1
|
Gardiner SK, Cull G, Fortune B. Changes in vascular resistance with intraocular pressure and damage severity in experimental glaucoma. Exp Eye Res 2025; 252:110271. [PMID: 39920973 PMCID: PMC11847595 DOI: 10.1016/j.exer.2025.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
There is evidence of changes in retinal hemodynamics in both experimental glaucoma and human disease. A major potential confound is that intraocular pressure (IOP) may also be directly affecting vascular resistance and/or the vasodilatory capacity of vessels in the optic nerve head and retina. This is particularly problematic in experimental glaucoma, where chronic IOP elevation is maintained, without the IOP-reducing medications typically used by patients involved in human studies. However, those animal studies remain invaluable, due to the possibility of extensive baseline testing in the knowledge that no glaucomatous loss has commenced, and due to the degree of control that is possible over parameters such as medication regimens. In this study, we aim to assess the impact of chronic IOP elevation on vascular resistance parameters, and separate it from the impact of glaucomatous damage severity. Longitudinal measurements were made using laser speckle flowgraphy before and after unilateral IOP elevation in 31 non-human primates. The pulsatile waveform was extracted and used to calculate the pulsatility index (maximum minus minimum, as a proportion of the mean) and resistivity index (maximum flow minus minimum flow, as a proportion of the maximum), in both the major vessels and the other tissue within the optic nerve head, for an average of 18 time points per animal. The vascular resistance indices increased with IOP at both locations, both in the full dataset, and in the subset of data points restricted to the visit at which IOP first exceeded 30 mmHg until the resistance index reached its maximum for that eye (all p < 0.001). After adjusting for the influence of IOP using coefficients from linear mixed effects models, the resistance indices exhibited non-monotonic relations with damage severity, first increasing from baseline, but then decreasing back to or beyond the normal range in eyes with more severe damage. Further studies are needed to accurately characterize the location and timing of these changes during the course of glaucomatous damage, which would help identify the pathophysiologic processes that are underway at different stages of the disease.
Collapse
Affiliation(s)
- Stuart K Gardiner
- Devers Eye Institute, Legacy Health, 1225 NE 2nd Ave, Portland, OR, 97232, USA.
| | - Grant Cull
- Devers Eye Institute, Legacy Health, 1225 NE 2nd Ave, Portland, OR, 97232, USA
| | - Brad Fortune
- Devers Eye Institute, Legacy Health, 1225 NE 2nd Ave, Portland, OR, 97232, USA
| |
Collapse
|
2
|
Masís Solano M, Richer E, Costantino S, Lesk MR. Optic Nerve Head Pulsatile Displacement in Open-Angle Glaucoma after Intraocular Pressure Reduction Measured by Optical Coherence Tomography: A Pilot Study. Bioengineering (Basel) 2024; 11:411. [PMID: 38790278 PMCID: PMC11118210 DOI: 10.3390/bioengineering11050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effect of intraocular pressure (IOP) reduction on pulsatile displacement within the optic nerve head (ONH) in primary open-angle glaucoma (POAG) patients with and without axial myopia. Forty-one POAG patients (19 without myopia, 9 with axial myopia and 13 glaucoma with no intervention) participated. Swept-source optical coherence tomography (OCT) videos of the ONH were obtained before and after IOP-lowering treatment (medical or surgical) achieving a minimum IOP drop of 3 mmHg. A demons registration-based algorithm measured local pulsatile displacement maps within the ONH. Results demonstrated a significant 14% decrease in pulsatile tissue displacement in the non-myopic glaucoma cohort after intervention (p = 0.03). However, glaucoma patients with axial myopia exhibited no statistically significant change. There were no significant changes in the pulsatile ONH deformation in the control group. These findings suggest a potential link between IOP reduction and reduced pulsatile displacement within the ONH in POAG patients without myopia, offering new insights into the disease's pathophysiology and warranting further investigation into underlying mechanisms and clinical implications.
Collapse
Affiliation(s)
- Marissé Masís Solano
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assumption Blvd, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, 5415 Assumption Blvd, Montreal, QC H1T 2M4, Canada
| | - Emmanuelle Richer
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assumption Blvd, Montreal, QC H1T 2M4, Canada
- École Polytechnique de Montréal, 2500 Chemin de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assumption Blvd, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, 5415 Assumption Blvd, Montreal, QC H1T 2M4, Canada
| | - Mark R. Lesk
- Maisonneuve-Rosemont Hospital Research Center, 5415 Assumption Blvd, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, 5415 Assumption Blvd, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
3
|
Dunn M, Cull G, Reynaud J, Jennings D, Holthausen T, Di Polo A, Fortune B. Utility of Light-Adapted Full-Field Electroretinogram ON and OFF Responses for Detecting Glaucomatous Functional Damage. Transl Vis Sci Technol 2023; 12:16. [PMID: 37594448 PMCID: PMC10445177 DOI: 10.1167/tvst.12.8.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Purpose To compare parameters of electroretinogram (ERG) responses for their ability to detect functional loss in early stages of nonhuman primate (NHP) experimental glaucoma (EG), including photopic negative responses (PhNR) to a standard brief red flash on a blue background (R/B) and 200-ms-long R/B and white-on-white (W/W) flashes, to W/W flicker stimuli (5-50 Hz), and to a dark-adapted intensity series. Methods Light-adapted ERGs were recorded in 12 anesthetized monkeys with unilateral EG. Amplitudes and implicit times of the a-wave, b-wave, and d-wave were measured, as well as amplitudes of PhNRs and oscillatory potentials for flash onset and offset. Flicker ERGs were measured using peak-trough and fundamental frequency analyses. Dark-adapted ERG parameters were modeled by Naka-Rushton relationships. Results Only PhNR amplitudes were significantly reduced in EG eyes compared to fellow control (FC) eyes. The d-wave implicit time was delayed in EG versus FC eyes only for the W/W long flash, but in all eyes it was 10 to 20 ms slower for R/B versus the W/W condition. Flicker ERGs were <0.5 ms delayed in EG versus FC overall, but amplitudes were affected only at 5 Hz. The brief R/B PhNR amplitude had the highest sensitivity to detect EG and strongest correlation to parameters of structural damage. Conclusions The PhNR to the standard brief R/B stimulus was best for detecting and following early-stage functional loss in NHP EG. Translational Relevance These results suggest that there would be no benefit in using longer duration flashes to separate onset and offset responses for clinical management of glaucoma.
Collapse
Affiliation(s)
- Michaela Dunn
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health, Portland, OR, USA
| | - Grant Cull
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health, Portland, OR, USA
| | - Juan Reynaud
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health, Portland, OR, USA
| | - Dawn Jennings
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health, Portland, OR, USA
| | - Trinity Holthausen
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health, Portland, OR, USA
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Neuroscience Division, Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health, Portland, OR, USA
| |
Collapse
|
4
|
Patel NB, Carter-Dawson L, Frishman LJ. Neuroretinal Rim Response to Transient Intraocular Pressure Challenge Predicts the Extent of Retinal Ganglion Cell Loss in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 37256608 PMCID: PMC10233313 DOI: 10.1167/iovs.64.5.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Purpose To determine if the optic nerve head (ONH) response to transient elevated intraocular pressure (IOP) can predict the extent of neural loss in the nonhuman primate experimental glaucoma model. Methods The anterior chamber pressure of 21 healthy animals (5.4 ± 1.2 years, 8 female) was adjusted to 25 mm Hg for two hours followed by 10 mm Hg for an additional two hours. For the duration of IOP challenge the ONH was imaged using radial optical coherence tomography (OCT) scans at five-minute intervals. Afterward, a randomized sample of 14 of these subjects had unilateral experimental glaucoma induced and were monitored with OCT imaging, tonometry, and ocular biometry at two-week intervals. Results With pressure challenge, the maximum decrease in ONH minimum rim width (MRW) was 40 ± 10.5 µm at 25 mm Hg and was correlated with the precannulation MRW, Bruch's membrane opening (BMO) position, and the anterior lamina cribrosa surface position (P = 0.01). The maximum return of MRW at 10 mm Hg was 16.1 ± 5.0 µm and was not associated with any precannulation ONH feature (P = 0.24). However, healthy eyes with greater thickness return at 10 mm Hg had greater loss of MRW and retinal nerve fiber layer (RNFL) at a cumulative IOP of 1000 mm Hg · days after induction of experimental glaucoma. In addition, MRW and RNFL thinning was correlated with an increase in axial length (P < 0.01). Conclusion This study's findings suggest that the ONH's response to transient changes in IOP are associated with features of the ONH and surrounding tissues. The neural rim properties at baseline and the extent of axial elongation are associated with the severity of glaucomatous loss in the nonhuman primate model.
Collapse
Affiliation(s)
- Nimesh B Patel
- University of Houston College of Optometry, Houston, Texas, United States
| | | | - Laura J Frishman
- University of Houston College of Optometry, Houston, Texas, United States
| |
Collapse
|
5
|
Chaudhary P, Stowell C, Reynaud J, Gardiner SK, Yang H, Williams G, Williams I, Marsh-Armstrong N, Burgoyne CF. Optic Nerve Head Myelin-Related Protein, GFAP, and Iba1 Alterations in Non-Human Primates With Early to Moderate Experimental Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 36239974 PMCID: PMC9586137 DOI: 10.1167/iovs.63.11.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose The purpose of this study was to test if optic nerve head (ONH) myelin basic protein (MBP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule 1 (Iba1) proteins are altered in non-human primate (NHP) early/moderate experimental glaucoma (EG). Methods Following paraformaldehyde perfusion, control and EG eye ONH tissues from four NHPs were paraffin embedded and serially (5 µm) vertically sectioned. Anti-MBP, CNPase, GFAP, Iba1, and nuclear dye-stained sections were imaged using sub-saturating light intensities. Whole-section images were segmented creating anatomically consistent laminar (L) and retrolaminar (RL) regions/sub-regions. EG versus control eye intensity/pixel-cluster density data within L and two RL regions (RL1 [1-250 µm]/RL2 [251-500 µm] from L) were compared using random effects models within the statistical program “R.” Results EG eye retinal nerve fiber loss ranged from 0% to 20%. EG eyes’ MBP and CNPase intensity were decreased within the RL1 (MBP = 31.4%, P < 0.001; CNPase =62.3%, P < 0.001) and RL2 (MBP = 19.6%, P < 0.001; CNPase = 56.1%, P = 0.0004) regions. EG eye GFAP intensity was decreased in the L (41.6%, P < 0.001) and RL regions (26.7% for RL1, and 28.4% for RL2, both P < 0.001). Iba1+ and NucBlue pixel-cluster density were increased in the laminar (28.2%, P = 0.03 and 16.6%, P = 0.008) and both RL regions (RL1 = 37.3%, P = 0.01 and 23.7%, P = 0.0002; RL2 = 53.7%, P = 0.002 and 33.2%, P < 0.001). Conclusions Retrolaminar myelin disruption occurs early in NHP EG and may be accompanied by laminar and retrolaminar decreases in astrocyte process labeling and increases in microglial/ macrophage density. The mechanistic and therapeutic implications of these findings warrant further study.
Collapse
Affiliation(s)
- Priya Chaudhary
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Cheri Stowell
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Juan Reynaud
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Stuart K Gardiner
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Hongli Yang
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Galen Williams
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Imee Williams
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | | | - Claude F Burgoyne
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
6
|
Noailles A, Kutsyr O, Mayordomo-Febrer A, Lax P, López-Murcia M, Sanz-González SM, Pinazo-Durán MD, Cuenca N. Sodium Hyaluronate-Induced Ocular Hypertension in Rats Damages the Direction-Selective Circuit and Inner/Outer Retinal Plexiform Layers. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 35503230 PMCID: PMC9078050 DOI: 10.1167/iovs.63.5.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To assess the changes in retinal morphology in a rat model of chronic glaucoma induced by ocular hypertension. Methods Intraocular pressure (IOP) was surgically increased through weekly injections of sodium hyaluronate (HYA) in the anterior eye chamber of the left eye of male Wistar rats, whereas the right eyes were sham operated (salt solution). During the 10-week experimental period, IOP was measured weekly with a rebound tonometer. Retinal cryosections were prepared for histological/immunohistochemical analysis and morphometry. Results IOP was higher in HYA-treated eyes than in sham-operated eyes along the 10-week period, which was significant from the fourth to the nineth week. Ocular hypertension in HYA-treated eyes was associated with morphologic and morphometric changes in bipolar cells, ON-OFF direction-selective ganglion cells, ON/OFF starburst amacrine cells, and inner plexiform layer sublamina. Conclusions Serial HYA treatment in the rat anterior eye chamber results in mild-to-moderate elevated and sustained IOP and ganglion cell death, which mimics most human open-angle glaucoma hallmarks. The reduced number of direction-selective ganglion cells and starburst amacrine cells accompanied by a deteriorated ON/OFF plexus in this glaucoma model could lend insight to the abnormalities in motion perception observed in patients with glaucoma.
Collapse
Affiliation(s)
- Agustina Noailles
- Physiology, Genetics and Microbiology, University of Alicante, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain
| | - Oksana Kutsyr
- Physiology, Genetics and Microbiology, University of Alicante, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain
| | - Aloma Mayordomo-Febrer
- Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universidad CEU Cardenal Herrera, Valencia, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain.,Mixed Research Unit for Visual Health and Veterinary Ophthalmology CEU/FISABIO, Valencia, Spain
| | - Pedro Lax
- Physiology, Genetics and Microbiology, University of Alicante, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain
| | - María López-Murcia
- Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universidad CEU Cardenal Herrera, Valencia, Spain.,Mixed Research Unit for Visual Health and Veterinary Ophthalmology CEU/FISABIO, Valencia, Spain
| | - Silvia M Sanz-González
- OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain.,Cellular and Molecular Ophthalmo-biology Research Group, Department of Surgery, University of Valencia, Valencia, Spain.,Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, Valencia, Spain
| | - María Dolores Pinazo-Durán
- OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain.,Cellular and Molecular Ophthalmo-biology Research Group, Department of Surgery, University of Valencia, Valencia, Spain.,Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, Valencia, Spain
| | - Nicolás Cuenca
- Physiology, Genetics and Microbiology, University of Alicante, Spain.,OFTARED. Spanish Net of Ophthalmic Research. Institute of health Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Andrade TDS, Araújo RBD, Rocha AADN, Mello LGM, Cunha LP, Monteiro ML. Bruch Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Helps Differentiate Compressive Optic Neuropathy From Glaucoma. Am J Ophthalmol 2022; 234:156-165. [PMID: 34453885 DOI: 10.1016/j.ajo.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE To compare optical coherence tomography-measured Bruch membrane opening minimum rim width (MRW), peripapillary retinal nerve fiber layer (pRNFL) measurements, and MRW:pRNFL ratios in eyes with compressive optic neuropathy (CON) and glaucoma and controls, and evaluate the ability of these parameters to differentiate CON from glaucoma. DESIGN Prospective, cross-sectional study. METHODS Setting: Single-center tertiary hospital and outpatient clinic. PATIENT POPULATION One hundred fifteen eyes of 77 participants, 34 with CON from chiasmal lesions, 21 with glaucoma, and 22 healthy controls. OBSERVATION PROCEDURES Optical coherence tomography-measured MRW, pRNFL, and MRW:pRNFL ratios for each optic disc sector and global average. MAIN OUTCOME MEASURES MRW, pRNFL, and MRW:pRNFL ratios compared using generalized estimated equations. Area under the receiver operating characteristic curve and positive and negative likelihood ratios were calculated. RESULTS MRW and pRNFL measurements were significantly reduced in CON and glaucoma compared with controls. In glaucoma, MRW was thinner than in CON in the global, inferotemporal, superonasal, inferonasal, and vertical average measurements, but a significant overlap was observed in many parameters. MRW:pRNFL ratios increased the ability to discriminate between CON and glaucoma, as shown by the high area under the receiver operating characteristic curve, high positive likelihood ratios, and low negative likelihood ratios, especially in the nasal disc sector and the nasal and temporal average. CONCLUSIONS MRW measurements alone cannot reliably distinguish CON from glaucoma, but the combination of MRW, pRNFL, and MRW:pRNFL ratios significantly improves accuracy. When comparing the 2 conditions, MRW:pRNFL ratios yielded higher area under the receiver operating characteristic curve and positive and negative likelihood ratios, suggesting this parameter may be helpful in clinical practice.
Collapse
|
8
|
Glaucomatous or Non-glaucomatous Optic Neuropathy-It Is a Question? Am J Ophthalmol 2022; 234:A5-A7. [PMID: 34715077 DOI: 10.1016/j.ajo.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 11/23/2022]
|
9
|
Gardiner SK, Mansberger SL, Fortune B. Time Lag Between Functional Change and Loss of Retinal Nerve Fiber Layer in Glaucoma. Invest Ophthalmol Vis Sci 2021; 61:5. [PMID: 33141891 PMCID: PMC7645201 DOI: 10.1167/iovs.61.13.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose It is often suggested that structural change is detectable before functional change in glaucoma. However, this may be related to the lower variability and hence narrower normative limits of structural tests. In this study, we ask whether a time lag exists between the true rates of change in structure and function, regardless of clinical detectability of those changes. Methods Structural equation models were used to determine whether the rate of change in function (mean linearized total deviation, AveTDLin) or structure (retinal nerve fiber layer thickness [RNFLT]) was predicted by the concurrent or previous rate for the other modality, after adjusting for its own rate in the previous time interval. Rates were calculated over 1135 pairs of consecutive visits from 318 eyes of 164 participants in the Portland Progression Project, with mean 207 days between visits. Results The rate of change of AveTDLin was predicted by its own rate in the previous time interval, but not by rates of RNFLT change in either the concurrent or previous time interval (both P > 0.05). Similarly, the rate of RNFLT change was not predicted by concurrent AveTDLin change after adjusting for its own previous rate. However, the rate of AveTDLin change in the previous time interval did significantly improve prediction of the current rate for RNFLT, with P = 0.005, suggesting a time lag of around six months between changes in AveTDLin and RNFLT. Conclusions Although RNFL thinning may be detectable sooner, true functional change appears to predict and precede thinning of the RNFL in glaucoma.
Collapse
Affiliation(s)
- Stuart K Gardiner
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Steven L Mansberger
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Brad Fortune
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
10
|
Fortune B. Optical coherence tomography evaluation of the optic nerve head neuro‐retinal rim in glaucoma. Clin Exp Optom 2021; 102:286-290. [DOI: 10.1111/cxo.12833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health, Portland, Oregon, USA,
| |
Collapse
|
11
|
Lowry EA, Mansberger SL, Gardiner SK, Yang H, Sanchez F, Reynaud J, Demirel S, Burgoyne CF, Fortune B. Association of Optic Nerve Head Prelaminar Schisis With Glaucoma. Am J Ophthalmol 2021; 223:246-258. [PMID: 33166501 DOI: 10.1016/j.ajo.2020.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE To compare the frequency of observing optic nerve head (ONH) prelaminar schisis by optical coherence tomography (OCT) in glaucoma and glaucoma suspect (GL/S) eyes vs healthy control (HC) eyes and to assess its association with other markers of glaucoma severity. METHODS This cross-sectional study included 298 eyes of 150 GL/S patients and 88 eyes of 44 HCs. OCT scans were obtained, including 24 radial B-scans, each composed of 768 A-lines spanning 15°, centered on the ONH. Two reviewers masked to all other clinical, demographic, and ocular information independently graded the OCT scans for the presence of ONH prelaminar schisis on a 4-point scale of 0 (none) to 3 (severe). The probability of ONH schisis was compared between groups and against demographic and ocular factors, including structural and functional measures of glaucoma severity. RESULTS The frequency and severity of ONH prelaminar schisis were greater in GL/S than in HC (P = .009). Among the GL/S group, 165 eyes (55.4%) had no visible schisis (Grade 0), 71 (23.8%) had Grade 1, 46 (15.4%) had Grade 2 and 16 (5.4%) had Grade 3 schisis. Among HC eyes, 59 (67.0%) had Grade 0, 24 (27.3%) had Grade 1, 5 (5.7%) had Grade 2, none had Grade 3. ONH schisis was more common in eyes with thinner MRW and a deeper cup. CONCLUSIONS ONH prelaminar schisis may be a sign of glaucomatous deformation and reflect ongoing pathophysiological damage. ONH prelaminar schisis can impact OCT image segmentation and diagnostic parameters, resulting in substantial overestimation of the true rim tissue thickness and underestimation of cup depth.
Collapse
|
12
|
Wang YX, Panda-Jonas S, Jonas JB. Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features. Prog Retin Eye Res 2020; 83:100933. [PMID: 33309588 DOI: 10.1016/j.preteyeres.2020.100933] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
The optic nerve head can morphologically be differentiated into the optic disc with the lamina cribrosa as its basis, and the parapapillary region with zones alpha (irregular pigmentation due to irregularities of the retinal pigment epithelium (RPE) and peripheral location), beta zone (complete RPE loss while Bruch's membrane (BM) is present), gamma zone (absence of BM), and delta zone (elongated and thinned peripapillary scleral flange) within gamma zone and located at the peripapillary ring. Alpha zone is present in almost all eyes. Beta zone is associated with glaucoma and may develop due to a IOP rise-dependent parapapillary up-piling of RPE. Gamma zone may develop due to a shift of the non-enlarged BM opening (BMO) in moderate myopia, while in highly myopic eyes, the BMO enlarges and a circular gamma zone and delta zone develop. The ophthalmoscopic shape and size of the optic disc is markedly influenced by a myopic shift of BMO, usually into the temporal direction, leading to a BM overhanging into the intrapapillary compartment at the nasal disc border, a secondary lack of BM in the temporal parapapillary region (leading to gamma zone in non-highly myopic eyes), and an ocular optic nerve canal running obliquely from centrally posteriorly to nasally anteriorly. In highly myopic eyes (cut-off for high myopia at approximately -8 diopters or an axial length of 26.5 mm), the optic disc area enlarges, the lamina cribrosa thus enlarges in area and decreases in thickness, and the BMO increases, leading to a circular gamma zone and delta zone in highly myopic eyes.
Collapse
Affiliation(s)
- Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.
| | - Songhomitra Panda-Jonas
- Institute for Clinical and Scientific Ophthalmology and Acupuncture Jonas & Panda, Heidelberg, Germany
| | - Jost B Jonas
- Institute for Clinical and Scientific Ophthalmology and Acupuncture Jonas & Panda, Heidelberg, Germany; Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karis-University, Mannheim, Germany
| |
Collapse
|
13
|
Jeoung JW, Yang H, Gardiner S, Wang YX, Hong S, Fortune B, Girard MJ, Hardin C, Wei P, Nicolela M, Vianna JR, Chauhan BC, Burgoyne CF. Optical Coherence Tomography Optic Nerve Head Morphology in Myopia I: Implications of Anterior Scleral Canal Opening Versus Bruch Membrane Opening Offset. Am J Ophthalmol 2020; 218:105-119. [PMID: 32445702 DOI: 10.1016/j.ajo.2020.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to the Bruch membrane opening (BMO) (ASCO/BMO offset) to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. DESIGN Cross-sectional study. METHODS Using optical coherence tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids and size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. RESULTS ASCO/BMO offset magnitude was greater (highly myopic eyes 264.3 ± 131.1 μm; healthy control subjects 89.0 ± 55.8 μm, P < .001, t test) and ASCO centroid was most frequently nasal relative to BMO centroid (94.2% of eyes) in the highly myopic eyes. BMO and ASCO areas were significantly larger (P < .001, t test), NCMCA was significantly smaller (P < .001), and all 3 were significantly more elliptical (P ≤ .001) in myopic eyes. Neural canal obliqueness was greater in myopic (65.17° ± 14.03°) compared with control eyes (40.91° ± 16.22°; P < .001, t test). CONCLUSIONS Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA, and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.
Collapse
|
14
|
Chan ASY, Tun TA, Allen JC, Lynn MN, Tun SBB, Barathi VA, Girard MJA, Aung T, Aihara M. Longitudinal assessment of optic nerve head changes using optical coherence tomography in a primate microbead model of ocular hypertension. Sci Rep 2020; 10:14709. [PMID: 32895414 PMCID: PMC7477239 DOI: 10.1038/s41598-020-71555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
In humans, the longitudinal characterisation of early optic nerve head (ONH) damage in ocular hypertension (OHT) is difficult as patients with glaucoma usually have structural ONH damage at the time of diagnosis. Previous studies assessed glaucomatous ONH cupping by measuring the anterior lamina cribrosa depth (LCD) and minimal rim width (MRW) using optical coherence tomography (OCT). In this study, we induced OHT by repeated intracameral microbead injections in 16 cynomolgus primates (10 unilateral; 6 bilateral) and assessed the structural changes of the ONH longitudinally to observe early changes. Elevated intraocular pressure (IOP) in OHT eyes was maintained for 7 months and serial OCT measurements were performed during this period. The mean IOP was significantly elevated in OHT eyes when compared to baseline and compared to the control eyes. Thinner MRW and deeper LCD values from baseline were observed in OHT eyes with the greatest changes seen between month 1 and month 2 of OHT. Both the mean and maximum IOP values were significant predictors of MRW and LCD changes, although the maximum IOP was a slightly better predictor. We believe that this model could be useful to study IOP-induced early ONH structural damage which is important for understanding glaucoma pathogenesis.
Collapse
Affiliation(s)
- Anita S Y Chan
- Singapore Eye Research Institute and Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore. .,Department of Ophthalmology, University of Tokyo, Tokyo, Japan.
| | - Tin Aung Tun
- Singapore Eye Research Institute and Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore, Singapore
| | | | - Myoe Naing Lynn
- Singapore Eye Research Institute and Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute and Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute and Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michaël J A Girard
- Singapore Eye Research Institute and Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore, Singapore
| | - Tin Aung
- Singapore Eye Research Institute and Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Wang YX, Yang H, Luo H, Hong SW, Gardiner SK, Jeoung JW, Hardin C, Sharpe GP, Nouri-Mahdavi K, Caprioli J, Demirel S, Girkin CA, Liebmann JM, Mardin CY, Quigley HA, Scheuerle AF, Fortune B, Chauhan BC, Burgoyne CF. Peripapillary Scleral Bowing Increases with Age and Is Inversely Associated with Peripapillary Choroidal Thickness in Healthy Eyes. Am J Ophthalmol 2020; 217:91-103. [PMID: 32298653 DOI: 10.1016/j.ajo.2020.03.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To use optical coherence tomography (OCT) to 3-dimensionally characterize the optic nerve head (ONH) in peripapillary scleral bowing in non-highly myopic healthy eyes. DESIGN Cross-sectional, multicenter study. METHODS A total of 362 non-highly myopic (+6 diopters [D] > spherical equivalent > -6D) eyes of 362 healthy subjects from 20-90 years old underwent OCT ONH radial B-scan imaging. Bruch's membrane (BM), BM opening (BMO), anterior scleral canal opening (ASCO), and the peripapillary scleral surface were segmented. BMO and ASCO planes were fit, and their centroids, major axes, ovality, areas and offsets were determined. Peripapillary scleral bowing was characterized by 2 parameters: peripapillary scleral slope (ppSS) of 3 anterior peripapillary scleral segments (0-300, 300-700, and 700-1,000 μm from the ASCO centroid); and ASCO depth relative to a peripapillary scleral reference plane (ASCOD-ppScleral). Peripapillary choroidal thickness (ppCT) was calculated relative to the ASCO as the minimum distance between the anterior scleral surface and BM. RESULTS Both ppSS and ASCOD-ppScleral ranged from slightly inward through profoundly outward in direction. Both parameters increased with age and were independently associated with decreased ppCT. CONCLUSIONS In non-highly myopic healthy eyes, outward peripapillary scleral bowing achieved substantial levels, was markedly increased with age, and was independently associated with decreased peripapillary choroidal thickness. These findings provide a normative foundation for characterizing this anatomy in cases of high myopia and glaucoma and in eyes with optic disc tilt, torsion, and peripapillary atrophy.
Collapse
|
16
|
Role of radially aligned scleral collagen fibers in optic nerve head biomechanics. Exp Eye Res 2020; 199:108188. [PMID: 32805265 DOI: 10.1016/j.exer.2020.108188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023]
Abstract
Collagen fibers organized circumferentially around the canal in the peripapillary sclera are thought to provide biomechanical support to the sensitive tissues within the optic nerve head (ONH). Recent studies have demonstrated the existence of a family of fibers in the innermost sclera organized radially from the scleral canal. Our goal was to determine the role of these radial fibers in the sensitivity of scleral canal biomechanics to acute increases in intraocular pressure (IOP). Following the same general approach of previous parametric sensitivity studies, we created nonlinear generic finite element models of a posterior pole with various combinations of radial and circumferential fibers at an IOP of 0 mmHg. We then simulated the effects of normal and elevated IOP levels (15 and 30 mmHg). We monitored four IOP-induced geometric changes: peripapillary sclera stretch, scleral canal displacement, lamina cribrosa displacement, and scleral canal expansion. In addition, we examined the radial (maximum tension) and through-thickness (maximum compression) strains within the ONH tissues. Our models predicted that: 1) radial fibers reduced the posterior displacement of the lamina, especially at elevated IOP; 2) radial fibers reduced IOP-induced radial strain within the peripapillary sclera and retinal tissue; and 3) a combination of radial and circumferential fibers maintained strains within the ONH at a level similar to those conferred by circumferential fibers alone. In conclusion, radial fibers provide support for the posterior globe, additional to that provided by circumferential fibers. Most importantly, a combination of both fiber families can better protect ONH tissues from excessive IOP-induced deformation than either alone.
Collapse
|
17
|
Abstract
PRéCIS:: The Bruch membrane opening (BMO) was posteriorly bowed and the degree of nonplanarity increased in stable and progressive glaucoma subjects. BMO became more posterior relative to the Bruch membrane (BM) in control and both stable and progressive glaucoma subjects. PURPOSE To investigate longitudinal changes in morphologic characteristics of the BMO in control and glaucomatous subjects. MATERIALS AND METHODS A total of 53 myopic eyes (17 control, 6 suspect, 20 stable glaucoma, and 10 progressing glaucoma) were followed for an average of 4.2±1.4 years and imaged at the baseline and 2 follow-up appointments using a 1060 nm swept-source optical coherence tomography system. BM and BMO were segmented, and 4 morphometric BMO parameters (area, ellipse ratio, nonplanarity, and depth) were measured. RESULTS There were no significant changes in BMO area or ellipse ratio for all groups. BMO nonplanarity was shown to increase in the glaucoma groups. BMO depth relative to BM increased in all groups except the suspects (control: 8.1 µm/y, P=0.0001; stable glaucoma: 3.5 µm/y, P=0.0001; progressing glaucoma: 14.0 µm/y, P=0.0026). In linear mixed-model analysis, axial length was positively associated with BMO area in all groups except for progressing glaucoma, and with BMO nonplanarity in stable glaucoma. It was not a significant factor to the slopes of the BMO parameters in the ANCOVA analysis of slopes. CONCLUSIONS Longitudinally, BMO increased in nonplanarity in the glaucoma eyes, and its axial position relative to BM became more posterior in both control and glaucoma eyes.
Collapse
|
18
|
Pardon LP, Harwerth RS, Patel NB. Neuroretinal rim response to transient changes in intraocular pressure in healthy non-human primate eyes. Exp Eye Res 2020; 193:107978. [PMID: 32081667 DOI: 10.1016/j.exer.2020.107978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
Optic nerve head (ONH) neuroretinal rim thickness, quantified as minimum rim width (BMO-MRW), is a sensitive measure for assessing early glaucomatous disease. The BMO-MRW is sensitive to transient fluctuations in intraocular pressure (IOP), but the time course over which BMO-MRW decreases and recovers with changes in IOP remains unknown. The goal of this study was to investigate the dynamics of BMO-MRW changes over 2-h periods of mild or moderate IOP elevation, and subsequent recovery, in healthy non-human primate eyes. Eight non-human primates were included in the study. For each animal, in two different sessions separated by at least 2 weeks, the anterior chamber IOP of one eye was maintained at either 25 mmHg or 40 mmHg for 2 h and, subsequently, at 10 mmHg for 2 h. For the duration of anterior chamber cannulation, optical coherence tomography (OCT) radial scans centered on the ONH were acquired every 5 min and used to quantify BMO-MRW. An exponential decay or rise to maximum function was used to determine the extent and rate of structural change. Additionally, Bruch's membrane opening (BMO) area, BMO height/displacement, and BMO-referenced anterior lamina cribrosa surface depth (BMO-ALCSD) were computed from radial scans. A circular scan was used to quantify retinal nerve fiber layer thickness (RNFLT) and circumpapillary choroid thickness. The primary results demonstrated that the BMO-MRW changed over an extended duration, while BMO displacement was rapid and remained stable with sustained IOP. The mean maximum predicted BMO-MRW thinning following 2 h of IOP elevation was significantly related to pressure (34.2 ± 13.8 μm for an IOP of 25 mmHg vs 40.5 ± 12.6 μm for 40 mmHg, p = 0.03). The half-life for BMO-MRW thinning was 21.9 ± 9.2 min for 25 mmHg and 20.9 ± 4.2 min for 40 mmHg, not significantly different between IOP levels (p = 0.76). Subsequently, after 2 h of IOP at 10 mmHg, all animals exhibited partial recovery of BMO-MRW with similar degrees of persistent residual thinning for the two IOP levels (21.5 ± 13.7 vs 21.0 ± 12.3 μm, p = 0.88). Similar to BMO-MRW, choroid thickness exhibited gradual thinning with IOP elevation and residual thinning following IOP reduction. However, there was no significant change in BMO area or BMO-ALCSD in either experimental session. The RNFLT gradually decreased over the duration of IOP elevation, with continued decreases following IOP reduction for the 40 mmHg session, resulting in total changes from baseline of -2.24 ± 0.81 and -2.45 ± 1.21 μm for 25 and 40 mmHg, respectively (p < 0.001). The sum of the results demonstrate that the ONH neural tissue is sensitive to changes in IOP, the effects of which are gradual over an extended time course and different for increased vs. decreased pressure. Understanding the duration over which IOP influences BMO-MRW has important implications for studies investigating the effects of IOP on the ONH. Additionally, individual variability in ONH response to IOP may improve our understanding of the risk and progression of disease.
Collapse
Affiliation(s)
- Laura P Pardon
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX, 77204-2020, USA.
| | - Ronald S Harwerth
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX, 77204-2020, USA
| | - Nimesh B Patel
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX, 77204-2020, USA
| |
Collapse
|
19
|
Chen DZ, Sng CCA, Sangtam T, Thomas A, Shen L, Huang PK, Cheng J. Phacoemulsification vs phacoemulsification with micro‐bypass stent implantation in primary angle closure and primary angle closure glaucoma: A randomized single‐masked clinical study. Clin Exp Ophthalmol 2020; 48:450-461. [DOI: 10.1111/ceo.13721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Affiliation(s)
- David Z. Chen
- Department of OphthalmologyNational University Hospital Singapore Singapore
| | - Chelvin C. A. Sng
- Department of OphthalmologyNational University Hospital Singapore Singapore
- Glaucoma ServiceMoorfields Eye Hospital London UK
- Singapore Eye Research Institute Singapore Singapore
| | - Tiakumzuk Sangtam
- Department of Ophthalmology and Visual ScienceKhoo Teck Puat Hospital Singapore Singapore
| | - Anoop Thomas
- Department of Ophthalmology and Visual ScienceKhoo Teck Puat Hospital Singapore Singapore
| | - Liang Shen
- Biostatistics Unit, Yong Loo Lin School of MedicineNational University of Singapore Singapore Singapore
| | - Philemon K. Huang
- Department of Ophthalmology and Visual ScienceKhoo Teck Puat Hospital Singapore Singapore
| | - Jason Cheng
- Department of Ophthalmology and Visual ScienceKhoo Teck Puat Hospital Singapore Singapore
- Department of OphthalmologyUniversity of New South Wales, Liverpool Hospital Sydney Australia
| |
Collapse
|
20
|
Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020; 77:100840. [PMID: 31982595 DOI: 10.1016/j.preteyeres.2020.100840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Neuroretinal rim thinning (NRR) is a characteristic glaucomatous optic disc change. However, the precise mechanism of the rim thinning has not been completely elucidated. This review focuses on the structural role of the glioarchitecture in the formation of the glaucomatous NRR thinning. The NRR is a glia-framed structure, with honeycomb geometry and mechanically reinforced astrocyte processes along the transverse plane. When neural damage selectively involves the neuron and spares the glia, the gross structure of the tissue is preserved. The disorganization and loss of the glioarchitecture are the two hallmarks of optic nerve head (ONH) remodeling in glaucoma that leads to the thinning of NRR tissue upon axonal loss. This is in contrast to most non-glaucomatous optic neuropathies with optic disc pallor where hypertrophy of the glioarchitecture is associated with the seemingly absent optic disc cupping. Arteritic anterior ischemic optic neuropathy is an exception where pan-necrosis of ONH tissue leads to NRR thinning. Milder ischemia indicates selective neuronal loss that spares glia in non-arteritic anterior ischemic optic neuropathy. The biological reason is the heterogeneous glial response determined by the site, type, and severity of the injury. The neuroglial interpretation explains how the cellular changes underlie the clinical findings. Updated understandings on glial responses illustrate the mechanical, microenvironmental, and microglial modulation of activated astrocytes in glaucoma. Findings relevant to the possible mechanism of the astrocyte death in advanced glaucoma are also emerging. Ultimately, a better understanding of glaucomatous glial response may lead to glia-targeting neuroprotection in the future.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
21
|
Hong S, Yang H, Gardiner SK, Luo H, Hardin C, Sharpe GP, Caprioli J, Demirel S, Girkin CA, Liebmann JM, Mardin CY, Quigley HA, Scheuerle AF, Fortune B, Chauhan BC, Burgoyne CF. OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness, and Minimum Cross-Sectional Area in Healthy Eyes. Am J Ophthalmol 2019; 208:185-205. [PMID: 31095953 PMCID: PMC6851461 DOI: 10.1016/j.ajo.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN Cross-sectional study. METHODS After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.
Collapse
Affiliation(s)
- Seungwoo Hong
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, USA; Department of Ophthalmology, Medical College, the Catholic University of Korea, Seoul, Korea
| | - Hongli Yang
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, USA
| | - Stuart K Gardiner
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, USA
| | - Haomin Luo
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China; Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, USA
| | - Christy Hardin
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, USA
| | - Glen P Sharpe
- Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Joseph Caprioli
- Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shaban Demirel
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, USA
| | - Christopher A Girkin
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey M Liebmann
- Einhorn Clinical Research Center, Moise and Chella Safra Advanced Ocular Imaging Laboratory, New York Eye and Ear Infirmary of Mount Sinai Health System, New York, USA
| | | | - Harry A Quigley
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Brad Fortune
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, USA
| | | | - Claude F Burgoyne
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, USA.
| |
Collapse
|
22
|
A Common Glaucoma-risk Variant of SIX6 Alters Retinal Nerve Fiber Layer and Optic Disc Measures in a European Population: The EPIC-Norfolk Eye Study. J Glaucoma 2019; 27:743-749. [PMID: 30005032 DOI: 10.1097/ijg.0000000000001026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE A common missense variant in the SIX6 gene (rs33912345) is strongly associated with primary open-angle glaucoma (POAG). We aimed to examine the association of rs33912345 with optic disc and retinal nerve fiber layer (RNFL) measures in a European population. METHODS We examined participants of the population-based EPIC-Norfolk Eye Study. Participants underwent confocal laser scanning tomography (Heidelberg Retina Tomograph II, HRT) to estimate optic disc rim area and vertical cup-disc ratio (VCDR). Scanning laser polarimetry (GDxVCC) was used to estimate average RNFL thickness. The mean of right and left eye values was considered for each participant. Genotyping was performed using the Affymetrix UK Biobank Axiom Array. Multivariable linear regression with the optic nerve head parameter as outcome variable and dosage of rs33912345 genotype as primary explanatory variable was used, adjusted for age, sex, disc area, axial length, and intraocular pressure. We further repeated analyses stratified into age tertiles. RESULTS In total, 5433 participants with HRT data and 3699 participants with GDxVCC data were included. Each "C" allele of rs33912345 was associated with a smaller rim area (-0.030 mm [95% CI -0.040, -0.020]; P=5.4×10), a larger VCDR (0.025 [95% CI 0.017, 0.033]; P=3.3×10) and a thinner RNFL (-0.39 μm [95% CI -0.62, -0.15]; P=0.001). The RNFL association was strongest in the oldest age tertile, whereas rim area and VCDR associations were strongest in the youngest and oldest age tertiles. CONCLUSIONS The protein-coding SIX6 variant rs33912345, previously associated with POAG, has a functional effect on glaucoma-associated optic nerve head traits in Europeans.
Collapse
|
23
|
Sanchez FG, Sanders DS, Moon JJ, Gardiner SK, Reynaud J, Fortune B, Mansberger SL. Effect of Trabeculectomy on OCT Measurements of the Optic Nerve Head Neuroretinal Rim Tissue. Ophthalmol Glaucoma 2019; 3:32-39. [PMID: 32632405 DOI: 10.1016/j.ogla.2019.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose Ophthalmologists commonly perform glaucoma surgery to treat progressive glaucoma. Few studies have examined the stability of OCT neuroretinal rim parameters after glaucoma surgery for ongoing detection of glaucoma progression. Design Longitudinal cohort study. Participants 20 eyes (16 subjects) with primary open angle glaucoma who had undergone a trabeculectomy. Methods We calculated the change in OCT parameters (minimum rim area (MRA), minimum rim width (MRW), Bruch's membrane opening (BMO) area, mean cup depth (MCD), anterior lamina cribrosa surface depth (ALCSD), prelaminar tissue thickness (PLTT), retinal nerve fiber layer thickness (RFNLT) during an interval from the visit before the surgery to the visit after the surgery, a span of approximately 6-months. We also calculated changes in the same eyes over two separate 6-month intervals that did not contain trabeculectomy to serve as control. We compared these intervals using a generalized linear model (with compound symmetry correlation structure), accounting for the correlation between time intervals for the same eye. Main outcomes measures MRW, MRA, angle above the reference plane for MRW and MRA, BMO area, MCD, mean ALCSD, PLTT, RNFLT and visual field parameters (mean deviation (MD), pattern standard deviation (PSD), and visual field index (VFI)). Results The intervals containing trabeculectomy showed a significant decrease in intraocular pressure (-9.2 mmHg, p<.001) when compared to control intervals. Likewise, the following neuroretinal rim parameters showed significant changes with trabeculectomy: increased MRW (+6.04μm, p=.001), increased MRA (+0.014mm2, p=.024), increased angle above reference plane of MRW (+2.64°, p<.001), decreased MCD (-11.6μm, p=.007), and decreased mean ALCSD (-18.91μm, p=.006). This is consistent with an increase in rim tissue thickness and a more anterior position of the ILM and ALCS relative to the BMO plane. Conversely, RNFLT change was not significantly different between trabeculectomy and control intervals (p=.37). Conclusion Trabeculectomy resulted in anatomical changes to the ONH rim associated with reduced glaucomatous cupping. The RNFL thickness may be a more stable measure of disease progression that clinicians can use to monitor across time intervals containing glaucoma surgery.
Collapse
Affiliation(s)
| | | | - Jessica J Moon
- Legacy Devers Eye Institute, Portland, OR, United States
| | | | - Juan Reynaud
- Legacy Devers Eye Institute, Portland, OR, United States
| | - Brad Fortune
- Legacy Devers Eye Institute, Portland, OR, United States
| | | |
Collapse
|
24
|
Tun TA, Atalay E, Baskaran M, Nongpiur ME, Htoon HM, Goh D, Cheng CY, Perera SA, Aung T, Strouthidis NG, Girard MJA. Association of Functional Loss With the Biomechanical Response of the Optic Nerve Head to Acute Transient Intraocular Pressure Elevations. JAMA Ophthalmol 2019; 136:184-192. [PMID: 29302683 DOI: 10.1001/jamaophthalmol.2017.6111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance The acute biomechanical response of the optic nerve head (ONH) to intraocular pressure (IOP) elevations may serve as a biomarker for the development and progression of glaucoma. Objective To evaluate the association between visual field loss and the biomechanical response of the ONH to acute transient IOP elevations. Design, Setting, and Participants In this observational study, 91 Chinese patients (23 with primary open-angle glaucoma [POAG], 45 with primary angle-closure glaucoma, and 23 without glaucoma) were recruited from September 3, 2014, through February 2, 2017. Optical coherence tomography scans of the ONH were acquired at baseline and at 2 sequential IOP elevations (0.64 N and then 0.90 N, by applying forces to the anterior sclera using an ophthalmodynamometer). In each optical coherence tomography volume, lamina cribrosa depth (LCD) and minimum rim width (MRW) were calculated. The mean deviation (MD) and the visual field index (VFI), as assessed by automated perimetry, were correlated with IOP-induced changes of LCD and MRW globally and sectorially. Main Outcomes and Measures The LCD, MRW, MD, and VFI. Results Among the 91 patients, 39 (42.9%) were women; the mean (SD) age was 65.48 (7.23) years. In POAG eyes, a greater change in LCD (anterior displacement) was associated with worse MD and VFI (R = -0.64; 95% CI, -0.97 to -0.31; P = .001; and R = -0.57; 95% CI, -0.94 to -0.19; P = .005, respectively) at the first IOP elevation, and a greater reduction in MRW was also associated with worse MD and VFI (first IOP elevation: R = -0.48; 95% CI, -0.86 to -0.09; P = .02; and R = -0.57; 95% CI, -0.94 to -0.20; P = .004, respectively; second IOP elevation: R = -0.56; 95% CI, -0.98 to -0.13; P = .01; and R = -0.60; 95% CI, -1.03 to -0.17; P = .008, respectively), after adjusting for age, sex, and baseline IOP. A correlation was found between the reduction in MRW in the inferior-temporal sector and the corresponding visual field cluster in POAG eyes at the second elevation (ρ = -0.55; 95% CI, -0.78 to -0.18; P = .006). Conclusions and Relevance The biomechanical response of the ONH to acute IOP elevations was associated with established visual field loss in POAG eyes, but not in primary angle-closure glaucoma eyes. This suggests that ONH biomechanics may be related to glaucoma severity in POAG and that the 2 glaucoma subgroups exhibit inherently different biomechanical properties.
Collapse
Affiliation(s)
- Tin A Tun
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Ophthalmic Engineering and Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Eray Atalay
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Mani Baskaran
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Duke-National University of Singapore Medical School, Singapore
| | - Monisha E Nongpiur
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hla M Htoon
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Duke-National University of Singapore Medical School, Singapore
| | - David Goh
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Duke-National University of Singapore Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shamira A Perera
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Duke-National University of Singapore Medical School, Singapore
| | - Tin Aung
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Duke-National University of Singapore Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas G Strouthidis
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, Australia.,National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital National Health Service Foundation Trust and University College London Institute of Ophthalmology, London, United Kingdom
| | - Michaël J A Girard
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore.,Ophthalmic Engineering and Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
25
|
Yang H, Luo H, Gardiner SK, Hardin C, Sharpe GP, Caprioli J, Demirel S, Girkin CA, Liebmann JM, Mardin CY, Quigley HA, Scheuerle AF, Fortune B, Chauhan BC, Burgoyne CF. Factors Influencing Optical Coherence Tomography Peripapillary Choroidal Thickness: A Multicenter Study. Invest Ophthalmol Vis Sci 2019; 60:795-806. [PMID: 30811523 PMCID: PMC6392476 DOI: 10.1167/iovs.18-25407] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To quantify peripapillary choroidal thickness (PCT) and the factors that influence it in healthy participants who represent the racial and ethnic composition of the U.S. population. Methods A total of 362 healthy participants underwent optical coherence tomography (OCT) enhanced depth imaging of the optic nerve head with a 24 radial B-scan pattern aligned to the fovea to Bruch's membrane opening axis. Bruch's membrane, anterior scleral canal opening (ASCO), and the anterior scleral surface were manually segmented. PCT was measured at 100, 300, 500, 700, 900, and 1100 μm from the ASCO globally and within 12 clock-hour sectors. The effects of age, axial length, intraocular pressure, ethnicity, sex, sector, and ASCO area on PCT were assessed by ANOVA and univariable and multivariable regressions. Results Globally, PCT was thicker further from the ASCO border and thinner with older age, longer axial length, larger ASCO area, European descent, and female sex. Among these effectors, age and axial length explained the greatest proportion of variance. The rate of age-related decline increased further from the ASCO border. Sectorally, the inferior-temporal sectors were thinnest (10.7%-20.0% thinner than the thickest sector) and demonstrated a higher rate of age-related loss (from 15.6% to 20.7% faster) at each ASCO distance. Conclusions In healthy eyes, PCT was thinnest in the inferior temporal sectors and thinner PCT was associated with older age, European descent, longer axial length, larger ASCO area, and female sex. Among these associations, age had the strongest influence, and its effect was greatest within the inferior temporal sectors.
Collapse
Affiliation(s)
- Hongli Yang
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States
| | - Haomin Luo
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States.,Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Stuart K Gardiner
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Christy Hardin
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States
| | - Glen P Sharpe
- Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph Caprioli
- Jules Stein Eye Institute, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California, United States
| | - Shaban Demirel
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Christopher A Girkin
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey M Liebmann
- Einhorn Clinical Research Center, Moise and Chella Safra Advanced Ocular Imaging Laboratory, New York Eye and Ear Infirmary of Mount Sinai Health System, New York, United States
| | | | - Harry A Quigley
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | | | - Brad Fortune
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Balwantray C Chauhan
- Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claude F Burgoyne
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
26
|
Pijanka JK, Markov PP, Midgett D, Paterson NG, White N, Blain EJ, Nguyen TD, Quigley HA, Boote C. Quantification of collagen fiber structure using second harmonic generation imaging and two-dimensional discrete Fourier transform analysis: Application to the human optic nerve head. JOURNAL OF BIOPHOTONICS 2019; 12:e201800376. [PMID: 30578592 PMCID: PMC6506269 DOI: 10.1002/jbio.201800376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 05/17/2023]
Abstract
Second harmonic generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively nondestructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This article presents a two-dimensional discrete Fourier transform (DFT)-based method for collagen fiber structure analysis from SHG images. The method includes integrated periodicity plus smooth image decomposition for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are as follows: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the mid-stromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wide-angle X-ray scattering and application of the presented method to other fibrous tissues.
Collapse
Affiliation(s)
- Jacek K. Pijanka
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Petar P. Markov
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Dan Midgett
- Department of Mechanical Engineering, The Johns Hopkins
University, Baltimore, MD 21218, USA
- Department of Materials Science, The Johns Hopkins
University, Baltimore, MD 21218, USA
| | - Neil G. Paterson
- Diamond Light Source, Harwell Science and Innovation
Campus, Harwell, UK
| | - Nick White
- Vivat Scientia Bioimaging Labs, School of Optometry and
Visual Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Emma J. Blain
- Arthritis Research UK Biomechanics and Bioengineering
Centre, Cardiff University, CF10 3AX, Cardiff, UK
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins
University, Baltimore, MD 21218, USA
- Department of Materials Science, The Johns Hopkins
University, Baltimore, MD 21218, USA
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The
Johns Hopkins University, Baltimore, MD 21287, USA
| | - Craig Boote
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| |
Collapse
|
27
|
Samuels BC, Siegwart JT, Zhan W, Hethcox L, Chimento M, Whitley R, Downs JC, Girkin CA. A Novel Tree Shrew (Tupaia belangeri) Model of Glaucoma. Invest Ophthalmol Vis Sci 2019; 59:3136-3143. [PMID: 30025140 PMCID: PMC6018453 DOI: 10.1167/iovs.18-24261] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Primates and rodents are used widely as animal models of glaucoma, but each has significant limitations. Researchers need additional animal models that closely resemble the relevant anatomy and pathologic features of the human disease to more quickly advance research. We validate a novel glaucoma animal model in tree shrews (Tupaia belangeri). Methods Experimental glaucoma was induced in adult tree shrews (n = 8) by injecting 50 μL of a 25 mg/mL ferromagnetic bead solution into the anterior chamber. Beads were directed into the iridocorneal angle with a magnet to impede aqueous outflow. Animals were followed for 3 months with weekly IOP measurements and biweekly spectral domain optical coherence tomography (SD-OCT) images of the optic nerve head. Histopathology of the optic nerve and optic nerve axon counts were completed at the end of the study. Results The 12-week average mean IOP was 22.7 ± 3.6 and 8.6 ± 2.9 mm Hg in the treated and control eyes, respectively. Longitudinal analysis showed significant retinal nerve fiber layer (RNFL) thinning throughout the study. Axon counts were significantly reduced (59.7%) in treated versus control eyes. SD-OCT imaging showed cupping and posterior displacement of the lamina cribrosa in glaucomatous eyes. RNFL thickness and optic nerve axon counts were reduced consistent with IOP elevation. Optic nerves demonstrated histopathology consistent with glaucomatous optic neuropathy. Conclusions Tree shrews with experimental glaucoma show key pathologic characteristics of the human disease. The tree shrew model of glaucoma has the potential to help researchers accelerate our understanding of glaucoma pathophysiology.
Collapse
Affiliation(s)
- Brian C Samuels
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - John T Siegwart
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Wenjie Zhan
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Lisa Hethcox
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Melissa Chimento
- High Resolution Imaging Facility, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Ryan Whitley
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - J Crawford Downs
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Christopher A Girkin
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
28
|
Luo H, Yang H, Gardiner SK, Hardin C, Sharpe GP, Caprioli J, Demirel S, Girkin CA, Liebmann JM, Mardin CY, Quigley HA, Scheuerle AF, Fortune B, Chauhan BC, Burgoyne CF. Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. Invest Ophthalmol Vis Sci 2019; 59:2357-2370. [PMID: 29847642 PMCID: PMC5939685 DOI: 10.1167/iovs.17-23456] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose To quantify the influence of ocular and demographic factors on central laminar depth (LD) in healthy participants. Methods A total of 362 normal subjects underwent optical coherence tomography (OCT) enhanced depth imaging of the optic nerve head (ONH) with a 24 radial B-scan pattern aligned to the fovea–to–Bruch's membrane opening (BMO) axis. BMO, anterior lamina, anterior scleral canal opening (ASCO), Bruch's membrane (BM), and the peripapillary scleral surface were manually segmented. The extent of laminar segmentation was quantified within 72 ASCO subsectors. Central LD was quantified relative to four reference planes: BMO, ASCO, BM, and scleral. The effects of age, sex, ethnicity, IOP, BMO area, ASCO area, and axial length on LD were assessed. Results Laminar visibility was most consistent within the central ASCO (median 89%, range, 69%–95%). LDBMO and LDBM were significantly shallower in eyes with greater age, BMO area, and axial length and in females. LDASCO was shallower in eyes with greater ASCO area and axial length and in European and Hispanic descent compared to African descent eyes. LDSclera behaved similarly, but was not associated with axial length. BMO and ASCO area were not different between African descent and European descent eyes. Conclusions Central LD was deeper in African descent eyes and influenced least by age, axial length, and sex, but more by ASCO area, when measured relative to the ASCO and sclera. However, the magnitude of these effects for all four reference planes was small, and their clinical importance in the detection of glaucoma and its progression remains to be determined.
Collapse
Affiliation(s)
- Haomin Luo
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China.,Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States
| | - Hongli Yang
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States
| | - Stuart K Gardiner
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Christy Hardin
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States
| | - Glen P Sharpe
- Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph Caprioli
- Jules Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Shaban Demirel
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Christopher A Girkin
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey M Liebmann
- Einhorn Clinical Research Center, Moise and Chella Safra Advanced Ocular Imaging Laboratory, New York Eye and Ear Infirmary of Mount Sinai Health System, New York, New York, United States
| | | | - Harry A Quigley
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | | | - Brad Fortune
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Balwantray C Chauhan
- Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claude F Burgoyne
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
29
|
Fortune B. Pulling and Tugging on the Retina: Mechanical Impact of Glaucoma Beyond the Optic Nerve Head. ACTA ACUST UNITED AC 2019; 60:26-35. [DOI: 10.1167/iovs.18-25837] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States
| |
Collapse
|
30
|
Park K, Kim J, Lee J. The Relationship Between Bruch's Membrane Opening-Minimum Rim Width and Retinal Nerve Fiber Layer Thickness and a New Index Using a Neural Network. Transl Vis Sci Technol 2018; 7:14. [PMID: 30159207 PMCID: PMC6108532 DOI: 10.1167/tvst.7.4.14] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/17/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE We evaluate the relationship between Bruch's membrane opening minimum rim width (BMO-MRW) and peripapillary retinal nerve fiber layer thickness (pRNFLT) and develop a new parameter combining BMO-MRW and pRNFLT using a neural network to maximize their compensatory values. METHODS A total of 402 subjects were divided into two groups: 273 (validation group) and 129 (neural net training) subjects. Linear quadratic and broken-stick regression models were used to explore the relationship between BMO-MRW and pRNFLT. A multilayer neural network was used to create a combined parameter, and diagnostic performances were compared using area under the receiver operating characteristic curves (AUROCs). RESULTS Regression analyses between BMO-MRW and pRNFLT revealed that the broken-stick model afforded the best fit. Globally, the tipping point was a BMO-MRW of 226.5 μm. BMO-MRW and pRNFLT were correlated significantly with visual field. When differentiating normal from glaucoma subjects, the neural network exhibited the largest AUROC. When differentiating normal from early glaucoma subjects, the overall diagnostic performance decreased, but the neural network still exhibited the largest AUROC. CONCLUSIONS The optimal relationship between BMO-MRW and pRNFLT was revealed using the broken-stick model. Considerable BMO-MRW thinning preceded pRNFLT thinning. The neural network significantly improved diagnostic power by combining BMO-MRW and pRNFLT. TRANSLATIONAL RELEVANCE A combined index featuring BMO-MRW and pRNFLT data can aid clinical decision-making, particularly when individual parameters yield confusing results. Our neural network effectively combines information from separate parameters.
Collapse
Affiliation(s)
- Keunheung Park
- Department of Ophthalmology, Pusan National University College of Medicine, Busan, Korea
| | - Jinmi Kim
- Department of Biostatistics, Clinical Trial Center, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jiwoong Lee
- Department of Ophthalmology, Pusan National University College of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
31
|
Killer HE, Pircher A. Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye (Lond) 2018; 32:924-930. [PMID: 29456252 PMCID: PMC5944657 DOI: 10.1038/s41433-018-0042-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/08/2022] Open
Abstract
Normal tension glaucoma (NTG) is an exception in the "glaucoma family" where the major risk factor, increased intraocular pressure, is missing. If not increased intraocular pressure, then what other causes can then lead to glaucomatous optic disc change and visual field loss in NTG? Several possibilities will be discussed. Among them a higher sensitivity to normal pressure, vascular dysregulation, an abnormally high translaminar pressure gradient and a neurodegenerative process due to impaired cerebrospinal fluid dynamics in the optic nerve sheath compartment. There are many excellent review papers published on normal tension glaucoma (NTG). The aim of this paper is therefore not to add another extensive review on NTG but rather to focus on and to discuss some possible mechanisms that are thought to be involved in the pathophysiology of NTG and to discuss the stronger and weaker aspects of each concept. The fact that several concepts exist suggests that NTG is still not very well understood and that no single mechanism on its own might adequately explain NTG.
Collapse
Affiliation(s)
- H E Killer
- Department of Ophthalmology,, Cantonal Hospital,, 5001, Aarau,, Switzerland.
| | - A Pircher
- Department of Ophthalmology,, Cantonal Hospital,, 5001, Aarau,, Switzerland
| |
Collapse
|
32
|
Jnawali A, Beach KM, Ostrin LA. In Vivo Imaging of the Retina, Choroid, and Optic Nerve Head in Guinea Pigs. Curr Eye Res 2018; 43:1006-1018. [PMID: 29641938 DOI: 10.1080/02713683.2018.1464195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Guinea pigs are increasingly being used as a model of myopia, and may also represent a novel model of glaucoma. Here, optical coherence tomography (OCT) imaging was performed in guinea pigs. In vivo measurements of retinal, choroidal, and optic nerve head parameters were compared with histology, and repeatability and interocular variations were assessed. METHODS OCT imaging and histology were performed on adult guinea pigs (n = 9). Using a custom program in MATLAB, total retina, ganglion cell/nerve fiber layer (GC/NFL), outer retina, and choroid thicknesses were determined. Additionally, Bruch's membrane opening (BMO) area and diameter, and minimum rim width were calculated. Intraobserver, interocular, and intersession coefficients of variation (CV) and intraclass correlation coefficients (ICC) were assessed. RESULTS Retina, GC/NFL, outer retina and choroid thicknesses from in vivo OCT imaging were 147.7 ± 5.8 μm, 59.2 ± 4.5 μm, 72.4 ± 2.4 μm, and 64.8 ± 11.6 μm, respectively. Interocular CV ranged from 1.8% to 11% (paired t-test, p = 0.16 to 0.81), and intersession CV ranged from 1.1% to 5.6% (p = 0.12 to 0.82), with the choroid showing the greatest variability. BMO area was 0.192 ± 0.023 mm2, and diameter was 493.79 ± 31.89 μm, with intersession CV of 3.3% and 1.7%, respectively. Hyper reflective retinal layers in OCT correlated with plexiform and RPE layers in histology. CONCLUSION In vivo OCT imaging and quantification of guinea pig retina and optic nerve head parameters were repeatable and similar between eyes of the same animal. In vivo visibility of retinal cell layers correlated well with histological images. ABBREVIATIONS optic nerve head (ONH), retinal ganglion cell (RGC), spectral domain optical coherence tomography (SD-OCT), enhanced depth imaging (EDI), minimum rim width (MRW), hematoxylin and eosin (H & E).
Collapse
Affiliation(s)
- Ashutosh Jnawali
- a College of Optometry , University of Houston , Houston , TX , USA
| | - Krista M Beach
- a College of Optometry , University of Houston , Houston , TX , USA
| | - Lisa A Ostrin
- a College of Optometry , University of Houston , Houston , TX , USA
| |
Collapse
|
33
|
Patel N, McAllister F, Pardon L, Harwerth R. The effects of graded intraocular pressure challenge on the optic nerve head. Exp Eye Res 2018; 169:79-90. [PMID: 29409880 PMCID: PMC5878999 DOI: 10.1016/j.exer.2018.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
Intraocular pressure (IOP) is an important risk factor for glaucoma, and the response of the ONH and surrounding tissues to elevated IOP are often investigated to better understand pathophysiology. In vivo structure including that of the optic nerve head (ONH) and surrounding tissue of the eye are often assessed using optical coherence tomography (OCT). With advances in OCT technology, both large vessels and capillaries can be imaged non-invasively (OCT Angiography). Because a significant portion of retinal thickness is comprised of vasculature, the purpose of the current study was to investigate OCT structural and vascular changes in healthy non-human primate eyes with systematic graded increases and decreases in IOP. Six healthy animals with no previous experimental intervention were used. The pressure in the anterior chamber was adjusted from 10 mmHg to 60 mmHg and back to 10 mmHg in 10 mmHg steps every 10 min. Using optical coherence tomography (OCT), retinal nerve fiber layer (RNFL) thickness, minimum rim width (MRW), Bruch's membrane opening (BMO) size and relative height, anterior lamina cribrosa surface (ALCS) depth, choroidal thickness, and angiography (OCTA) were quantified. With IOP challenge there were significant changes in all morphological measures quantified (p < 0.01) other than BMO size (p = 0.30) and RNFL thickness (p = 0.29). Specifically, the position of the BMO was sensitive to both an increase and decease in IOP. The inner retinal capillary density gradually decreased with increasing IOP, reaching statistical significance when pressure exceeded 50 mmHg, but returned when IOP was reduced. The average choroidal thickness around the ONH decreased for elliptical annuli 500-1000 μm and 1000-1500 μm, from the BMO, with increasing IOP (p < 0.01). For the 1000-1500 μm annulus, choroid thickness did not return to baseline with IOP reduction. Similarly, the MRW decreased with increase in IOP, but with pressure reduction did not return, and at the final 10 mmHg time point was thinner than at baseline (p < 0.01). The results from this experiment illustrate differences in ONH neural rim tissue, RNFL and vessel density changes with acute IOP challenge. Overall, vessel collapse could not completely account for changes in RNFL or ONH MRW thickness. The study supports the hypothesis neural rim compression may be an important part of IOP-induced damage.
Collapse
Affiliation(s)
- Nimesh Patel
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX 77204, USA.
| | - Faith McAllister
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX 77204, USA
| | - Laura Pardon
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX 77204, USA
| | - Ronald Harwerth
- University of Houston, College of Optometry, 4901 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
34
|
Wei Y, Li J, Li B, Ma C, Xu X, Wang X, Liu A, Du T, Wang Z, Hong Z, Lin J. GCDB: a glaucomatous chemogenomics database for in silico drug discovery. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5145156. [PMID: 30371760 PMCID: PMC6204718 DOI: 10.1093/database/bay117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023]
Abstract
Glaucoma is a group of neurodegenerative diseases that can cause irreversible blindness. The current medications, which mainly reduce intraocular pressure to slow the progression of disease, may have local and systemic side effects. Recently, medications with possible neuroprotective effects have attracted much attention. To assist in the identification of new glaucoma drugs, we created a glaucomatous chemogenomics database (GCDB; http://cadd.pharmacy.nankai.edu.cn/gcdb/home) in which various glaucoma-related chemogenomics data records are assembled, including 275 genes, 105 proteins, 83 approved or clinical trial drugs, 90 206 chemicals associated with 213 093 records of reported bioactivities from 22 324 corresponding bioassays and 5630 references. Moreover, an improved chemical similarity ensemble approach computational algorithm was incorporated in the GCDB to identify new targets and design new drugs. Further, we demonstrated the application of GCDB in a case study screening two chemical libraries, Maybridge and Specs, to identify interactions between small molecules and glaucoma-related proteins. Finally, six and four compounds were selected from the final hits for in vitro human glucocorticoid receptor (hGR) and adenosine A3 receptor (A3AR) inhibitory assays, respectively. Of these compounds, six were shown to have inhibitory activities against hGR, with IC50 values ranging from 2.92-28.43 μM, whereas one compoundshowed inhibitory activity against A3AR, with an IC50 of 6.15 μM. Overall, GCDB will be helpful in target identification and glaucoma chemogenomics data exchange and sharing, and facilitate drug discovery for glaucoma treatment.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, China
| | - Jinlong Li
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Baiqing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, China
| | - Chunfeng Ma
- Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xuanming Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, China
| | - Xu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, China
| | - Aqin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, China
| | - Tengfei Du
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, China
| | - Zhonghua Wang
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Corresponding author: Tel: 86-22-23506290; Fax: 86-22-23507760;
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, China
- Correspondence may also be addressed to Zhangyong Hong. Tel/Fax: 86-22-23498707; and Zhonghua Wang. Tel: 86-22-24828733; Fax: 86-22-84861926;
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- Corresponding author: Tel: 86-22-23506290; Fax: 86-22-23507760;
| |
Collapse
|
35
|
|
36
|
Affiliation(s)
- Mohammadali Almasieh
- Departments of Ophthalmology and Neurology, McGill University, Montreal H4A 3S5, Canada
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal H1T 2M4, Canada
| | - Leonard A. Levin
- Departments of Ophthalmology and Neurology, McGill University, Montreal H4A 3S5, Canada
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal H1T 2M4, Canada
- Department of Ophthalmology and Visual Science, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
37
|
Yang H, Reynaud J, Lockwood H, Williams G, Hardin C, Reyes L, Stowell C, Gardiner SK, Burgoyne CF. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications. Prog Retin Eye Res 2017; 59:1-52. [PMID: 28300644 PMCID: PMC5603293 DOI: 10.1016/j.preteyeres.2017.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
In a series of previous publications we have proposed a framework for conceptualizing the optic nerve head (ONH) as a biomechanical structure. That framework proposes important roles for intraocular pressure (IOP), IOP-related stress and strain, cerebrospinal fluid pressure (CSFp), systemic and ocular determinants of blood flow, inflammation, auto-immunity, genetics, and other non-IOP related risk factors in the physiology of ONH aging and the pathophysiology of glaucomatous damage to the ONH. The present report summarizes 20 years of technique development and study results pertinent to the characterization of ONH connective tissue deformation and remodeling in the unilateral monkey experimental glaucoma (EG) model. In it we propose that the defining pathophysiology of a glaucomatous optic neuropathy involves deformation, remodeling, and mechanical failure of the ONH connective tissues. We view this as an active process, driven by astrocyte, microglial, fibroblast and oligodendrocyte mechanobiology. These cells, and the connective tissue phenomena they propagate, have primary and secondary effects on retinal ganglion cell (RGC) axon, laminar beam and retrolaminar capillary homeostasis that may initially be "protective" but eventually lead to RGC axonal injury, repair and/or cell death. The primary goal of this report is to summarize our 3D histomorphometric and optical coherence tomography (OCT)-based evidence for the early onset and progression of ONH connective tissue deformation and remodeling in monkey EG. A second goal is to explain the importance of including ONH connective tissue processes in characterizing the phenotype of a glaucomatous optic neuropathy in all species. A third goal is to summarize our current efforts to move from ONH morphology to the cell biology of connective tissue remodeling and axonal insult early in the disease. A final goal is to facilitate the translation of our findings and ideas into neuroprotective interventions that target these ONH phenomena for therapeutic effect.
Collapse
Affiliation(s)
- Hongli Yang
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, United States; Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Juan Reynaud
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, United States; Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Howard Lockwood
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, United States; Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Galen Williams
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, United States; Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Christy Hardin
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, United States; Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Luke Reyes
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, United States; Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Cheri Stowell
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, United States; Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Stuart K Gardiner
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Claude F Burgoyne
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, United States; Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, United States.
| |
Collapse
|
38
|
Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc Ophthalmol 2017; 134:111-128. [PMID: 28243926 DOI: 10.1007/s10633-017-9578-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE To compare diagnostic performance and structure-function correlations of multifocal electroretinogram (mfERG), full-field flash ERG (ff-ERG) photopic negative response (PhNR) and transient pattern-reversal ERG (PERG) in a non-human primate (NHP) model of experimental glaucoma (EG). METHODS At baseline and after induction of chronic unilateral IOP elevation, 43 NHP had alternating weekly recordings of retinal nerve fiber layer thickness (RNFLT) by spectral domain OCT (Spectralis) and retinal function by mfERG (7F slow-sequence stimulus, VERIS), ff-ERG (red 0.42 log cd-s/m2 flashes on blue 30 scotopic cd/m2 background, LKC UTAS-E3000), and PERG (0.8° checks, 99% contrast, 100 cd/m2 mean, 5 reversals/s, VERIS). All NHP were followed at least until HRT-confirmed optic nerve head posterior deformation, most to later stages. mfERG responses were filtered into low- and high-frequency components (LFC, HFC, >75 Hz). Peak-to-trough amplitudes of LFC features (N1, P1, N2) and HFC RMS amplitudes were measured and ratios calculated for HFC:P1 and N2:P1. ff-ERG parameters included A-wave (at 10 ms), B-wave (trough-to-peak) and PhNR (baseline-to-trough) amplitudes as well as PhNR:B-wave ratio. PERG parameters included P50 and N95 amplitudes as well as N95:P50 ratio and N95 slope. Diagnostic performance of retinal function parameters was compared using the area under the receiver operating characteristic curve (A-ROC) to discriminate between EG and control eyes. Correlations to RNFLT were compared using Steiger's test. RESULTS Study duration was 15 ± 8 months. At final follow-up, structural damage in EG eyes measured by RNFLT ranged from 9% above baseline (BL) to 58% below BL; 29/43 EG eyes (67%) and 0/43 of the fellow control eyes exhibited significant (>7%) loss of RNFLT from BL. Using raw parameter values, the largest A-ROC findings for mfERG were: HFC (0.82) and HFC:P1 (0.90); for ff-ERG: PhNR (0.90) and PhNR:B-wave (0.88) and for PERG: P50 (0.64) and N95 (0.61). A-ROC increased when data were expressed as % change from BL, but the pattern of results persisted. At 95% specificity, the diagnostic sensitivity of mfERG HFC:P1 ratio was best, followed by PhNR and PERG. The correlation to RNFLT was stronger for mfERG HFC (R = 0.65) than for PhNR (R = 0.59) or PERG N95 (R = 0.36), (p = 0.20, p = 0.0006, respectively). The PhNR flagged a few EG eyes at the final time point that had not been flagged by mfERG HFC or PERG. CONCLUSIONS Diagnostic performance and structure-function correlation were strongest for mfERG HFC as compared with ff-ERG PhNR or PERG in NHP EG.
Collapse
|
39
|
Smith CA, Vianna JR, Chauhan BC. Assessing retinal ganglion cell damage. Eye (Lond) 2017; 31:209-217. [PMID: 28085141 PMCID: PMC5306472 DOI: 10.1038/eye.2016.295] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 11/09/2022] Open
Abstract
Retinal ganglion cell (RGC) loss is the hallmark of optic neuropathies, including glaucoma, where damage to RGC axons occurs at the level of the optic nerve head. In experimental glaucoma, damage is assessed at the axon level (in the retinal nerve fibre layer and optic nerve head) or at the soma level (in the retina). In clinical glaucoma where measurements are generally limited to non-invasive techniques, structural measurements of the retinal nerve fibre layer and optic nerve head, or functional measurements with perimetry provide surrogate estimates of RGC integrity. These surrogate measurements, while clinically useful, are several levels removed from estimating actual RGC loss. Advances in imaging, labelling techniques, and transgenic medicine are making enormous strides in experimental glaucoma, providing knowledge on the pathophysiology of glaucoma, its progression and testing new therapeutic avenues. Advances are also being made in functional imaging of RGCs. Future efforts will now be directed towards translating these advances to clinical care.
Collapse
Affiliation(s)
- C A Smith
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - J R Vianna
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - B C Chauhan
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
40
|
Palko JR, Qi O, Sheybani A. Corneal Alterations Associated with Pseudoexfoliation Syndrome and Glaucoma: A Literature Review. J Ophthalmic Vis Res 2017; 12:312-324. [PMID: 28791066 PMCID: PMC5525502 DOI: 10.4103/jovr.jovr_28_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A systematic literature review was performed evaluating articles examining the effects of pseudoexfoliation syndrome (PEX) and glaucoma (PEXG) on the cornea with a focus on the corneal endothelium. We searched for articles relevant to pseudoexfoliation syndrome, pseudoexfoliation glaucoma and corneal endothelial cell counts using Pubmed, Google Scholar Database, Web of Science and Cochrane Library databases published prior to September of 2016. We then screened the references of these retrieved papers and performed a Web of Science cited reference search. Corneal characteristics analyzed included central corneal thickness (CCT), corneal nerve density, endothelial cell density (ECD), polymegathism, and pleomorphism. These parameters were compared in the following populations: control, PEX, PEXG, and primary open angle glaucoma (POAG). Over 30 observational studies were reviewed. Most studies showed a statistically significant lower ECD in PEX and PEXG populations compared to controls. Overall, PEX eyes had a non-statistically significant trend of lower ECDs compared to PEXG eyes. No consistent trends were found when analyzing differences in CCT amongst control, PEX and PEXG groups. For the few studies that looked at corneal nerve characteristics, the control groups were found to have statistically significantly greater nerve densities than PEX eyes, which had significantly greater densities than PEXG eyes. ECD and corneal nerve densities may be potential metrics for risk-stratifying patients with PEX and PEXG. Our literature review provided further evidence of the significant negative influence PEX has on the cornea, worsening as patients convert to PEXG.
Collapse
Affiliation(s)
- Joel R Palko
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Owen Qi
- Department of Internal Medicine, Mercy Hospital, St. Louis, MO, USA
| | - Arsham Sheybani
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
41
|
Kim SH, Park KH, Lee JW. Diagnostic Accuracies of Bruch Membrane Opening-minimum Rim Width and Retinal Nerve Fiber Layer Thickness in Glaucoma. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2017. [DOI: 10.3341/jkos.2017.58.7.836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- So Hee Kim
- Department of Ophthalmology, Pusan National University School of Medicine, Busan, Korea
| | - Keun Heung Park
- Department of Ophthalmology, Pusan National University School of Medicine, Busan, Korea
| | - Ji Woong Lee
- Department of Ophthalmology, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
42
|
Fialová S, Augustin M, Fischak C, Schmetterer L, Handschuh S, Glösmann M, Pircher M, Hitzenberger CK, Baumann B. Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:298-314. [PMID: 28101419 PMCID: PMC5231300 DOI: 10.1364/boe.8.000298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 05/05/2023]
Abstract
Polarization sensitive optical coherence tomography (PS-OCT) operating at 840 nm with axial resolution of 3.8 µm in tissue was used for investigating the posterior rat eye during an acute intraocular pressure (IOP) increase experiment. IOP was elevated in the eyes of anesthetized Sprague Dawley rats by cannulation of the anterior chamber. Three dimensional PS-OCT data sets were acquired at IOP levels between 14 mmHg and 105 mmHg. Maps of scleral birefringence, retinal nerve fiber layer (RNFL) retardation and relative RNFL/retina reflectivity were generated in the peripapillary area and quantitatively analyzed. All investigated parameters showed a substantial correlation with IOP. In the low IOP range of 14-45 mmHg only scleral birefringence showed statistically significant correlation. The polarization changes observed in the PS-OCT imaging study presented in this work suggest that birefringence of the sclera may be a promising IOP-related parameter to investigate.
Collapse
Affiliation(s)
- Stanislava Fialová
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Marco Augustin
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Corinna Fischak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Clinical Pharmacology, General Hospital and Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Clinical Pharmacology, General Hospital and Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, 308232 Singapore, Republic of Singapore
| | - Stephan Handschuh
- VetCore Facility for Research and Technology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Martin Glösmann
- VetCore Facility for Research and Technology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|