1
|
Müller PL, Treis T, Tufail A, Holz FG. Progression, reliability, predicting parameters and sample size calculations for quantitative fundus autofluorescence measures in ABCA4-related retinopathy. Br J Ophthalmol 2024; 108:760-769. [PMID: 37286357 DOI: 10.1136/bjo-2022-322829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND/AIMS To investigate the progression of quantitative autofluorescence (qAF) measures and the potential as clinical trial endpoint in ABCA4-related retinopathy. METHODS In this longitudinal monocentre study, 64 patients with ABCA4-related retinopathy (age (mean±SD), 34.84±16.36 years) underwent serial retinal imaging, including optical coherence tomography (OCT) and qAF (488 nm excitation) imaging using a modified confocal scanning laser ophthalmoscope with a mean (±SD) review period of 20.32±10.90 months. A group of 110 healthy subjects served as controls. Retest variability, changes of qAF measures over time and its association with genotype and phenotype were analysed. Furthermore, individual prognostic feature importance was assessed, and sample size calculations for future interventional trials were performed. RESULTS Compared with controls, qAF levels of patients were significantly elevated. The test-retest reliability revealed a 95% coefficient of repeatability of 20.37. During the observation time, young patients, patients with a mild phenotype (morphological and functional) and patients with mild mutations showed an absolute and relative increase in qAF values, while patients with advanced disease manifestation (morphological and functional), and homozygous mutations at adulthood revealed a decrease in qAF. Considering these parameters, required sample size and study duration could significantly be reduced. CONCLUSION Under standardised settings with elaborated conditions towards operators and analysis to counterbalance variability, qAF imaging might be reliable, suitable for quantifying disease progression and constitutes a potential clinical surrogate marker in ABCA4-related retinopathy. Trial design based on patients' baseline characteristics and genotype has the potential to provide benefits regarding required cohort size and absolute number of visits.
Collapse
Affiliation(s)
- Philipp L Müller
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Makula Center, Südblick Eye Centers, Augsburg, Germany
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany
| | - Tim Treis
- German Cancer Research Center, Heidelberg, Germany
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Frank G Holz
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany
| |
Collapse
|
2
|
von der Emde L, Mallwitz M, Vaisband M, Hasenauer J, Saßmannshausen M, Terheyden JH, Sloan KR, Schmitz-Valckenberg S, Finger RP, Holz FG, Ach T. Retest variability and patient reliability indices of quantitative fundus autofluorescence in age-related macular degeneration: a MACUSTAR study report. Sci Rep 2023; 13:17417. [PMID: 37833348 PMCID: PMC10576044 DOI: 10.1038/s41598-023-43417-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to determine the retest variability of quantitative fundus autofluorescence (QAF) in patients with and without age-related macular degeneration (AMD) and evaluate the predictive value of patient reliability indices on retest reliability. A total of 132 eyes from 68 patients were examined, including healthy individuals and those with various stages of AMD. Duplicate QAF imaging was conducted at baseline and 2 weeks later across six study sites. Intraclass correlation (ICC) analysis was used to evaluate the consistency of imaging, and mean opinion scores (MOS) of image quality were generated by two researchers. The contribution of MOS and other factors to retest variation was assessed using mixed-effect linear models. Additionally, a Random Forest Regressor was trained to evaluate the extent to which manual image grading of image quality could be replaced by automated assessment (inferred MOS). The results showed that ICC values were high for all QAF images, with slightly lower values in AMD-affected eyes. The average inter-day ICC was found to be 0.77 for QAF segments within the QAF8 ring and 0.74 for peripheral segments. Image quality was predicted with a mean absolute error of 0.27 on a 5-point scale, and of all evaluated reliability indices, MOS/inferred MOS proved most important. The findings suggest that QAF allows for reliable testing of autofluorescence levels at the posterior pole in patients with AMD in a multicenter, multioperator setting. Patient reliability indices could serve as eligibility criteria for clinical trials, helping identify patients with adequate retest reliability.
Collapse
Affiliation(s)
- Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Merten Mallwitz
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Marc Vaisband
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - Jan Hasenauer
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Marlene Saßmannshausen
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Jan Henrik Terheyden
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Alabama, AL, USA
| | | | - Robert P Finger
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Dhooge PPA, Möller PT, Meland N, Stingl K, Boon CJF, Lotery AJ, Parodi MB, Herrmann P, Klein W, Fsadni MG, Wheeler-Schilling TH, Holz FG, Hoyng CB, Schmitz-Valckenberg S. Repeatability of Quantitative Autofluorescence Imaging in a Multicenter Study Involving Patients With Recessive Stargardt Disease 1. Transl Vis Sci Technol 2023; 12:1. [PMID: 36723966 PMCID: PMC9904328 DOI: 10.1167/tvst.12.2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/29/2022] [Indexed: 02/02/2023] Open
Abstract
Purpose This study assesses the repeatability of quantitative autofluorescence (qAF) in a multicenter setting and evaluates qAF as the end point for clinical trials in recessive Stargardt disease 1 (STGD1). Methods A total of 102 patients with STGD1 underwent qAF imaging as part of the Stargardt Remofuscin Treatment Trial (STARTT; EudraCT No. 2018-001496-20). For 166 eyes, we obtained qAF imaging at 2 visits, with 2 recordings per visit. The qAF8 values were independently determined by the study site and a central reading center. Intra- and inter-visit reproducibility, as well as interobserver (study site versus reading center) reproducibility were obtained using intraclass correlation (ICC), one-sample t-test, and Bland-Altman coefficient of repeatability. Results The qAF repeatability was ± 26.1% for intra-visit, ± 40.5% for inter-visit, and ± 20.2% for the interobserver reproducibility measures. Intra-visit repeatability was good to excellent for all sites (ICC of 0.88-0.96). Variability between visits was higher with an overall ICC of 0.76 (0.69-0.81). We observed no significant difference in qAF values across sites between visits (7.06 ± 93.33, P = 0.238). Conclusions Real-life test-retest variability of qAF is higher in this set of data than previously reported in single center settings. With improved operator training and by selecting the better of two recordings for evaluation, qAF serves as a useful method for assessing changes in autofluorescence signal. Translational Relevance The qAF can be adopted as a clinical trial end point, but steps to counterbalance variability should be considered.
Collapse
Affiliation(s)
- Patty P. A. Dhooge
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Philipp T. Möller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Nils Meland
- SMERUD Medical Research International AS, Thunes vei 2, Oslo, Norway
| | - Katarina Stingl
- Univeristy Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | | | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | - Mario G. Fsadni
- Katairo GmbH, Kusterdingen, Germany
- International Pharm-Med Ltd., Bramhall, UK
| | | | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - for the Soraprazan Consortium
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
- Univeristy Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
- SMERUD Medical Research International AS, Thunes vei 2, Oslo, Norway
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Ophthalmology, Ospedale San Raffaele, Milano, Italy
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
- Katairo GmbH, Kusterdingen, Germany
- International Pharm-Med Ltd., Bramhall, UK
- Center for Ophthalmology and Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules 2021; 11:1179. [PMID: 34439845 PMCID: PMC8393614 DOI: 10.3390/biom11081179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being the most prevalent cause of inherited blindness in children, Stargardt disease is yet to achieve the same clinical trial success as has been achieved for other inherited retinal diseases. With an early age of onset and continual progression of disease over the life course of an individual, Stargardt disease appears to lend itself to therapeutic intervention. However, the aetiology provides issues not encountered with the likes of choroideremia and X-linked retinitis pigmentosa and this has led to a spectrum of treatment strategies that approach the problem from different aspects. These include therapeutics ranging from small molecules and anti-sense oligonucleotides to viral gene supplementation and cell replacement. The advancing development of CRISPR-based molecular tools is also likely to contribute to future therapies by way of genome editing. In this we review, we consider the most recent pre-clinical and clinical trial data relating to the different strategies being applied to the problem of generating a treatment for the large cohort of Stargardt disease patients worldwide.
Collapse
Affiliation(s)
- Elena Piotter
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
INVESTIGATING A GROWTH PREDICTION MODEL IN ADVANCED AGE-RELATED MACULAR DEGENERATION WITH SOLITARY GEOGRAPHIC ATROPHY USING QUANTITATIVE AUTOFLUORESCENCE. Retina 2021; 40:1657-1664. [PMID: 31584560 DOI: 10.1097/iae.0000000000002653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To investigate geographic atrophy (GA) progression using quantitative autofluorescence (qAF) in eyes with solitary GA. METHODS Forty-three eyes of 26 patients (age 79.7 ± 7.2 years; 28 women; 16 pseudophakic) underwent spectral-domain optical coherence tomography and qAF imaging at baseline and after 12 months. The junctional zone (AJZ) and a nonaffected 300-µm-wide control area (AC) were delineated on spectral-domain optical coherence tomography scans and transferred to the qAF image. Linear mixed models were calculated to investigate the association between GA progression and qAF, age, and baseline GA area. Mixed model analyses of variance were used to investigate differences in qAF between areas. RESULTS Quantitative autofluorescence of the three inferior sections of both the AJZ (P = 0.028; P = 0.014 and P = 0.032) and the AC (P = 0.043; P = 0.02 and P = 0.028) were significantly associated with GA progression after 12 months. However, qAF measurements were not associated with GA progression in the overall model (P > 0.05). Mean qAF was significantly lower in the AJZ and growth area (AG12) than in the AC (both P ≤ 0.001). CONCLUSION The authors report a statistically significant association between GA growth area and qAF measurements at specific retinal locations and a significant difference in qAF between the GA border and unaffected areas outside the lesion. Quantitative autofluorescence measurements may be limitedly useful for predicting GA progression.
Collapse
|
6
|
Deitch I, Ferenchak K, Miller JB. Quantitative autofluorescence: Review of Current Technical Aspects and Applications in Chorioretinal Disease. Semin Ophthalmol 2021; 36:346-350. [PMID: 33818290 DOI: 10.1080/08820538.2021.1908570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: In this review we discuss the broad clinical application of qAF and provide a descriptive summary of the phenotypic findings of different chorioretinal pathologies.Background: Quantitative Fundus autofluorescence (qAF) is a novel developing technology that can aid in diagnosis and longitudinal disease monitoring by measuring and comparing autofluorescence intensities. Fundus autofluorescence (FAF) is a noninvasive imaging method that creates a density map of the fluorophores of the ocular fundus and provides both functional and topographic anatomic information about retinal cells. Fluorophores are molecules that have the ability to temporarily absorb irradiated light, and emit a small amount of light of a different wavelength. Different endogenous fluorophores can be found in the ocular fundus. Changes in accumulation of retinal fluorophores usually indicate retinal pathology and create characteristic patterns of hyper-autofluorescence and hypo-autofluorescence that help establish a diagnosis.Conclusion: qAF allows a safe non-invasive visualization of the retina, enables a standard for AF intensities comparison and aids to the understanding of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Iris Deitch
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| | - Kevin Ferenchak
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| | - John B Miller
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Camp DA, Gemayel MC, Ciulla TA. Understanding the genetic pathology of Stargardt disease: a review of current findings and challenges. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1898373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Camp
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael C. Gemayel
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
8
|
Schmitz-Valckenberg S, Pfau M, Fleckenstein M, Staurenghi G, Sparrow JR, Bindewald-Wittich A, Spaide RF, Wolf S, Sadda SR, Holz FG. Fundus autofluorescence imaging. Prog Retin Eye Res 2021; 81:100893. [PMID: 32758681 DOI: 10.1016/j.preteyeres.2020.100893] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Fundus autofluorescence (FAF) imaging is an in vivo imaging method that allows for topographic mapping of naturally or pathologically occurring intrinsic fluorophores of the ocular fundus. The dominant sources are fluorophores accumulating as lipofuscin in lysosomal storage bodies in postmitotic retinal pigment epithelium cells as well as other fluorophores that may occur with disease in the outer retina and subretinal space. Photopigments of the photoreceptor outer segments as well as macular pigment and melanin at the fovea and parafovea may act as filters of the excitation light. FAF imaging has been shown to be useful with regard to understanding of pathophysiological mechanisms, diagnostics, phenotype-genotype correlation, identification of prognostic markers for disease progression, and novel outcome parameters to assess efficacy of interventional strategies in chorio-retinal diseases. More recently, the spectrum of FAF imaging has been expanded with increasing use of green in addition to blue FAF, introduction of spectrally-resolved FAF, near-infrared FAF, quantitative FAF imaging and fluorescence life time imaging (FLIO). This article gives an overview of basic principles, FAF findings in various retinal diseases and an update on recent developments.
Collapse
Affiliation(s)
- Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, USA
| | | | - Giovanni Staurenghi
- Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital University of Milan, Italy
| | - Janet R Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Almut Bindewald-Wittich
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Augenheilkunde Heidenheim MVZ, Heidenheim, Germany
| | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Müller PL, Gliem M, McGuinnes M, Birtel J, Holz FG, Charbel Issa P. Quantitative Fundus Autofluorescence in ABCA4-Related Retinopathy -Functional Relevance and Genotype-Phenotype Correlation. Am J Ophthalmol 2021; 222:340-350. [PMID: 32891696 DOI: 10.1016/j.ajo.2020.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate lipofuscin-related quantitative autofluorescence measures and their association with demographic characteristics, retinal structure, retinal function and genotype in ABCA4-related retinopathy (Stargardt disease 1). DESIGN Cross-sectional study with age-matched healthy control subjects. METHODS A total of 77 patients with ABCA4-related retinopathy and 110 control subjects underwent quantitative fundus autofluorescence (qAF) imaging using a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to measure qAF as surrogate for lipofuscin accumulation. Measures of qAF were correlated with demographic characteristics, structural alterations on optical coherence tomography and fundus autofluorescence imaging, retinal function assessed by full-field electroretinography (ERG) and fundus-controlled perimetry, and genotype. RESULTS Most patients (76.6%) had qAF levels >95% prediction interval of the age-related control group, with best discrimination between cases and control subjects in younger patients. Reduced discrimination based on qAF measures was associated with mild disease, more advanced disease with dark flecks, or older age because of the physiological age-related increase in qAF and a ceiling effect in patients. Nullizygous patients presented with high qAF levels earlier in life compared with those with at least 1 milder ABCA4 variant. Within the sectors of qAF measurements, at approximately 7-9° eccentricity, increased qAF without flecks or with only bright flecks was associated with topographically related preserved retinal thickness and fundus-controlled perimetry results, and with normal full-field ERG recordings. All 3 parameters were increasingly abnormal with the development of dark flecks and decreasing qAF. CONCLUSIONS The accumulation of lipofuscin depends on the severity of ABCA4 variants, precedes other structural changes, and may remain without clinically relevant effect on retinal function.
Collapse
|
10
|
Inferred retinal sensitivity in recessive Stargardt disease using machine learning. Sci Rep 2021; 11:1466. [PMID: 33446864 PMCID: PMC7809282 DOI: 10.1038/s41598-020-80766-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Spatially-resolved retinal function can be measured by psychophysical testing like fundus-controlled perimetry (FCP or 'microperimetry'). It may serve as a performance outcome measure in emerging interventional clinical trials for macular diseases as requested by regulatory agencies. As FCP constitute laborious examinations, we have evaluated a machine-learning-based approach to predict spatially-resolved retinal function ('inferred sensitivity') based on microstructural imaging (obtained by spectral domain optical coherence tomography) and patient data in recessive Stargardt disease. Using nested cross-validation, prediction accuracies of (mean absolute error, MAE [95% CI]) 4.74 dB [4.48-4.99] were achieved. After additional inclusion of limited FCP data, the latter reached 3.89 dB [3.67-4.10] comparable to the test-retest MAE estimate of 3.51 dB [3.11-3.91]. Analysis of the permutation importance revealed, that the IS&OS and RPE thickness were the most important features for the prediction of retinal sensitivity. 'Inferred sensitivity', herein, enables to accurately estimate differential effects of retinal microstructure on spatially-resolved function in Stargardt disease, and might be used as quasi-functional surrogate marker for a refined and time-efficient investigation of possible functionally relevant treatment effects or disease progression.
Collapse
|
11
|
Al-Khuzaei S, Shah M, Foster CR, Yu J, Broadgate S, Halford S, Downes SM. The role of multimodal imaging and vision function testing in ABCA4-related retinopathies and their relevance to future therapeutic interventions. Ther Adv Ophthalmol 2021; 13:25158414211056384. [PMID: 34988368 PMCID: PMC8721514 DOI: 10.1177/25158414211056384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this review article is to describe the specific features of Stargardt disease and ABCA4 retinopathies (ABCA4R) using multimodal imaging and functional testing and to highlight their relevance to potential therapeutic interventions. Standardised measures of tissue loss, tissue function and rate of change over time using formal structured deep phenotyping in Stargardt disease and ABCA4R are key in diagnosis, and prognosis as well as when selecting cohorts for therapeutic intervention. In addition, a meticulous documentation of natural history will be invaluable in the future to compare treated with untreated retinas. Despite the familiarity with the term Stargardt disease, this eponymous classification alone is unhelpful when evaluating ABCA4R, as the ABCA4 gene is associated with a number of phenotypes, and a range of severity. Multimodal imaging, psychophysical and electrophysiologic measurements are necessary in diagnosing and characterising these differing retinopathies. A wide range of retinal dystrophy phenotypes are seen in association with ABCA4 mutations. In this article, these will be referred to as ABCA4R. These different phenotypes and the existence of phenocopies present a significant challenge to the clinician. Careful phenotypic characterisation coupled with the genotype enables the clinician to provide an accurate diagnosis, associated inheritance pattern and information regarding prognosis and management. This is particularly relevant now for recruiting to therapeutic trials, and in the future when therapies become available. The importance of accurate genotype-phenotype correlation studies cannot be overemphasised. This approach together with segregation studies can be vital in the identification of causal mutations when variants in more than one gene are being considered as possible. In this article, we give an overview of the current imaging, psychophysical and electrophysiological investigations, as well as current therapeutic research trials for retinopathies associated with the ABCA4 gene.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | | | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
12
|
Vujosevic S, Toma C, Nucci P, Brambilla M, De Cillà S. Quantitative Color Fundus Autofluorescence in Patients with Diabetes Mellitus. J Clin Med 2020; 10:E48. [PMID: 33375699 PMCID: PMC7796312 DOI: 10.3390/jcm10010048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 01/09/2023] Open
Abstract
A new short wavelength confocal blue-light 450 nm-fundus autofluorescence (color-FAF) allows for visualization of minor fluorophores (e.g., advanced glycation end products, AGEs), besides lipofuscin. The aim of the present pilot study was to quantitatively evaluate color-FAF in patients with diabetes mellitus (DM) and to correlate these data with different stages of retinal disease severity. Optical coherence tomography and color-FAF images of 193 patients/eyes and 18 controls were analyzed using a custom software for quantification of the long (red) and short (green) wavelength components of the emission spectrum (REFC/GEFC). Measurements were performed in nine quadrants of the 6-mm ETDRS macular grid. Foveal GEFC and REFC intensities were higher in patients with DM compared to controls (p = 0.015 and p = 0.006 respectively) and in eyes with center involving diabetic macular edema (DME) compared to eyes without DME (p < 0.001). A positive correlation was found between GEFC and REFC intensities and central retinal thickness, r = 0.37 (p < 0.001) and r = 0.42 (p < 0.001), respectively. No differences were found in color-FAF among different DR severity groups. Quantitative color-FAF could become helpful for the metabolic evaluation of retina in patients with DM and in DME; however, further histologic and immunohistochemical studies on distribution of different retinal fluorophores in DM are needed to better understand its role.
Collapse
Affiliation(s)
- Stela Vujosevic
- Eye Clinic, IRCCS MultiMedica, 20123 Milan, Italy
- University Hospital Maggiore della Carità, Eye Clinic, 28100 Novara, Italy; (C.T.); (S.D.C.)
| | - Caterina Toma
- University Hospital Maggiore della Carità, Eye Clinic, 28100 Novara, Italy; (C.T.); (S.D.C.)
| | - Paolo Nucci
- Department of Clinical Sciences and Community Health, University of Milan, 20123 Milan, Italy;
| | - Marco Brambilla
- Department of Medical Physics, University Hospital Maggiore della Carità, 28100 Novara, Italy;
| | - Stefano De Cillà
- University Hospital Maggiore della Carità, Eye Clinic, 28100 Novara, Italy; (C.T.); (S.D.C.)
- Department of Health Sciences, University East Piedmont “A. Avogadro”, 28100 Novara, Italy
| |
Collapse
|
13
|
Müller PL, Pfau M, Treis T, Pascual-Camps I, Birtel J, Lindner M, Herrmann P, Holz FG. PROGRESSION OF ABCA4-RELATED RETINOPATHY: Prognostic value of demographic, functional, genetic, and imaging parameters. Retina 2020; 40:2343-2356. [PMID: 33214501 DOI: 10.1097/iae.0000000000002747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the prognostic value of demographic, functional, genetic, and imaging parameters on retinal pigment epithelium atrophy progression secondary to ABCA4-related retinopathy. METHODS Patients with retinal pigment epithelium atrophy secondary to ABCA4-related retinopathy were examined longitudinally with fundus autofluorescence imaging. Lesion area, perimeter, circularity, caliper diameters, and focality of areas with definitely decreased autofluorescence were determined. A model was used to predict the lesion enlargement rate based on baseline variables. Sample size calculations were performed to model the power in a simulated interventional study. RESULTS Sixty-eight eyes of 37 patients (age range, 14-78 years) with a follow-up time of 10 to 100 months were included. The mean annual progression of retinal pigment epithelium atrophy was 0.89 mm. The number of atrophic areas, the retina-wide functional impairment, and the age-of-onset category constituted significant predictors for future retinal pigment epithelium atrophy growth, explaining 25.7% of the variability. By extension of a simulated study length and/or specific patient preselection based on these baseline characteristics, the required sample size could significantly be reduced. CONCLUSION Trial design based on specific shape-descriptive factors and patients' baseline characteristics and the adaption of the trial duration may provide potential benefits in required cohort size and absolute number of visits.
Collapse
Affiliation(s)
- Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Tim Treis
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | | | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Moritz Lindner
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Müller PL, Pfau M, Schmitz-Valckenberg S, Fleckenstein M, Holz FG. Optical Coherence Tomography-Angiography in Geographic Atrophy. Ophthalmologica 2020; 244:42-50. [PMID: 32772015 DOI: 10.1159/000510727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022]
Abstract
Geographic atrophy (GA) represents the non-exudative late stage of age-related macular degeneration and constitutes a leading cause of legal blindness in the developed world. It is characterized by areas of loss of outer retinal layers including photoreceptors, degeneration of the retinal pigment epithelium, and rarefication of the choriocapillaris. As all three layers are functionally connected, the precise temporal sequence and relative contribution of these layers towards the development and progression of GA is unclear. The advent of optical coherence tomography angiography (OCT-A) has allowed for three-dimensional visualization of retinal blood flow. Using OCT-A, recent studies have demonstrated that choriocapillaris flow alterations are particularly associated with the development of GA, exceed atrophy boundaries spatially, and are a prognostic factor for future GA progression. Furthermore, OCT-A may be helpful to differentiate GA from mimicking diseases. Evidence for a potential protective effect of specific forms of choroidal neovascularization in the context of GA has been reported. This article aims to give a comprehensive review of the current literature concerning the application of OCT-A in GA, and summarizes the opportunities and limitations with regard to pathophysiologic considerations, differential diagnosis, study design, and patient assessment.
Collapse
Affiliation(s)
- Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany, .,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom,
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Monika Fleckenstein
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Prediction of Function in ABCA4-Related Retinopathy Using Ensemble Machine Learning. J Clin Med 2020; 9:jcm9082428. [PMID: 32751377 PMCID: PMC7463567 DOI: 10.3390/jcm9082428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Full-field electroretinogram (ERG) and best corrected visual acuity (BCVA) measures have been shown to have prognostic value for recessive Stargardt disease (also called “ABCA4-related retinopathy”). These functional tests may serve as a performance-outcome-measure (PerfO) in emerging interventional clinical trials, but utility is limited by variability and patient burden. To address these limitations, an ensemble machine-learning-based approach was evaluated to differentiate patients from controls, and predict disease categories depending on ERG (‘inferred ERG’) and visual impairment (‘inferred visual impairment’) as well as BCVA values (‘inferred BCVA’) based on microstructural imaging (utilizing spectral-domain optical coherence tomography) and patient data. The accuracy for ‘inferred ERG’ and ‘inferred visual impairment’ was up to 99.53 ± 1.02%. Prediction of BCVA values (‘inferred BCVA’) achieved a precision of ±0.3LogMAR in up to 85.31% of eyes. Analysis of the permutation importance revealed that foveal status was the most important feature for BCVA prediction, while the thickness of outer nuclear layer and photoreceptor inner and outer segments as well as age of onset highly ranked for all predictions. ‘Inferred ERG’, ‘inferred visual impairment’, and ‘inferred BCVA’, herein, represent accurate estimates of differential functional effects of retinal microstructure, and offer quasi-functional parameters with the potential for a refined patient assessment, and investigation of potential future treatment effects or disease progression.
Collapse
|
16
|
Kleefeldt N, Bermond K, Tarau IS, Hillenkamp J, Berlin A, Sloan KR, Ach T. Quantitative Fundus Autofluorescence: Advanced Analysis Tools. Transl Vis Sci Technol 2020; 9:2. [PMID: 32855849 PMCID: PMC7422829 DOI: 10.1167/tvst.9.8.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/18/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose To use multimodal retinal images (including quantitative fundus autofluorescence [QAF]) for spectral-domain optical coherence tomography (SD-OCT)-based image registration and alignment. For each age decade of healthy adults, normative fine-grained QAF retinal maps are generated and advanced methods for QAF image analysis are applied. Methods Multimodal retinal images were obtained from 103 healthy subjects (age 19–77 years; unremarkable retina/macula, age-appropriate clear optic media). Custom written FIJI plugins enabled: (1) determination of the fovea in SD-OCT and the edge of the optic disc in infrared (IR) images; (2) alignment and superimposition of multimodal retinal images based on foveal and optic disc position; (3) plotting of normative QAF retinal maps for each decade; and (4) comparison of individual retinas with normative retinas of different decades using newly introduced analysis patterns (QAF97, freehand tool). Results SD-OCT based image registration enables easy image registration, alignment, and analysis of different modalities (QAF, IR, and SD-OCT here reported). In QAF, intensities significantly increase with age with two major inclines between the third/fourth and seventh/eighth decades. With aging, the parafoveal area of maximum QAF intensity slightly shifts from temporal-superior to temporal. Compared with standard QAF analysis, refined QAF analysis patterns reveal a more detailed analysis of QAF, especially in the diseased retina. Conclusions Age-related QAF normative retinal maps can be used to directly compare and classify individual's QAF intensities. Advanced QAF analysis tools will further help to interpret autofluorescence changes in normal aging and in the diseased retina in a multimodal imaging setting. Translational Relevance Advanced methods for QAF analysis link basic findings with clinical observations in normal aging and in the diseased macula.
Collapse
Affiliation(s)
- Nikolai Kleefeldt
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Bermond
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Ioana-Sandra Tarau
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Jost Hillenkamp
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Berlin
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Kenneth R Sloan
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Pfau M, Holz FG, Müller PL. Retinal light sensitivity as outcome measure in recessive Stargardt disease. Br J Ophthalmol 2020; 105:258-264. [PMID: 32345606 DOI: 10.1136/bjophthalmol-2020-316201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS To evaluate the applicability of mesopic light sensitivity measurements obtained by fundus-controlled perimetry (FCP, also termed 'microperimetry') as clinical trial endpoint in Stargardt disease (STGD1). METHODS In this retrospective, monocentre cohort study, 271 eyes of 136 patients (age, 37.1 years) with STGD1 and 87 eyes of 54 healthy controls (age, 41.0 years) underwent mesopic FCP, using a pattern of 50 stimuli (achromatic, 400-800 nm) centred on the fovea. The concurrent validity of mesopic FCP testing using the MAIA device (CenterVue, Italy), the retest variability and its determinants, and the progression of sensitivity loss over time were investigated using mixed-model analyses. The main outcomes were the average pointwise sensitivity loss in dependence of patients' demographic, functional and imaging characteristics, the intrasession 95% coefficient of repeatability, and the pointwise sensitivity loss over time. RESULTS Pointwise sensitivity loss was on average (estimate (95% CI)) 13.88 dB (12.55 to 15.21) along the horizontal meridian and was significantly associated with the electrophysiological subgroup, presence/absence of foveal sparing, best-corrected visual acuity and disease duration. The 95% coefficient of repeatability was 12.15 dB (10.78 to 13.38) and varied in dependence of the underlying mean sensitivity and local sensitivity slope. The global progression rate for the sensitivity loss was 0.45 dB/year (0.13 to 0.78) and was higher for the central and inner ETDRS subfields compared with more peripheral regions. CONCLUSIONS Mesopic light sensitivity measured by FCP is reliable and susceptible for functional changes. It constitutes a potential clinical outcome for both natural history studies as well as future interventional studies in patients with STGD1.
Collapse
Affiliation(s)
- Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany .,Center for Rare Diseases, University of Bonn, Bonn, Germany.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
19
|
Gliem M, Müller PL, Birtel J, Herrmann P, McGuinness MB, Holz FG, Charbel Issa P. Quantitative Fundus Autofluorescence and Genetic Associations in Macular, Cone, and Cone-Rod Dystrophies. Ophthalmol Retina 2020; 4:737-749. [PMID: 32646556 DOI: 10.1016/j.oret.2020.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate quantitatively lipofuscin-associated fundus autofluorescence in patients with macular and cone/cone-rod dystrophies (MD/CCRDs). DESIGN Prospective, single-center, case-control study. PARTICIPANTS Two hundred thirty patients with MD/CCRDs who had undergone genetic testing and 110 control participants without any eye disease. METHODS Participants were examined using quantitative fundus autofluorescence (qAF) imaging with a modified confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference (modified Spectralis HRA-OCT; Heidelberg Engineering, Heidelberg, Germany). Mean qAF values were obtained by averaging measurements from an 8-segment ring centered on the fovea (qAF8) and compared with controls. MAIN OUTCOME MEASURES The qAF8 levels. RESULTS Elevated qAF8 values were a frequent finding (n = 105 [45%]) and associated with ABCA4 (n = 73 [70%]), PRPH2 (n = 9 [9%]), CERKL (n = 3 [3%]), PROM1 (n = 2 [2%]), CRX (n = 1 [1%]), and CDHR1 (n = 1 [1%]) mutations. Reduced qAF8 values were rare (n = 15 [7%]) and found predominantly among patients with MERTK (n = 3 [20%]) and RDH5 (n = 2 [13%]) mutations. Patients with normal qAF8 values (n = 110 [48%]) showed high genotypic heterogeneity. For various genes including ABCA4, PRPH2, CDHR1, and PROM1, higher qAF8 measures were associated with specific phenotypes and genotypes. For instance, qAF8 values were normal in PRPH2-related central areolar chorioretinal dystrophy but increased in PRPH2-related Stargardt-like retinopathy. Accordingly, high qAF8 levels were associated with specific genetic causes and mutation detection rates in characteristic but genetically heterogenous clinical phenotypes, such as a Stargardt-like flecked fundus, bull's eye maculopathy, or pattern dystrophy. In genetically unsolved cases (16 with elevated, 35 with normal, 7 with reduced qAF values), qAF8 was used to support or reject ambiguous results of genetic testing, to suggest underlying pathogenic pathways, and to predict disease in otherwise healthy participants. CONCLUSIONS Quantitative fundus autofluorescence imaging revealed characteristic qAF levels in association with certain gene mutations and in participants without detected mutations. These findings indicate that qAF may facilitate differential diagnostics of MD/CCRDs and may offer novel pathogenetic insights that may be of particular value for the assessment of future treatment approaches.
Collapse
Affiliation(s)
- Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Ophthalmology, University Hospital of Bonn, Bonn, Germany; Centre for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Philipp L Müller
- Department of Ophthalmology, University Hospital of Bonn, Bonn, Germany; Centre for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Johannes Birtel
- Department of Ophthalmology, University Hospital of Bonn, Bonn, Germany; Centre for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital of Bonn, Bonn, Germany; Centre for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Myra B McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Frank G Holz
- Department of Ophthalmology, University Hospital of Bonn, Bonn, Germany; Centre for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
20
|
|
21
|
Müller PL, Birtel J, Herrmann P, Holz FG, Charbel Issa P, Gliem M. Functional Relevance and Structural Correlates of Near Infrared and Short Wavelength Fundus Autofluorescence Imaging in ABCA4-Related Retinopathy. Transl Vis Sci Technol 2019; 8:46. [PMID: 31879568 PMCID: PMC6927733 DOI: 10.1167/tvst.8.6.46] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose To evaluate the functional relevance and structural correlates of autofluorescence (AF) alterations under short-wavelength (SW) and near-infrared (NIR) excitation light in ABCA4-related retinopathy. Methods In this prospective, cross-sectional case series, 88 eyes of 44 patients with ABCA4-related retinopathy (mean age, 37.6 years; range, 9-77 years) underwent SW-AF and NIR-AF imaging. The AF images were graded for disease characteristic patterns by two independent readers and correlated with alterations in optical coherence tomography (OCT) and impairment of retinal sensitivity along a foveo-papillary line assessed by fundus-controlled microperimetry. Results A centrifugal sequence of AF patterns from atrophic lesions to homogeneous background was found for both AF modalities. The eccentricity of each AF pattern in NIR-AF was larger compared to those in SW-AF (P < 0.001). Increasing eccentricity of each pattern correlated with increasing retinal sensitivity. The distant border of the zone of hyperfluorescent flecks in SW-AF and hypoautofluorescent flecks in NIR-AF correlated with the margins of the ellipsoid zone loss in OCT (r = 0.979 and r = 0.971, P < 0.001). The expansion of hypofluorescent flecks in SW-AF was associated with the boundaries of external limiting membrane loss (r = 0.933, P < 0.001). Conclusions SW-AF and NIR-AF revealed a characteristic sequence of AF patterns that correlated with functional and structural alterations, suggesting different stages in disease progression. Translational Relevance Alterations in NIR-AF exceeded those in SW-AF images, substantiating the hypothesis of different AF origins and suggesting NIR-AF as surrogate marker for early disease-related changes.
Collapse
Affiliation(s)
- Philipp L Müller
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Johannes Birtel
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany
| | - Philipp Herrmann
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany
| | - Frank G Holz
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,University of Oxford, Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford, UK
| | - Martin Gliem
- University of Bonn, Department of Ophthalmology, Bonn, Germany.,University of Bonn, Center for Rare Diseases Bonn (ZSEB), Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,University of Oxford, Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford, UK
| |
Collapse
|
22
|
Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 2019; 74:100774. [PMID: 31472235 DOI: 10.1016/j.preteyeres.2019.100774] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Quantitative fundus autofluorescence (qAF) is an approach that is built on a confocal scanning laser platform and used to measure the intensity of the inherent autofluorescence of retina elicited by short-wavelength (488 nm) excitation. Being non-invasive, qAF does not interrupt tissue architecture, thus allowing for structural correlations. The spectral features, cellular origin and topographic distribution of the natural autofluorescence of the fundus indicate that it is emitted from retinaldehyde-adducts that form in photoreceptor cells and accumulate, under most conditions, in retinal pigment epithelial cells. The distributions and intensities of fundus autofluorescence deviate from normal in many retinal disorders and it is widely recognized that these changing patterns can aid in the diagnosis and monitoring of retinal disease. The standardized protocol employed by qAF involves the normalization of fundus grey levels to a fluorescent reference installed in the imaging instrument. Together with corrections for magnification and anterior media absorption, this approach facilitates comparisons with serial images and images acquired within groups of patients. Here we provide a comprehensive summary of the principles and practice of qAF and we highlight recent efforts to elucidate retinal disease processes by combining qAF with multi-modal imaging.
Collapse
|
23
|
Reiter GS, Told R, Baratsits M, Hecht A, Schlanitz FG, Sacu S, Schmidt‐Erfurth U. Repeatability and reliability of quantitative fundus autofluorescence imaging in patients with early and intermediate age-related macular degeneration. Acta Ophthalmol 2019; 97:e526-e532. [PMID: 30549203 DOI: 10.1111/aos.13987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Quantification of fundus autofluorescence has only recently become available. We report our findings on the evaluation of the repeatability and reliability of quantitative fundus autofluorescence (qAF) measurements in patients with early and intermediate age-related macular degeneration (AMD), using the first approved and commercially available instrument. METHODS A total of 43 eyes of 22 patients (aged between 52 and 84 years) diagnosed with early and intermediate AMD were included. All eyes were imaged at day 1, 3 months and 6 months using a modified scanning laser ophthalmoscope, equipped with an internal fluorescent reference. Mean qAF values were calculated for the fovea and for each concentric ring of the Delori pattern. Repeatability and reliability were calculated using Bland-Altman analysis and intraclass correlation (ICC). RESULTS The mean patient age was 73.5 ± 7.9 years. Sixteen patients (73%) were female. qAF repeatability of the eight segments in the middle ring of the Delori pattern (qAFM 8 ) for between sessions was ±8.2%. Agreement at 3- and 6-month follow-up in eyes without retinal changes was ±8.3% and ±9.8%, respectively. Reliability of qAFM 8 was high for all images acquired [ICC = 0.98 (CI: 0.96-0.99), 0.97 (0.93-0.99) and 0.98 (0.92-0.99)]. Agreement at 3- and 6-month follow-up in eyes with retinal changes was ±18.1% and ±20.2%, respectively. Intraclass correlation (ICC) was slightly lower in eyes with retinal changes at 0.93 (0.84-0.97) and 0.96 (0.91-0.98), respectively. CONCLUSIONS Quantitative autofluorescence shows excellent repeatability and reliability as well as follow-up agreement in patients with early and intermediate AMD without retinal changes. This is relevant when conducting longitudinal studies using qAF.
Collapse
Affiliation(s)
- Gregor Sebastian Reiter
- Department of Ophthalmology and Optometry Vienna Trial Center (VTC) Medical University of Vienna Vienna Austria
| | - Reinhard Told
- Department of Ophthalmology and Optometry Vienna Trial Center (VTC) Medical University of Vienna Vienna Austria
| | - Magdalena Baratsits
- Department of Ophthalmology and Optometry Vienna Trial Center (VTC) Medical University of Vienna Vienna Austria
| | - Alexander Hecht
- Department of Ophthalmology and Optometry Vienna Trial Center (VTC) Medical University of Vienna Vienna Austria
| | - Ferdinand Georg Schlanitz
- Department of Ophthalmology and Optometry Vienna Trial Center (VTC) Medical University of Vienna Vienna Austria
| | - Stefan Sacu
- Department of Ophthalmology and Optometry Vienna Trial Center (VTC) Medical University of Vienna Vienna Austria
| | - Ursula Schmidt‐Erfurth
- Department of Ophthalmology and Optometry Vienna Trial Center (VTC) Medical University of Vienna Vienna Austria
| |
Collapse
|
24
|
Dysli C, Müller PL, Birtel J, Holz FG, Herrmann P. Spectrally Resolved Fundus Autofluorescence in ABCA4-Related Retinopathy. ACTA ACUST UNITED AC 2019; 60:274-281. [DOI: 10.1167/iovs.18-25755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Philipp L. Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Kersten E, Geerlings MJ, Pauper M, Corominas J, Bakker B, Altay L, Fauser S, de Jong EK, Hoyng CB, den Hollander AI. Genetic screening for macular dystrophies in patients clinically diagnosed with dry age-related macular degeneration. Clin Genet 2018; 94:569-574. [PMID: 30215852 PMCID: PMC6282796 DOI: 10.1111/cge.13447] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 02/04/2023]
Abstract
It can be clinically challenging to distinguish dry age‐related macular degeneration (AMD) from AMD‐mimicking dystrophies, and sometimes misdiagnosis occurs. With upcoming therapies for dry AMD it is important to exclude patients with a different retinal disease from clinical trials. In this study we evaluated the occurrence of AMD‐mimicking dystrophies in an AMD cohort. Whole‐exome sequencing (WES) was performed in 218 patients with intermediate AMD or geographic atrophy secondary to AMD and 133 control individuals. WES data was analyzed for rare variants in 19 genes associated with autosomal dominant and recessive macular dystrophies mimicking AMD. In three (1.4%) of 218 cases we identified a pathogenic heterozygous variant (PRPH2 c.424C > T; p.R142W) causal for autosomal dominant central areolar choroidal dystrophy (CACD). Phenotypically, these patients all presented with geographic atrophy. In 12 (5.5%) of 218 cases we identified a heterozygous variant of unknown clinical significance, but predicted to be highly deleterious, in genes previously associated with autosomal dominant macular dystrophies. The distinction between AMD and AMD‐mimicking dystrophies, such as CACD, can be challenging based on fundus examination alone. Genetic screening for genes associated with macular dystrophies, especially PRPH2, can be beneficial to help identify AMD‐mimicking dystrophies.
Collapse
Affiliation(s)
- Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maartje J Geerlings
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marc Pauper
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jordi Corominas
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bjorn Bakker
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lebriz Altay
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Sascha Fauser
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany.,Global Head of Ophthalmology, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
26
|
Müller PL, Pfau M, Mauschitz MM, Möller PT, Birtel J, Chang P, Gliem M, Schmitz-Valckenberg S, Fleckenstein M, Holz FG, Herrmann P. Comparison of Green Versus Blue Fundus Autofluorescence in ABCA4-Related Retinopathy. Transl Vis Sci Technol 2018; 7:13. [PMID: 30279998 PMCID: PMC6166893 DOI: 10.1167/tvst.7.5.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/24/2018] [Indexed: 01/02/2023] Open
Abstract
Purpose To investigate the interreader and intermodality agreement for grading of retinal pigment epithelium (RPE) atrophy lesion size in ABCA4-related retinopathy using green (GAF) and blue fundus autofluorescence (BAF) imaging. Methods In this cross-sectional case series, 97 eyes of 49 patients with RPE atrophy secondary to ABCA4-related retinopathy underwent GAF- (518 nm excitation light) and BAF- (488 nm excitation light) imaging using confocal scanning laser ophthalmoscopy (Spectralis HRA, Heidelberg Engineering, Heidelberg, Germany). Lesions with definitely decreased autofluorescence (DDAF) and questionably decreased autofluorescence (QDAF) in GAF and BAF imaging were analyzed separately by five independent readers using semiautomated software (RegionFinder, Heidelberg Engineering). Intermodality and interreader agreements were assessed for the square-root lesion size, lesion perimeter, and circularity. Results GAF- and BAF-based measurements of DDAF and QDAF showed high intermodality and interreader agreement concerning square-root lesion size, as well as shape descriptive parameters (perimeter and circularity). Interreader agreement of square-root lesion size was slightly, hence not significantly higher for GAF-based grading ([95% coefficients of repeatability, intraclass correlation coefficient] DDAF: 0.215 mm, 0.997; QDAF: 0.712 mm, 0.981) compared to BAF-based grading (DDAF: 0.232 mm, 0.997; QDAF: 0.764 mm, 0.978). However, DDAF-measurements revealed distinctly more reproducible results than QDAF-measurements. Foveal sparing did not interfere with intermodality agreement. Conclusions Both GAF- and BAF-based quantification of RPE atrophy showed very reliable results with possible superiority of GAF in the context of less energetic excitation light. Translational Relevance The high interreader agreement qualifies the use of DDAF progression in GAF and BAF imaging as potential morphologic outcome measure for interventional clinical trials and disease monitoring.
Collapse
Affiliation(s)
- Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | | | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Petrus Chang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Garrity ST, Sarraf D, Freund KB, Sadda SR. Multimodal Imaging of Nonneovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2018; 59:AMD48-AMD64. [PMID: 30025107 DOI: 10.1167/iovs.18-24158] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nonneovascular (dry) AMD is a retinal disease with potential for significant central visual impairment. The hallmarks of this disease are macular drusen, RPE alterations, and geographic atrophy (GA). Classification schemes for nonneovascular AMD have evolved over the years as major advances in retinal imaging have enabled a greater understanding of disease pathophysiology. The original classifications of nonneovascular AMD were based on color fundus photography (CFP), while more modern schemes rely on a multimodal imaging approach. Effective diagnosis and management of nonneovascular AMD requires a thorough understanding of its multimodal imaging features as detailed in this review. Future imaging modalities and imaging biomarkers that may aid in diagnosis and management are also discussed.
Collapse
Affiliation(s)
- Sean T Garrity
- Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States.,Greater Los Angeles VA Healthcare Center, Los Angeles, California, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, New York University School of Medicine, New York, New York, United States
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
28
|
Müller PL, Pfau M, Möller PT, Nadal J, Schmid M, Lindner M, de Sisternes L, Stöhr H, Weber BHF, Neuhaus C, Herrmann P, Schmitz-Valckenberg S, Holz FG, Fleckenstein M. Choroidal Flow Signal in Late-Onset Stargardt Disease and Age-Related Macular Degeneration: An OCT-Angiography Study. ACTA ACUST UNITED AC 2018; 59:AMD122-AMD131. [DOI: 10.1167/iovs.18-23819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Philipp L. Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Philipp T. Möller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Jennifer Nadal
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Moritz Lindner
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Luis de Sisternes
- Department of Radiology, Stanford University, Stanford, California, United States
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | | | | | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | | | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Monika Fleckenstein
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| |
Collapse
|
29
|
Matet A, Kohl S, Baumann B, Antonio A, Mohand-Said S, Sahel JA, Audo I. Multimodal imaging including semiquantitative short-wavelength and near-infrared autofluorescence in achromatopsia. Sci Rep 2018; 8:5665. [PMID: 29618791 PMCID: PMC5884771 DOI: 10.1038/s41598-018-23919-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/20/2018] [Indexed: 11/11/2022] Open
Abstract
Multimodal imaging provides insights into phenotype and disease progression in inherited retinal disorders. Congenital achromatopsia (ACHM), a cone dysfunction syndrome, has been long considered a stable condition, but recent evidence suggests structural progression. With gene replacement strategies under development for ACHM, there is a critical need for imaging biomarkers to define progression patterns and follow therapy. Using semiquantitative plots, near-infrared (NIR-AF) and short-wavelength autofluorescence (SW-AF) were explored and correlated with clinical characteristics and retinal structure on optical coherence tomography (OCT). In sixteen ACHM patients with genetic confirmation (CNGA3, n = 8; CNGB3, n = 7; PDE6C, n = 1), semiquantitative plots allowed the detailed analysis of autofluorescence patterns, even in poorly fixating eyes. Twelve eyes showed perifoveal hyperautofluorescent rings on SW-AF, and 7 eyes had central hypoautofluorescent areas on NIR-AF, without association between these alterations (P = 0.57). Patients with central NIR-AF hypoautofluorescence were older (P = 0.004) and showed more advanced retinal alterations on OCT than those with normal NIR-AF (P = 0.051). NIR-AF hypoautofluorescence diameter was correlated to patient age (r = 0.63, P = 0.009), size of ellipsoid zone defect on OCT (r = 0.67, P = 0.005), but not to the size of SW-AF hyperautofluorescence (P = 0.27). These results demonstrate the interest of NIR-AF as imaging biomarker in ACHM, suggesting a relationship with age and disease progression.
Collapse
Affiliation(s)
- Alexandre Matet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- INSERM-DHOS, CIC1423, DHU ViewMaintain, CHNO des Quinze-Vingts, Paris, 75012, France
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Britta Baumann
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- INSERM-DHOS, CIC1423, DHU ViewMaintain, CHNO des Quinze-Vingts, Paris, 75012, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- INSERM-DHOS, CIC1423, DHU ViewMaintain, CHNO des Quinze-Vingts, Paris, 75012, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, F-75019, France
- Académie des Sciences, Institut de France, Paris, F-75006, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA, United States
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
- INSERM-DHOS, CIC1423, DHU ViewMaintain, CHNO des Quinze-Vingts, Paris, 75012, France.
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
30
|
McClements ME, MacLaren RE. Adeno-associated Virus (AAV) Dual Vector Strategies for Gene Therapy Encoding Large Transgenes. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:611-623. [PMID: 29259525 PMCID: PMC5733846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of adeno-associated viral (AAV) vectors for gene therapy treatments of inherited disorders has accelerated over the past decade with multiple clinical trials ongoing in varying tissue types and new ones initiating every year. These vectors are exhibiting low-immunogenicity across the clinical trials in addition to showing evidence of efficacy, making it clear they are the current standard vector for any potential gene therapy treatment. However, AAV vectors do have a limitation in their packaging capacity, being capable of holding no more than ~5kb of DNA and in a therapeutic transgene scenario, this length of DNA would need to include genetic control elements in addition to the gene coding sequence (CDS) of interest. Given that numerous diseases are caused by mutations in genes with a CDS exceeding 3.5kb, this makes packaging into a single AAV capsid not possible for larger genes. Due to this problem, yet with the desire to use AAV vectors, research groups have adapted the standard AAV gene therapy approach to enable delivery of such large genes to target cells using dual AAV vector systems. Here we review the AAV dual vector strategies currently employed and highlight the virtues and drawbacks of each method plus the likelihood of success with such approaches.
Collapse
Affiliation(s)
- Michelle E. McClements
- University of Oxford, Nuffield Department of Clinical Neurosciences (Ophthalmology), Oxford, UK
| | - Robert E. MacLaren
- University of Oxford, Nuffield Department of Clinical Neurosciences (Ophthalmology), Oxford, UK,Oxford Eye Hospital, Oxford, UK,To whom all correspondence should be addressed:
Robert E. MacLaren, Nuffield Department of Clinical Neurosciences (Ophthalmology), University of Oxford, Level 6 West Wing, The John Radcliffe Hospital, Headley Way, Oxford, UK, Tel: +44 1865 223380, Fax: +44 1865 231534; .
| |
Collapse
|
31
|
Imaging Protocols in Clinical Studies in Advanced Age-Related Macular Degeneration. Ophthalmology 2017; 124:464-478. [DOI: 10.1016/j.ophtha.2016.12.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
|