbits (n=5, group 1), and one-time injection followed for up to 5 days on Dutch-Belted rabbits (n=6, group 2). Group 1 was monitored serially for axial length changes using B-scan ultrasound for 5-6 weeks. Group 2 was injected with a higher viscosity solution formulation. Both groups were evaluated for thermal denaturation temperature changes of the sclera postmortem. RESULTS Axial growth was limited by 10%-20% following SMG treatment as compared with the untreated eye. Thermal denaturation analysis showed increased heat resistance of the treated eyes in the areas of injection. Overall, the SMG treatment inhibited eye growth with few side effects from the injections. CONCLUSIONS Cross-linking solutions delivered via sub-Tenon injection provide a potential method for limiting axial length growth in progressive myopia and could be used as a potential treatment for myopia.
Collapse
Affiliation(s)
- Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre at Duke-NUS Medical School, Singapore
- Ophthalmology, Columbia University, New York, New York, USA
| | - Quan Wen
- Ophthalmology, Columbia University, New York, New York, USA
| | - David C Paik
- Ophthalmology, Columbia University, New York, New York, USA
| | - Yong Yao Chun
- Singapore Eye Research Institute, Singapore National Eye Centre at Duke-NUS Medical School, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
4
|
Miao Y, Liu J, Akella SS, Wang J, Li S, Chuck RS, Zhang C. Changes in Rat Scleral Collagen Structure Induced by UVA-Riboflavin Crosslinking at Various Tissue Depths in Whole Globe Versus Scleral Patch. Transl Vis Sci Technol 2022; 11:2. [PMID: 35913416 PMCID: PMC9351595 DOI: 10.1167/tvst.11.8.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate structural changes in scleral collagen fibers at various tissue depths before and after photosensitized crosslinking (CXL) both isolated scleral patch versus whole globe using second-harmonic generation (SHG) imaging. Methods Scleral tissues were harvested from Sprague-Dawley rats and separated into three groups: untreated sclera (control), full-thickness scleral patch for CXL (Free Scleral CXL group), and sclera in intact globe for CXL (Globe CXL group). The CXL groups were soaked in 0.1% riboflavin and irradiated with 365 nm ultraviolet-A light (power, 0.45 mW/cm2) for 30 minutes. SHG images were acquired every 5 µm between 10 and 60 µm from the outer scleral surface. Collagen fiber waviness was calculated as the ratio of the total length of a traced fiber and the length of a straight path between the fiber ends. Results In the Free Scleral CXL group, collagen waviness was significantly increased compared to the control group at 35 to 50 µm (P < 0.05). In the Globe CXL group, collagen waviness was decreased compared to control at all depths with statistical significance (P < 0.05) achieved from 10 to 45 µm. Conclusions Depending upon its initial state (i.e., free scleral patch versus mechanically loaded intact globe under pressure), collagen may experience different structural changes after CXL. In addition, the extent of the CXL effects may vary at different depths away from the surface. Translational Relevance Understanding the CXL effects on collagen structure may be important in optimizing the scleral crosslinking protocol for future clinical applications such as preventing myopic progression.
Collapse
Affiliation(s)
- Yuan Miao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.,Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Liu
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Sruti S Akella
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessie Wang
- Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shaowei Li
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Roy S Chuck
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Cheng Zhang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Wang M, Corpuz CCC, Zhang F. Shaping Eyeballs by Scleral Collagen Cross-Linking: A Hypothesis for Myopia Treatment. Front Med (Lausanne) 2021; 8:655822. [PMID: 34277654 PMCID: PMC8282923 DOI: 10.3389/fmed.2021.655822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
The global prevalence of myopia has brought to the attention of the different eye and vision specialists, who make way to control its progression. Evidence have shown that a proactive reshaping of the eyeball is the core point of myopia developing process, which particularly includes the weakening, thinning, and expanding of the sclera. Thus, the sclera is considered to be a prime target for therapeutic manipulation in halting progressive myopia. In the past decades, corneal collagen cross-linking has been applied in clinical practice for treating aberrant corneal remodeling diseases. In this article, we hypothesize that scleral collagen cross-linking (SXL) has a huge potential in stabilizing myopic process by shaping the eyeball and preventing the aberrant scleral remodeling. In contrast with the current methods of optometry correction, such as physiotherapy, pharmacotherapy, spectacles, contact lenses, refractive surgeries, etc., eyeball-shaping method using SXL is a fundamental intervention which aims at the pathogenesis of progressive visual loss of myopia. Compared with the current posterior scleral reinforcement, the most advantage of SXL is that there is no allotransplant into the myopic eye, which means less expenditure, lower risk, and easier to handle in operating.
Collapse
Affiliation(s)
- Mengmeng Wang
- Hebei Ophthalmology Key Lab, Hebei Eye Hospital, Xingtai, China
| | | | - Fengju Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Blackburn BJ, Rollins AM, Dupps WJ. Biomechanics of Ophthalmic Crosslinking. Transl Vis Sci Technol 2021; 10:8. [PMID: 34328498 PMCID: PMC8327749 DOI: 10.1167/tvst.10.5.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Crosslinking involves the formation of bonds between polymer chains, such as proteins. In biological tissues, these bonds tend to stiffen the tissue, making it more resistant to mechanical degradation and deformation. In ophthalmology, the crosslinking phenomenon is being increasingly harnessed and explored as a treatment strategy for treating corneal ectasias, keratitis, degenerative myopia, and glaucoma. This review surveys the multitude of exogenous crosslinking strategies reported in the literature, both "light" (involving light energy) and "dark" (involving non-photic chemical processes), and explores their mechanisms, cytotoxicity, and stage of translational development. The spectrum of ophthalmic applications described in the literature is then discussed, with particular attention to proposed therapeutic mechanisms in the cornea and sclera. The mechanical effects of crosslinking are then discussed in the context of their proposed site and scale of action. Biomechanical characterization of the crosslinking effect is needed to more thoroughly address knowledge gaps in this area, and a review of reported methods for biomechanical characterization is presented with an attempt to assess the sensitivity of each method to crosslinking-mediated changes using data from the experimental and clinical literature. Biomechanical measurement methods differ in spatial resolution, mechanical sensitivity, suitability for detecting crosslinking subtypes, and translational readiness and are central to the effort to understand the mechanistic link between crosslinking methods and clinical outcomes of candidate therapies. Data on differences in the biomechanical effect of different crosslinking protocols and their correspondence to clinical outcomes are reviewed, and strategies for leveraging measurement advances predicting clinical outcomes of crosslinking procedures are discussed. Advancing the understanding of ophthalmic crosslinking, its biomechanical underpinnings, and its applications supports the development of next-generation crosslinking procedures that optimize therapeutic effect while reducing complications.
Collapse
Affiliation(s)
- Brecken J. Blackburn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - William J. Dupps
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Atalay E, Özalp O, Yıldırım N. Advances in the diagnosis and treatment of keratoconus. Ther Adv Ophthalmol 2021; 13:25158414211012796. [PMID: 34263132 PMCID: PMC8246497 DOI: 10.1177/25158414211012796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/07/2021] [Indexed: 01/31/2023] Open
Abstract
Keratoconus had traditionally been considered a rare disease at a time when the imaging technology was inept in detecting subtle manifestations, resulting in more severe disease at presentation. The increased demand for refractive surgery in recent years also made it essential to more effectively detect keratoconus before attempting any ablative procedure. Consequently, the armamentarium of tools that can be used to diagnose and treat keratoconus has significantly expanded. The advances in imaging technology have allowed clinicians and researchers alike to visualize the cornea layer by layer looking for any early changes that might be indicative of keratoconus. In addition to the conventional geometrical evaluation, efforts are also underway to enable spatially resolved corneal biomechanical evaluation. Artificial intelligence has been exploited in a multitude of ways to enhance diagnostic efficiency and to guide treatment. As for treatment, corneal cross-linking treatment remains the mainstay preventive approach, yet the current main focus of research is on increasing oxygen availability and developing new strategies to improve riboflavin permeability during the procedure. Some new combined protocols are being proposed to simultaneously halt keratoconus progression and correct refractive error. Bowman layer transplantation and additive keratoplasty are newly emerging alternatives to conventional keratoplasty techniques that are used in keratoconus surgery. Advances in tissue engineering and regenerative therapy might bring new perspectives for treatment at the cellular level and hence obviate the need for invasive surgeries. In this review, we describe the advances in the diagnosis and treatment of keratoconus primarily focusing on newly emerging approaches and strategies.
Collapse
Affiliation(s)
- Eray Atalay
- Department of Ophthalmology, Medical School, Eskişehir Osmangazi University, Meşelik Kampüsü, Odunpazarı, Eskişehir 26040, Turkey
| | - Onur Özalp
- Department of Ophthalmology, Medical School, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Nilgün Yıldırım
- Department of Ophthalmology, Medical School, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
8
|
Zyablitskaya M, Jayyosi C, Takaoka A, Myers KM, Suh LH, Nagasaki T, Trokel SL, Paik DC. Topical Corneal Cross-Linking Solution Delivered Via Corneal Reservoir in Dutch-Belted Rabbits. Transl Vis Sci Technol 2020; 9:20. [PMID: 32879776 PMCID: PMC7442877 DOI: 10.1167/tvst.9.9.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose A topical corneal cross-linking solution that can be used as an adjunct or replacement to standard photochemical cross-linking (UV-riboflavin) methods remain an attractive possibility. Optimal concentration and delivery method for such topical corneal stabilization in the living rabbit eye were developed. Methods A series of experiments were carried out using Dutch-belted rabbits (3 months old, weighing 1.0–1.5 kg) and topical cross-linking solutions (sodium hydroxymethylglycinate) (10–250 mM) delivered via corneal reservoir. The application regimen included a one-time 30-minute application (10–40 mM sodium hydroxymethylglycinate) as well as a once per week 5-minute application (250 mM sodium hydroxymethylglycinate) for 7 weeks. Animals were evaluated serially for changes in IOP, pachymetry, epithelial integrity, and endothelial cell counts. Keratocyte changes were identified using intravital laser scanning confocal microscopy. Post mortem efficacy was evaluated by mechanical inflation testing. Results Overall, there were very few differences observed in right eye treated versus left eye controls with respect to intraocular pressure, pachymetry, and endothelial cell counts, although 30-minute cross-linking techniques did cause transient increases in thickness resolving within 7 days. Epithelial damage was noted in all of the 30-minute applications and fully resolved within 72 hours. Keratocyte changes were significant, showing a wound healing pattern similar to that after riboflavin UVA photochemical cross-linking in rabbits and humans. Surprisingly, post mortem inflation testing showed that the lower concentration of 20 mM delivered over 30 minutes showed the most profound stiffening/strengthening effect. Conclusions Topical cross-linking conditions that are safe and can increase corneal stiffness/strength in the living rabbit eye have been identified. Translational Relevance A topical corneal cross-linking solution delivered via corneal reservoir is shown to be both safe and effective at increasing tissue strength in living rabbit eyes and could now be tested in patients suffering from keratoconus and other conditions marked by corneal tissue weakness.
Collapse
Affiliation(s)
| | - Charles Jayyosi
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Anna Takaoka
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Leejee H Suh
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Stephen L Trokel
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - David C Paik
- Department of Ophthalmology, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Development of a topical tissue cross-linking solution using sodium hydroxymethylglycinate (SMG): viscosity effect. Biosci Rep 2020; 40:221651. [PMID: 31860073 PMCID: PMC6954362 DOI: 10.1042/bsr20191941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022] Open
Abstract
Hyperviscosity agents are commonly used in ophthalmic formulations for improving corneal drug penetration by increasing tissue contact time. One such viscosity agent is hydroxypropyl methylcellulose (HPMC). HPMC has been used in riboflavin solutions for photochemical UVA cross-linking (CXL). Sodium hydroxymethylglycinate (SMG) is a small molecule formaldehyde releaser that can function as a therapeutic tissue cross-linker for corneal and scleral applications. The present study was undertaken in order to study formulation factors using HPMC and SMG that could positively influence the cross-linking effect in these ocular tissues. Formulations containing 10 mM SMG and 100 mM sodium bicarbonate were prepared with varying HPMC concentrations from 0 to 4.4%. Their cross-linking effects on porcine and rabbit eyes were measured using differential scanning calorimetry (DSC), expressed as the change/difference in melting temperature (ΔTm) compared with the control. SMG in 4.4% HPMC solution resulted in ΔTm of 6.3 ± 1.21, while other concentration showed no differences in Tm shift on porcine cornea. In ex vivo rabbit cornea, there was a trend toward an increasing cross-linking effect with higher viscosity albeit mild differences. While a significant Tm shift was observed in porcine and rabbit sclera, there was no difference in effect of cross-linking between four HPMC concentrations. Increasing the HPMC concentration does not negatively affect the cross-linking efficacy attributed by SMG and could still be a positive cross-linking enhancer by virtue of increasing tissue contact time in a dynamic biological system. This information will be useful for planning further animal and human studies.
Collapse
|
10
|
Amponin DE, Przybek-Skrzypecka J, Zyablitskaya M, Takaoka A, Suh LH, Nagasaki T, Trokel SL, Paik DC. Ex vivo anti-microbial efficacy of various formaldehyde releasers against antibiotic resistant and antibiotic sensitive microorganisms involved in infectious keratitis. BMC Ophthalmol 2020; 20:28. [PMID: 31941474 PMCID: PMC6964009 DOI: 10.1186/s12886-020-1306-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corneal infections with antibiotic-resistant microorganisms are an increasingly difficult management challenge and chemically or photochemically cross-linking the cornea for therapy presents a unique approach to managing such infections since both direct microbial pathogens killing and matrix stabilization can occur simultaneously. The present study was undertaken in order to compare the anti-microbial efficacy, in vitro, of 5 candidate cross-linking solutions against 5 different microbial pathogens with relevance to infectious keratitis. METHODS In vitro bactericidal efficacy studies were carried out using 5 different FARs [diazolidinyl urea (DAU), 1,3-bis(hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione (DMDM), sodium hydroxymethylglycinate (SMG), 2-(hydroxymethyl)-2-nitro-1,3-propanediol (NT = nitrotriol), 2-nitro-1-propanol (NP)] against 5 different microbial pathogens including two antibiotic-resistant species [methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Pseudomonas aeruginosa (PA), and Candida albicans (CA)]. Standard in vitro antimicrobial testing methods were used. RESULTS The results for MSSA were similar to those for MRSA. DAU, DMDM, and SMG all showed effectiveness with greater effects generally observed with longer incubation times and higher concentrations. Against MRSA, 40 mM SMG at 120 min showed a > 95% kill rate, p < 0.02. Against VRE, 40 mM DAU for 120 min showed a > 94% kill rate, p < 0.001. All FARs showed bactericidal effect against Pseudomonas aeruginosa, making PA the most susceptible of the strains tested. Candida showed relative resistance to these compounds, requiring high concentrations (100 mM) to achieve kill rates greater than 50%. CONCLUSION Our results show that each FAR compound has different effects against different cultures. Our antimicrobial armamentarium could potentially be broadened by DAU, DMDM, SMG and other FARs for antibiotic-resistant keratitis. Further testing in live animal models are indicated.
Collapse
Affiliation(s)
- Daeryl E Amponin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, 635 West 165th Street, Research Annex Room 715, New York, NY, 10032, USA
| | - Joanna Przybek-Skrzypecka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland.,Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Mariya Zyablitskaya
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, 635 West 165th Street, Research Annex Room 715, New York, NY, 10032, USA
| | - Anna Takaoka
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, 635 West 165th Street, Research Annex Room 715, New York, NY, 10032, USA
| | - Leejee H Suh
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, 635 West 165th Street, Research Annex Room 715, New York, NY, 10032, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, 635 West 165th Street, Research Annex Room 715, New York, NY, 10032, USA
| | - Stephen L Trokel
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, 635 West 165th Street, Research Annex Room 715, New York, NY, 10032, USA
| | - David C Paik
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, 635 West 165th Street, Research Annex Room 715, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Saw SM, Matsumura S, Hoang QV. Prevention and Management of Myopia and Myopic Pathology. Invest Ophthalmol Vis Sci 2019; 60:488-499. [PMID: 30707221 DOI: 10.1167/iovs.18-25221] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myopia is fast becoming a global public health burden with its increasing prevalence, particularly in developed countries. Globally, the prevalence of myopia and high myopia (HM) is 28.3% and 4.0%, respectively, and these numbers are estimated to increase to 49.8% for myopia and 9.8% for HM by 2050 (myopia defined as -0.50 diopter [D] or less, and HM defined as -5.00 D or less). The burden of myopia is tremendous, as adults with HM are more likely to develop pathologic myopia (PM) changes that can lead to blindness. Accordingly, preventive measures are necessary for each step of myopia progression toward vision loss. Approaches to prevent myopia-related blindness should therefore attempt to prevent or delay the onset of myopia among children by increased outdoor time; retard progression from low/mild myopia to HM, through optical (e.g., defocus incorporated soft contact lens, orthokeratology, and progressive-additional lenses) and pharmacological (e.g., low dose of atropine) interventions; and/or retard progression from HM to PM through medical/surgical treatments (e.g., anti-VEGF therapies, macula buckling, and scleral crosslinking). Recent clinical trials aiming for retarding myopia progression have shown encouraging results. In this article, we highlight recent findings on preventive and early interventional measures to retard myopia, and current and novel treatments for PM.
Collapse
Affiliation(s)
- Seang-Mei Saw
- Singapore Eye Research Insitute, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | | | - Quan V Hoang
- Singapore Eye Research Insitute, Singapore.,Duke-NUS Medical School, Singapore.,Singapore National Eye Centre, Singapore.,Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| |
Collapse
|
12
|
Topical therapeutic corneal and scleral tissue cross-linking solutions: in vitro formaldehyde release studies using cosmetic preservatives. Biosci Rep 2019; 39:BSR20182392. [PMID: 30971499 PMCID: PMC6500889 DOI: 10.1042/bsr20182392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/18/2022] Open
Abstract
Our recent tissue cross-linking studies using formaldehyde releasers (FARs) suggest that corneal and scleral tissue strengthening may be possible without using ultraviolet irradiation or epithelial removal, two requirements for the photochemical method in widespread clinical use. Thus, the present study was carried out in order to better understand these potential therapeutic solutions by studying the effects of concentration, pH, buffer, time, and tissue reactivity on formaldehyde release of these FARs. Three FARs, sodium hydroxymethyl glycinate (SMG), DMDM, and diazolidinyl urea (DAU) were studied using a chromotropic acid colorimetric FA assay. The effects of concentration, pH, and buffer were studied as well as the addition of corneal and scleral tissues. The main determinant of release was found to be dilution factor (concentration) in which maximal release was noted at the lowest concentrations studied (submillimolar). In time dependent studies, after 60 min, FA levels decreased by 38% for SMG, 30% for DMDM, and 19% for DAU with corneal tissue added; and by 40% for SMG, 40% for DMDM, and 15% for DAU with scleral tissue added. We conclude that concentration (dilution factor) was found to be the most important parameter governing the percent of FA released.
Collapse
|
13
|
Ruiz-Medrano J, Montero JA, Flores-Moreno I, Arias L, García-Layana A, Ruiz-Moreno JM. Myopic maculopathy: Current status and proposal for a new classification and grading system (ATN). Prog Retin Eye Res 2019; 69:80-115. [PMID: 30391362 DOI: 10.1016/j.preteyeres.2018.10.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/09/2023]
Abstract
Myopia is a highly frequent ocular disorder worldwide and pathologic myopia is the 4th most common cause of irreversible blindness in developed countries. Pathologic myopia is especially common in East Asian countries. Ocular alterations associated with pathologic myopia, especially those involving the macular area-defined as myopic maculopathy-are the leading causes of vision loss in patients with pathologic myopia. High myopia is defined as the presence of a highly negative refractive error (>-6 to -8 diopters) in the context of eye elongation (26-26.5 mm). Although the terms high myopia and pathologic myopia are often used interchangeably, they do not refer to the same eye disease. The two key factors driving the development of pathologic myopia are: 1) elongation of the axial length and 2) posterior staphyloma. The presence of posterior staphyloma, which is the most common finding in patients with pathologic myopia, is the key differentiating factor between high and pathologic myopia. The occurrence of staphyloma will, in most cases, eventually lead to other conditions such as atrophic, traction, or neovascular maculopathy. Posterior staphyloma is for instance, responsible for the differences between a myopic macular hole (MH)-with and without retinal detachment-and idiopathic MH. Posterior staphyloma typically induces retinal layer splitting, leading to foveoschisis in myopic MH, an important differentiating factor between myopic and emmetropic MH. Myopic maculopathy is a highly complex disease and current classification systems do not fully account for the numerous changes that occur in the macula of these patients. Therefore, a more comprehensive classification system is needed, for several important reasons. First, to more precisely define the disease stage to improve follow-up by enabling clinicians to more accurately monitor changes over time, which is essential given the progressive nature of this condition. Second, unification of the currently-available classification systems would establish standardized classification criteria that could be used to compare the findings from international multicentric studies. Finally, a more comprehensive classification system could help to improve our understanding of the genetic origins of this disease, which is clearly relevant given the interchangeable-but erroneous-use of the terms high and pathologic myopia in genetic research.
Collapse
Affiliation(s)
- Jorge Ruiz-Medrano
- Department of Ophthalmology, Bellvitge University Hospital, Barcelona, Spain
| | - Javier A Montero
- Department of Ophthalmology, Rio Hortega University Hospital, Valladolid, Spain; Red Temática de Investigación Cooperativa en Salud: ""Prevención, detección precoz, y tratamiento de la patología ocular prevalente, degenerativa y crónica" (RD16/0008/0021), Spanish Ministry of Health, Instituto de Salud Carlos III, Spain; Retina Unit, Oftalvist, Madrid, Spain
| | | | - Luis Arias
- Department of Ophthalmology, Bellvitge University Hospital, Barcelona, Spain
| | - Alfredo García-Layana
- Red Temática de Investigación Cooperativa en Salud: ""Prevención, detección precoz, y tratamiento de la patología ocular prevalente, degenerativa y crónica" (RD16/0008/0021), Spanish Ministry of Health, Instituto de Salud Carlos III, Spain; Department of Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain
| | - José M Ruiz-Moreno
- Red Temática de Investigación Cooperativa en Salud: ""Prevención, detección precoz, y tratamiento de la patología ocular prevalente, degenerativa y crónica" (RD16/0008/0021), Spanish Ministry of Health, Instituto de Salud Carlos III, Spain; Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain; Department of Ophthalmology, Castilla La Mancha University, Albacete, Spain; Vissum Corporation, Spain.
| |
Collapse
|
14
|
Affiliation(s)
- David C. Paik
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Stephen L. Trokel
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Leejee H. Suh
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| |
Collapse
|
15
|
Rapuano PB, Scanameo AH, Amponin DE, Paulose SA, Zyablitskaya M, Takaoka A, Suh LH, Nagasaki T, Trokel SL, Paik DC. Antimicrobial Studies Using the Therapeutic Tissue Cross-Linking Agent, Sodium Hydroxymethylglycinate: Implication for Treating Infectious Keratitis. Invest Ophthalmol Vis Sci 2018; 59:332-337. [PMID: 29346493 PMCID: PMC5774256 DOI: 10.1167/iovs.17-23111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Our recent studies raise the possibility of using sodium hydroxymethylglycinate (SMG), for pharmacologic therapeutic tissue cross-linking (TXL) of the cornea. The present study was performed to evaluate the antimicrobial effects of SMG for potential use in treating infectious keratitis. Methods In initial (group 1) experiments, methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa (PA) were treated with SMG (10–40 mM) for 10 to 120 minutes. In group 2 experiments, MRSA, PA, Candida albicans (CA), and vancomycin-resistant Enterococcus (VRE) were treated with SMG (20–200 mM) for 30 minutes. In group 2 experiments, BSA and neutralizing buffer were added to provide a proteinaceous medium, and to ensure precise control of SMG exposure times, respectively. SMG effectiveness was quantitated based on pathogen growth following a 24- to 48-hour incubation period. Results In group 1 experiments, as expected, time- and concentration-dependent bactericidal effects were noted using MSSA. In addition, the effect of SMG (40 mM) was greatest against MSSA (99.3%), MRSA (96.0%), and PA (97.4%) following a 2-hour exposure with lesser effects following 30- and 10-minute exposures. In group 2 experiments, concentration-dependent bactericidal effects were confirmed for MRSA (91%), PA (99%), and VRE (55%) for 200-mM SMG with 30-minute treatment. SMG was not as effective against CA, with a maximum kill rate of 37% at 80 mM SMG. Conclusions SMG solution exhibits a dose-dependent bactericidal effect on MSSA, MRSA, and PA, with milder effects on VRE and CA. These studies raise the possibility of using SMG TXL for the treatment of infectious keratitis.
Collapse
Affiliation(s)
- Patrick B Rapuano
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Alexandra H Scanameo
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Daeryl E Amponin
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Sefy A Paulose
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Mariya Zyablitskaya
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Anna Takaoka
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Leejee H Suh
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Stephen L Trokel
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - David C Paik
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| |
Collapse
|
16
|
Qian X, Ma T, Shih CC, Heur M, Zhang J, Shung KK, Varma R, Humayun MS, Zhou Q. Ultrasonic Microelastography to Assess Biomechanical Properties of the Cornea. IEEE Trans Biomed Eng 2018; 66:647-655. [PMID: 29993484 DOI: 10.1109/tbme.2018.2853571] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To both qualitatively and quantitatively investigate corneal biomechanical properties through an ultrasonic microelastography imaging system, which is potentially useful in the diagnosis of diseases, such as keratoconus, postrefractive keratectasia, and tracking treatment such as cross-linking surgery. METHODS Our imaging system has a dual-frequency configuration, including a 4.5 MHz ring transducer to push the tissue and a confocally aligned 40 MHz needle transducer to track micron-level displacement. Two-dimensional/three-dimensional acoustic radiation force impulse (ARFI) imaging and Young's modulus in the region of interest were performed on ex vivo porcine corneas that were either cross-linked using formalin solution or preloaded with intraocular pressure (IOPs) from 5 to 30 mmHg. RESULTS The increase of corneal stiffness and the change in cross-linked volume following formalin crosslinking could be precisely observed in the ARFI images and reflected by the reconstructed Young's modulus while the B-mode structural images remained almost unchanged. In addition, the relationship between the stiffness of the cornea and IOPs was investigated among 12 porcine corneas. The corneal stiffness is significantly different at various IOPs and has a tendency to become stiffer with increasing IOP. CONCLUSION Our results demonstrate the principle of using ultrasonic microelastography techniques to image the biomechanical properties of the cornea. Integrating high-resolution ARFI imaging labeled with reconstructed Young's modulus and structural imaging of the cornea can potentially lead to a routinely performed imaging modality in the field of ophthalmology.
Collapse
|
17
|
Zyablitskaya M, Munteanu EL, Nagasaki T, Paik DC. Second Harmonic Generation Signals in Rabbit Sclera As a Tool for Evaluation of Therapeutic Tissue Cross-linking (TXL) for Myopia. J Vis Exp 2018. [PMID: 29364259 DOI: 10.3791/56385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methods to strengthen tissue by introducing chemical bonds (non-enzymatic cross-linking) into structural proteins (fibrillar collagens) for therapy include photochemical cross-linking and tissue cross-linking (TXL) methods. Such methods for inducing mechanical tissue property changes are being employed to the cornea in corneal thinning (mechanically weakened) disorders such as keratoconus as well as the sclera in progressive myopia, where thinning and weakening of the posterior sclera occurs and likely contributes to axial elongation. The primary target proteins for such tissue strengthening are fibrillar collagens which constitute the great majority of dry weight proteins in the cornea and sclera. Fortuitously, fibrillar collagens are the main source of second harmonic generation signals in the tissue extracellular space. Therefore, modifications of the collagen proteins, such as those induced through cross-linking therapies, could potentially be detected and quantitated through the use of second harmonic generation microscopy (SHGM). Monitoring SHGM signals through the use of a laser scanning microscopy system coupled with an infrared excitation light source is an exciting modern imaging method that is enjoying widespread usage in the biomedical sciences. Thus, the present study was undertaken in order to evaluate the use of SHGM microscopy as a means to measure induced cross-linking effects in ex vivo rabbit sclera, following an injection of a chemical cross-linking agent into the sub-Tenon's space (sT), an injection approach that is standard practice for causing ocular anesthesia during ophthalmologic clinical procedures. The chemical cross-linking agent, sodium hydroxymethylglycinate (SMG), is from a class of cosmetic preservatives known as formaldehyde releasing agents (FARs). Scleral changes following reaction with SMG resulted in increases in SHG signals and correlated with shifts in thermal denaturation temperature, a standard method for evaluating induced tissue cross-linking effects.
Collapse
Affiliation(s)
- Mariya Zyablitskaya
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons
| | - E Laura Munteanu
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons
| | - David C Paik
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons;
| |
Collapse
|
18
|
Zyablitskaya M, Takaoka A, Munteanu EL, Nagasaki T, Trokel SL, Paik DC. Evaluation of Therapeutic Tissue Crosslinking (TXL) for Myopia Using Second Harmonic Generation Signal Microscopy in Rabbit Sclera. Invest Ophthalmol Vis Sci 2017; 58:21-29. [PMID: 28055099 PMCID: PMC5225996 DOI: 10.1167/iovs.16-20241] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose Second harmonic generation signals (SHG) are emitted preferentially from collagenous tissue structures and have been used to evaluate photochemically-induced (CXL) crosslinking changes in the cornea. Since therapeutic tissue crosslinking (TXL) using sodium hydroxymethylglycinate (SMG) of the sclera is a potential treatment for high myopia, we explored the use of SHG microscopy to evaluate the effects. Methods Single sub-Tenon's (sT) injections (400 μL) using SMG (40-400 mM) were made at the equatorial 12 o'clock position of the right eye of cadaveric rabbit heads (n = 16 pairs). After 3.5 hours, confocal microscopy (CM) was performed using 860 nm two-photon excitation and 400 to 450 nm emission. Pixel density and fiber bundle "waviness" analyses were performed on the images. Crosslinking effects were confirmed using thermal denaturation (Tm) temperature. Comparison experiments with riboflavin photochemical crosslinking were done. Results Therapeutic tissue crosslinking localization studies indicated that crosslinking changes occurred at the site of injection and in adjacent sectors. Second harmonic generation signals revealed large fibrous collagenous bundled structures that displayed various degrees of waviness. Histogram analysis showed a nearly 6-fold signal increase in 400 mM SMG over 40 mM. This corresponded to a ΔTm = 13°C for 400 mM versus ΔTm = 4°C for 40 mM. Waviness analysis indicated increased fiber straightening as a result of SMG CXL. Conclusions Second harmonic generation signal intensity and fiber bundle waviness is altered by scleral tissue crosslinking using SMG. These changes provide insights into the macromolecular changes that are induced by therapeutic crosslinking technology and may provide a method to evaluate connective tissue protein changes induced by scleral crosslinking therapies.
Collapse
Affiliation(s)
- Mariya Zyablitskaya
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Anna Takaoka
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Emilia L Munteanu
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Stephen L Trokel
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - David C Paik
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| |
Collapse
|
19
|
Evaluating the Toxicity/Fixation Balance for Corneal Cross-Linking With Sodium Hydroxymethylglycinate (SMG) and Riboflavin-UVA (CXL) in an Ex Vivo Rabbit Model Using Confocal Laser Scanning Fluorescence Microscopy. Cornea 2016; 35:550-6. [PMID: 26807905 DOI: 10.1097/ico.0000000000000743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To develop methods to delineate the relationship between endothelial cell toxicity and tissue fixation (toxicity/fixation) using sodium hydroxymethylglycinate (SMG), a formaldehyde releaser, and riboflavin-UVA photochemical corneal cross-linking (CXL) for therapeutic tissue cross-linking of the cornea. METHODS Eleven fresh cadaveric rabbit heads were used for ex vivo corneal cross-linking simulation. After epithelial debridement, the tissue was exposed to 1/4 max (9.8 mM) or 1/3 max (13 mM) SMG at pH 8.5 for 30 minutes or riboflavin-UVA (CXL). The contralateral cornea served as a paired control. Postexposure, cross-linking efficacy was determined by thermal denaturation temperature (Tm) and endothelial damage was assessed using calcein AM and ethidium homodimer staining (The Live/Dead Kit). Confocal laser scanning fluorescence microscopy was used to generate live/dead cell counts using a standardized algorithm. RESULTS The ΔTm after CXL, 1/3 SMG, and 1/4 SMG was 2.2 ± 0.9°C, 1.3 ± 0.5°C, and 1.1 ± 0.5°C, respectively. Endothelial cell damage was expressed as the percent of dead cells/live + dead cells counted per high-power field. The values were 3 ± 1.7% (control) and 8.9 ± 11.1% (CXL) (P = 0.390); 1 ± 0.2% (control) and 19.5 ± 32.2% (1/3 max SMG) (P = 0.426); and 2.7 ± 2.4% (control) and 2.8 ± 2.2% (1/4 max SMG) (P = 0.938). The values for endothelial toxicity were then indexed over the shift in Tm to yield a toxicity/fixation index. The values were as follows: 2.7 for CXL, 14 for 1/3 max, and 0.1 for 1/4 max. CONCLUSIONS Quarter max (1/4 max = 9.8 mM) SMG effectively cross-linked tissue and was nontoxic to endothelial cells. Thus, SMG is potentially a compound that could achieve both desired effects.
Collapse
|
20
|
Takaoka A, Babar N, Hogan J, Kim M, Price MO, Price FW, Trokel SL, Paik DC. An Evaluation of Lysyl Oxidase-Derived Cross-Linking in Keratoconus by Liquid Chromatography/Mass Spectrometry. Invest Ophthalmol Vis Sci 2016; 57:126-36. [PMID: 26780316 PMCID: PMC4727527 DOI: 10.1167/iovs.15-18105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Current literature contains scant information regarding the extent of enzymatic collagen cross-linking in the keratoconus (KC) cornea. The aim of the present study was to examine levels of enzymatic lysyl oxidase–derived cross-links in stromal collagen in KC tissue, and to correlate the cross-link levels with collagen fibril stability as determined by thermal denaturation temperature (Tm). Methods Surgical KC samples (n = 17) and Eye-Bank control (n = 11) corneas of age 18 to 68 years were analyzed. The samples were defatted, reduced (NaBH4), hydrolyzed (6N HCl at 110°C for 18 hours), and cellulose enriched before analysis by C8 high-performance liquid chromatography equipped with parallel fluorescent and mass detectors in selective ion monitoring mode (20 mM heptafluorobutyric acid/methanol 70:30 isocratic at 1 mL/min). Nine different cross-links were measured, and the cross-link density was determined relative to collagen content (determined colorimetrically). The Tm was determined by differential scanning calorimetry. Results Cross-links detected were dihydroxylysinonorleucine (DHLNL), hydroxylysinonorleucine, lysinonorleucine (LNL), and histidinohydroxylysinonorleucine in both control and KC samples. Higher DHLNL levels were detected in KC, whereas the dominant cross-link, LNL, was decreased in KC samples. Decreased LNL levels were observed among KC ≤ 40 corneas. There was no difference in total cross-link density between KC samples and the controls. Pyridinolines, desmosines, and pentosidine were not detected. There was no notable correlation between cross-link levels with fibril instability as determined by Tm. Conclusions Lower levels of LNL in the KC cornea suggest that there might be a cross-linking defect either in fibrillar collagen or the microfibrillar elastic network composed of fibrillin.
Collapse
Affiliation(s)
- Anna Takaoka
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Natasha Babar
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Julia Hogan
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - MiJung Kim
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Marianne O Price
- The Cornea Research Foundation of America, Indianapolis, Indiana, United States
| | | | - Stephen L Trokel
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - David C Paik
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| |
Collapse
|
21
|
|