1
|
Chen Q, Zhang J, Liu X, Xu K, Guo H, Li Y, Liang J, Li Y, Liang L. Exploring the protective effects of Qiju Granule in a rat model of dry age-related macular degeneration. Exp Gerontol 2024; 196:112556. [PMID: 39197675 DOI: 10.1016/j.exger.2024.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
AIM The aim of this study was to evaluate the potential protective effect of Qiju Granule in a rat model of age-related macular degeneration (AMD) and investigate the underlying mechanisms involved. METHODS Rats were injected intravenously with 40 mg/kg of sodium iodate (SI) to induce a dry AMD model. The rats in the treatment group received three different doses of Qiju Granule once a day via gavage, while the rats in the control group were given an equal volume of physiological saline. On day 14 and day 28 following the intervention, various methods were employed to evaluate retinal function and structure, including electroretinography (ERG), optical coherence tomography (OCT), and histological examination. The expression of glial fibrillary acidic protein (GFAP), basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) was assessed via immunofluorescence. Beyond immunofluorescence, the mRNA levels of bFGF, BDNF, and CNTF were quantitatively determined using real-time polymerase chain reaction (qRT-PCR). RESULTS Rats treated with Qiju Granule exhibited significant improvements in both retinal function and structure compared to the model group. The most noteworthy effects were observed at a high dose of Qiju Granule. Furthermore, the expression levels of bFGF, BDNF, and CNTF were significantly unregulated in the treated groups compared to the model group. CONCLUSIONS Qiju Granule demonstrated a protective effect on the retina in the SI-induced rat model of AMD. The protective mechanism may be attributed to the upregulation of retinal neurotrophic factors expression.
Collapse
Affiliation(s)
- Qiang Chen
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Jing Zhang
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Xinyu Liu
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Kai Xu
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Huiyi Guo
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Yamin Li
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Jie Liang
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Yanying Li
- Increasepharm (Beijing) Innovative Medicine Institute Limited, Beijing, China
| | - Lina Liang
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China.
| |
Collapse
|
2
|
Gamal El-Deen AM, Abd El-Hamid SM, Farrag EA. Serum brain-derived neurotrophic factor and macular perfusion in type 2 diabetes mellitus using optical coherence tomography angiography. Taiwan J Ophthalmol 2024; 14:422-430. [PMID: 39430362 PMCID: PMC11488803 DOI: 10.4103/tjo.tjo-d-22-00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/29/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE To investigate the relationship between serum brain-derived neurotrophic factor (BDNF) and changes in macular perfusion in different stages of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA). MATERIALS AND METHODS The study was conducted on 72 eyes of people with type 2 diabetes mellitus (DM). They were divided into five groups based on their DR stage: no DR (nDR), mild and moderate nonproliferative DR, severe nonproliferative DR, active proliferative DR (aPDR), and stable PDR. The presence or absence of diabetic maculopathy was also used to categorize the cases. All patients underwent a complete history, ophthalmological examination, OCTA imaging, and evaluation of BDNF and glycated hemoglobin A1c levels. RESULTS The mean blood BDNF levels in the aPDR group were considerably lower than those in the nDR group (P = 0.023). In comparison to eyes without maculopathy, eyes with maculopathy had considerably decreased mean blood BDNF levels (P = 0.0004). Comparing NPDR and PDR groups to nDR as well as NPDR and PDR, a substantial decrease in average and parafoveal vessel density (VD) of the retina and choriocapillaries was seen (P = 0.02). The Foveal Avascular Zone (FAZ) acircularity index and VD were found to be significantly impacted by deteriorating DR (P = 0.001 and 0.017, respectively). It was discovered that there is a positive correlation between BDNF and the FAZ fractal dimension (P = 0.03). In diabetic eyes, there was a statistically favorable correlation between BDNF levels and best corrected visual acuity (P = 0.002). Furthermore, there was a negative relationship between DM duration and BDNF (P = 0.021). CONCLUSION Serum BDNF levels decreased with the progression of DR and in patients with maculopathy. BDNF was found to be related to macular perfusion, particularly in the fovea.
Collapse
Affiliation(s)
| | | | - Enas Ahmed Farrag
- Department of Clinical Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Dąbkowska M, Stukan I, Kosiorowska A, Szatanik A, Łuczkowska K, Machalińska A, Machaliński B. In vitro and in vivo characterization of human serum albumin-based PEGylated nanoparticles for BDNF and NT3 codelivery. Int J Biol Macromol 2024; 265:130726. [PMID: 38490392 DOI: 10.1016/j.ijbiomac.2024.130726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The utilization of neurotrophins in medicine shows significant potential for addressing neurodegenerative conditions, such as age-related macular degeneration (AMD). However, the therapeutic use of neurotrophins has been restricted due to their short half-life. Here, we aimed to synthesize PEGylated nanoparticles based on electrostatic-driven interactions between human serum albumin (HSA), a carrier for adsorption; neurotrophin-3 (NT3); and brain-derived neurotrophic factor (BDNF). Electrophoretic (ELS) and multi-angle dynamic light scattering (MADLS) revealed that the PEGylated HSA-NT3-BDNF nanoparticles ranged from 10 to 430 nm in diameter and exhibited a low polydispersity index (<0.4) and a zeta potential of -8 mV. Based on microscale thermophoresis (MST), the estimated dissociation constant (Kd) from the HSA molecule of BDNF was 1.6 μM, and the Kd of NT3 was 732 μM. The nanoparticles were nontoxic toward ARPE-19 and L-929 cells in vitro and efficiently delivered BDNF and NT3. Based on the biodistribution of neurotrophins after intravitreal injection into BALB/c mice, both nanoparticles were gradually released in the mouse vitreous body within 28 days. PEGylated HSA-NT3-BDNF nanoparticles stabilize neurotrophins and maintain this characteristic in vivo. Thus, given the simplicity of the system, the nanoparticles may enhance the treatment of a variety of neurological disorders in the future.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 71-899 Szczecin, Poland.
| | - Iga Stukan
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-111 Szczecin, Poland
| | - Alicja Kosiorowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 71-899 Szczecin, Poland; Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-111 Szczecin, Poland
| | - Alicja Szatanik
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 71-899 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-111 Szczecin, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Pollalis D, Calle AG, Martinez-Camarillo JC, Ahluwalia K, Hinman C, Mitra D, Lebkowski J, Lee SY, Thomas BB, Ahmed F, Chan V, Junge JA, Fraser S, Louie S, Humayun M. Scaling up polarized RPE cell supernatant production on parylene membrane. Exp Eye Res 2024; 240:109789. [PMID: 38242423 DOI: 10.1016/j.exer.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Age-related macular degeneration (AMD), a leading cause of vision loss, primarily arises from the degeneration of retinal pigment epithelium (RPE) and photoreceptors. Current therapeutic options for dry AMD are limited. Encouragingly, cultured RPE cells on parylene-based biomimetic Bruch's membrane demonstrate characteristics akin to the native RPE layer. In this study, we cultivated human embryonic stem cell-derived polarized RPE (hESC-PRPE) cells on parylene membranes at both small- and large-scale settings, collecting conditioned supernatant, denoted as PRPE-SF. We conducted a comprehensive analysis of the morphology of the cultured hESC-RPE cells and the secreted growth factors in PRPE-SF. To evaluate the in vivo efficacy of these products, the product was administered via intravitreal injections of PRPE-SF in immunodeficient Royal College of Surgeons (iRCS) rats, a model for retinal degeneration. Our study not only demonstrated the scalability of PRPE-SF production while maintaining RPE cell phenotype but also showed consistent protein concentrations between small- and large-scale batches. We consistently identified 10 key factors in PRPE-SF, including BMP-7, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-6, MANF, PEDF, PDGF-AA, TGFβ1, and VEGF. Following intravitreal administration of PRPE-SF, we observed a significant increase in the thickness of the outer nuclear layer (ONL) and photoreceptor preservation in iRCS rats. Furthermore, correlation analysis revealed that IGFBP-3, IGFBP-4, MANF, PEDF, and TGFβ1 displayed positive associations with in vivo bioactivity, while GDF-15 exhibited a negative correlation. Overall, this study highlights the feasibility of scaling up PRPE-SF production on parylene membranes without compromising its essential constituents. The outcomes of PRPE-SF administration in an animal model of retinal degeneration present substantial potential for photoreceptor preservation. Moreover, the identification of candidate surrogate potency markers, showing strong positive associations with in vivo bioactivity, lays a solid foundation for the development of a promising therapeutic intervention for retinal degenerative diseases.
Collapse
Affiliation(s)
- Dimitrios Pollalis
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Alejandra Gonzalez Calle
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Juan Carlos Martinez-Camarillo
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Kabir Ahluwalia
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cassidy Hinman
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Debbie Mitra
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Menlo Park, CA 94028, USA
| | - Sun Young Lee
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B Thomas
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Faizah Ahmed
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Victoria Chan
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Jason A Junge
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan Louie
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark Humayun
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
5
|
Porcino C, Mhalhel K, Briglia M, Cometa M, Guerrera MC, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Aragona M. Neurotrophins and Trk Neurotrophin Receptors in the Retina of Adult Killifish ( Nothobranchius guentheri). Int J Mol Sci 2024; 25:2732. [PMID: 38473977 DOI: 10.3390/ijms25052732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.
Collapse
Affiliation(s)
- Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Germana Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
6
|
Zhang QQ, Qu Y. Brain-derived neurotrophic factor in degenerative retinal diseases: Update and novel perspective. J Neurosci Res 2023; 101:1624-1632. [PMID: 37334646 DOI: 10.1002/jnr.25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Dysfunction and death of neuronal cells are cardinal features of degenerative retinal diseases that are known to arise as the disease progresses. Increasingly evidence suggests that abnormal expression of brain-derived neurotrophic factor (BDNF) may serve as an obligatory relay of the dysfunction and death of neuronal cells in degenerative retinal diseases. Although disorder of BDNF, whether depletion or augmentation, has been connected with neuronal apoptosis and neuroinflammation, the exact mechanisms underlying the effect of impaired BDNF expression on degenerative retinal diseases remain unclear. Here, we present an overview of how BDNF is linked to pathological mechanism of retinal degenerative diseases, summarize BDNF-based treatment strategies, and discuss possible research perspectives in the future.
Collapse
Affiliation(s)
- Qing-Qing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Ahluwalia K, Martinez-Camarillo JC, Thomas BB, Naik A, Gonzalez-Calle A, Pollalis D, Lebkowski J, Lee SY, Mitra D, Louie SG, Humayun MS. Polarized RPE Secretome Preserves Photoreceptors in Retinal Dystrophic RCS Rats. Cells 2023; 12:1689. [PMID: 37443724 PMCID: PMC10340490 DOI: 10.3390/cells12131689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa, lack effective therapies. Conventional monotherapeutic approaches fail to target the multiple affected pathways in retinal degeneration. However, the retinal pigment epithelium (RPE) secretes several neurotrophic factors addressing diverse cellular pathways, potentially preserving photoreceptors. This study explored human embryonic stem cell-derived, polarized RPE soluble factors (PRPE-SF) as a combination treatment for retinal degeneration. PRPE-SF promoted retinal progenitor cell survival, reduced oxidative stress in ARPE-19 cells, and demonstrated critical antioxidant and anti-inflammatory effects for preventing retinal degeneration in the Royal College of Surgeons (RCS) rat model. Importantly, PRPE-SF treatment preserved retinal structure and scotopic b-wave amplitudes, suggesting therapeutic potential for delaying retinal degeneration. PRPE-SF is uniquely produced using biomimetic membranes for RPE polarization and maturation, promoting a protective RPE secretome phenotype. Additionally, PRPE-SF is produced without animal serum to avoid immunogenicity in future clinical development. Lastly, PRPE-SF is a combination of neurotrophic factors, potentially ameliorating multiple dysfunctions in retinal degenerations. In conclusion, PRPE-SF offers a promising therapeutic candidate for retinal degenerative diseases, advancing the development of effective therapeutic strategies for these debilitating conditions.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Juan-Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Alejandra Gonzalez-Calle
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Menlo Park, CA 94028, USA;
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Debbie Mitra
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Hu Y, Chen J, Wang Y, Sun J, Huang P, Feng J, Liu T, Sun X. Fat mass and obesity-associated protein alleviates Aβ 1-40 induced retinal pigment epithelial cells degeneration via PKA/CREB signaling pathway. Cell Biol Int 2023; 47:584-597. [PMID: 36378581 DOI: 10.1002/cbin.11959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Amyloid-β (Aβ) is thought to be a critical pathologic factor of retinal pigment epithelium (RPE) degeneration in age-related macular degeneration (AMD). Aβ induces inflammatory responses in RPE cells and recent studies demonstrate the N6-methyladenosine (m6A) regulatory role in RPE cell inflammation. m6A is a reversible epigenetic posttranslational modification, but its relationship with Aβ-induced RPE degeneration is yet to be thoroughly investigated. The present study explored the role and mechanism of m6A in Aβ-induced RPE degeneration model. This model was induced via intravitreally injecting oligomeric Aβ and the morphology of its retina was analyzed. One of m6A demethylases, the fat mass and obesity-associated (FTO) gene expression, was assessed. An m6A-messenger RNA (mRNA) epitranscriptomic microarray was employed for further bioinformatic analyses. It was confirmed that Aβ induced FTO upregulation within the RPE. Hypopigmentation alterations and structural disorganization were observed in Aβ-treated eyes, and inhibition of FTO exacerbated retinal degeneration and RPE impairment. Moreover, the m6A-mRNA epitranscriptomic microarray suggested that protein kinase A (PKA) was a target of FTO, and the PKA/cyclic AMP-responsive element binding (CREB) signaling pathway was involved in Aβ-induced RPE degeneration. m6A-RNA binding protein immunoprecipitation confirmed that FTO demethylated PKA within the RPE cells of Aβ-treated eyes. Altered expression of PKA and its downstream targets (CREB and brain-derived neurotrophic factor) was confirmed by quantitative reverse-transcription polymerase chain reaction and Western blot analyses. Hence, this study's findings shed light on FTO-mediated m6A modification in Aβ-induced RPE degeneration and indicate potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- Yifan Hu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, and Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingyang Feng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Te Liu
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Park KW, Joo JY, Kim ST. Comparison of brain-derived neurotrophic factor among subtypes of exudative age-related macular degeneration. Eur J Ophthalmol 2023; 33:408-414. [PMID: 35505604 DOI: 10.1177/11206721221099488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE To compare the levels of brain-derived neurotrophic factor (BDNF) in serum and aqueous humor (AH) in eyes with typical neovascular age-related macular degeneration (tAMD), polypoidal choroidal vasculopathy (PCV), and retinal angiomatous proliferation (RAP). METHODS This prospective study included 20 patients with tAMD, 20 patients with PCV, 20 patients with RAP, and 20 healthy controls. BDNF levels in the serum and AH were assessed using enzyme-linked immunosorbent assay. RESULTS Serum and AH BDNF levels were significantly lower in the age-related macular degeneration groups (tAMD, PCV, and RAP) than in the control group (p < 0.05). There was no significant difference in the mean BDNF levels in the serum and AH among the different nAMD subtypes (p = 0.538). CONCLUSIONS We confirmed that serum and AH BDNF levels were independent of the nAMD subtype.
Collapse
Affiliation(s)
- Keon Woo Park
- Department of Ophthalmology, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Jung Yeon Joo
- Department of Pediatrics, 92203Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Seong Taeck Kim
- Department of Ophthalmology, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| |
Collapse
|
10
|
Yu JY, Jeong DE, Joo JY, Kim ST. Brain-derived neurotrophic factor levels and macular ganglion cell-inner plexiform layer thickness in macular telangiectasia type 2. Int Ophthalmol 2022; 43:1927-1933. [DOI: 10.1007/s10792-022-02592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
|
11
|
Mattern L, Otten K, Miskey C, Fuest M, Izsvák Z, Ivics Z, Walter P, Thumann G, Johnen S. Molecular and Functional Characterization of BDNF-Overexpressing Human Retinal Pigment Epithelial Cells Established by Sleeping Beauty Transposon-Mediated Gene Transfer. Int J Mol Sci 2022; 23:12982. [PMID: 36361771 PMCID: PMC9656812 DOI: 10.3390/ijms232112982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 04/12/2024] Open
Abstract
More and more patients suffer from multifactorial neurodegenerative diseases, such as age-related macular degeneration (AMD). However, their pathological mechanisms are still poorly understood, which complicates the development of effective therapies. To improve treatment of multifactorial diseases, cell-based gene therapy can be used to increase the expression of therapeutic factors. To date, there is no approved therapy for dry AMD, including late-stage geographic atrophy. We present a treatment option for dry AMD that transfers the brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial (RPE) cells by electroporation using the plasmid-based Sleeping Beauty (SB) transposon system. ARPE-19 cells and primary human RPE cells were co-transfected with two plasmids encoding the SB100X transposase and the transposon carrying a BDNF transcription cassette. We demonstrated efficient expression and secretion of BDNF in both RPE cell types, which were further increased in ARPE-19 cell cultures exposed to hydrogen peroxide. BDNF-transfected cells exhibited lower apoptosis rates and stimulated neurite outgrowth in human SH-SY5Y cells. This study is an important step in the development of a cell-based BDNF gene therapy that could be applied as an advanced therapy medicinal product to treat dry AMD or other degenerative retinal diseases.
Collapse
Affiliation(s)
- Larissa Mattern
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Katrin Otten
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
12
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Laurà R, Cometa M, Levanti M, Abbate F, Cobo T, Capitelli G, Vega JA, Germanà A. The BDNF/TrkB Neurotrophin System in the Sensory Organs of Zebrafish. Int J Mol Sci 2022; 23:ijms23052621. [PMID: 35269763 PMCID: PMC8910639 DOI: 10.3390/ijms23052621] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs’ receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Gabriel Capitelli
- Faculty of Medical Sciences, University of Buenos Aires, Viamonte 1053, CABA, Buenos Aires 1056, Argentina;
| | - José A. Vega
- Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain;
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
- Correspondence:
| |
Collapse
|
13
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Dieguez HH, Calanni JS, Romeo HE, Alaimo A, González Fleitas MF, Iaquinandi A, Chianelli MS, Keller Sarmiento MI, Sande PH, Rosenstein RE, Dorfman D. Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration. Cell Death Dis 2021; 12:1128. [PMID: 34864827 PMCID: PMC9632251 DOI: 10.1038/s41419-021-04412-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Non-exudative age-related macular degeneration (NE-AMD), the main cause of blindness in people above 50 years old, lacks effective treatments at the moment. We have developed a new NE-AMD model through unilateral superior cervical ganglionectomy (SCGx), which elicits the disease main features in C57Bl/6J mice. The involvement of oxidative stress in the damage induced by NE-AMD to the retinal pigment epithelium (RPE) and outer retina has been strongly supported by evidence. We analysed the effect of enriched environment (EE) and visual stimulation (VS) in the RPE/outer retina damage within experimental NE-AMD. Exposure to EE starting 48 h post-SCGx, which had no effect on the choriocapillaris ubiquitous thickness increase, protected visual functions, prevented the thickness increase of the Bruch’s membrane, and the loss of the melanin of the RPE, number of melanosomes, and retinoid isomerohydrolase (RPE65) immunoreactivity, as well as the ultrastructural damage of the RPE and photoreceptors, exclusively circumscribed to the central temporal (but not nasal) region, induced by experimental NE-AMD. EE also prevented the increase in outer retina/RPE oxidative stress markers and decrease in mitochondrial mass at 6 weeks post-SCGx. Moreover, EE increased RPE and retinal brain-derived neurotrophic factor (BDNF) levels, particularly in Müller cells. When EE exposure was delayed (dEE), starting at 4 weeks post-SCGx, it restored visual functions, reversed the RPE melanin content and RPE65-immunoreactivity decrease. Exposing animals to VS protected visual functions and prevented the decrease in RPE melanin content and RPE65 immunoreactivity. These findings suggest that EE housing and VS could become an NE-AMD promising therapeutic strategy.
Collapse
Affiliation(s)
- Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Horacio E Romeo
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, BIOMED/UCA/CONICET, Buenos Aires, Argentina
| | - Agustina Alaimo
- Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological Chemistry, School of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Agustina Iaquinandi
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica S Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Cha YW, Kim ST. Serum and aqueous humor levels of brain-derived neurotrophic factor in patients with primary open-angle glaucoma and normal-tension glaucoma. Int Ophthalmol 2021; 41:3869-3875. [PMID: 34533687 DOI: 10.1007/s10792-021-01959-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study was designed to compare the levels of brain-derived neurotrophic factor (BDNF) in the serum and aqueous humor (AH) of patients with primary open-angle glaucoma (POAG) and normal-tension glaucoma (NTG). METHODS This prospective, observational study consists of 30 patients with POAG, 30 patients with NTG, and 30 healthy controls. The serum and AH BDNF levels were assessed using an enzyme-linked immunosorbent assay. RESULTS BDNF levels in serum and AH were markedly lower in the glaucoma groups (POAG and NTG) than in the control group (p < 0.05). When comparing the NTG and POAG groups, the average serum BDNF level was significantly lower in the NTG group than in the POAG group (p < 0.05). The difference in the mean BDNF levels in AH between the POAG and NTG groups was not statistically significant. (p = 0.538). CONCLUSION We confirmed that serum BDNF levels were lower in patients with NTG than in those with POAG. BDNF could be a causative systemic biomarker in NTG.
Collapse
Affiliation(s)
- Yu Wan Cha
- Department of Ophthalmology, School of Medicine, Chosun University, 365 Philmun-daero, Dong-gu, Gwangju, 61453, Republic of Korea
| | - Seong Taeck Kim
- Department of Ophthalmology, School of Medicine, Chosun University, 365 Philmun-daero, Dong-gu, Gwangju, 61453, Republic of Korea.
| |
Collapse
|
16
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
17
|
Features of Retinal Neurogenesis as a Key Factor of Age-Related Neurodegeneration: Myth or Reality? Int J Mol Sci 2021; 22:ijms22147373. [PMID: 34298993 PMCID: PMC8303671 DOI: 10.3390/ijms22147373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial neurodegenerative disease that constitutes the most common cause of irreversible blindness in the elderly in the developed countries. Incomplete knowledge about its pathogenesis prevents the search for effective methods of prevention and treatment of AMD, primarily of its "dry" type which is by far the most common (90% of all AMD cases). In the recent years, AMD has become "younger": late stages of the disease are now detected in relatively young people. It is known that AMD pathogenesis-according to the age-related structural and functional changes in the retina-is linked with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, and an impairment of neurotrophic support, but the mechanisms that trigger the conversion of normal age-related changes to the pathological process as well as the reason for early AMD development remain unclear. In the adult mammalian retina, de novo neurogenesis is very limited. Therefore, the structural and functional features that arise during its maturation and formation can exert long-term effects on further ontogenesis of this tissue. The aim of this review was to discuss possible contributions of the changes/disturbances in retinal neurogenesis to the early development of AMD.
Collapse
|
18
|
Targeted Gene Candidates for Treatment and Early Diagnosis of Age-Related Macular Degeneration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6620900. [PMID: 33604378 PMCID: PMC7872763 DOI: 10.1155/2021/6620900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
Age-related macular degeneration (AMD) is an eye disease that impairs the sharp and central vision need for daily activities. Recent advances in molecular biology research not only lead to a better understanding of the genetics and pathophysiology of AMD but also to the development of applications based on targeted gene expressions to treat the disease. Clarification of molecular pathways that causing to development and progression in dry and wet types of AMD needs comprehensive and comparative investigations in particular precious biopsies involving peripheral blood samples from the patients. Therefore, in this investigation, dry and wet types of AMD patients and healthy individuals were aimed at investigating in regard to targeted gene candidates by using gene expression analysis for the first time. 13 most potent candidate genes involved in neurodegeneration were selected via in silico approach and investigated through gene expression analysis to suggest new targets for disease therapy. For the analyses, 30 individuals (10 dry and 10 wet types AMD patients and 10 healthy people) were involved in the study. SYBR-Green based Real-Time PCR analysis was performed on isolated peripheral blood mononuclear cells (PBMCs) to analyze differentially expressed genes related to these cases. According to the investigations, only the CRP gene was found to be upregulated for both dry and wet disease types. When the downregulated genes were analyzed, it was found that 11 genes were commonly decreased for both dry and wet types in the aspect of expression pattern. From these genes, CFH, CX3CR1, FLT1, and TIMP3 were found to have the most downregulated gene expression properties for both diseases. From these results, it might be concluded that these common upregulated and downregulated genes could be used as targets for early diagnosis and treatment for AMD.
Collapse
|
19
|
Arranz-Romera A, Hernandez M, Checa-Casalengua P, Garcia-Layana A, Molina-Martinez IT, Recalde S, Young MJ, Tucker BA, Herrero-Vanrell R, Fernandez-Robredo P, Bravo-Osuna I. A Safe GDNF and GDNF/BDNF Controlled Delivery System Improves Migration in Human Retinal Pigment Epithelial Cells and Survival in Retinal Ganglion Cells: Potential Usefulness in Degenerative Retinal Pathologies. Pharmaceuticals (Basel) 2021; 14:ph14010050. [PMID: 33440745 PMCID: PMC7827036 DOI: 10.3390/ph14010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
We assessed the sustained delivery effect of poly (lactic-co-glycolic) acid (PLGA)/vitamin E (VitE) microspheres (MSs) loaded with glial cell-derived neurotrophic factor (GDNF) alone (GDNF-MSs) or combined with brain-derived neurotrophic factor (BDNF; GDNF/BDNF-MSs) on migration of the human adult retinal pigment epithelial cell-line-19 (ARPE-19) cells, primate choroidal endothelial (RF/6A) cells, and the survival of isolated mouse retinal ganglion cells (RGCs). The morphology of the MSs, particle size, and encapsulation efficiencies of the active substances were evaluated. In vitro release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability, terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labelling (TUNEL) apoptosis, functional wound healing migration (ARPE-19; migration), and (RF/6A; angiogenesis) assays were conducted. The safety of MS intravitreal injection was assessed using hematoxylin and eosin, neuronal nuclei (NeuN) immunolabeling, and TUNEL assays, and RGC in vitro survival was analyzed. MSs delivered GDNF and co-delivered GDNF/BDNF in a sustained manner over 77 days. The BDNF/GDNF combination increased RPE cell migration, whereas no effect was observed on RF/6A. MSs did not alter cell viability, apoptosis was absent in vitro, and RGCs survived in vitro for seven weeks. In mice, retinal toxicity and apoptosis was absent in histologic sections. This delivery strategy could be useful as a potential co-therapy in retinal degenerations and glaucoma, in line with future personalized long-term intravitreal treatment as different amounts (doses) of microparticles can be administered according to patients’ needs.
Collapse
Affiliation(s)
- Alicia Arranz-Romera
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
| | - Maria Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.G.-L.); (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Correspondence: (M.H.); (I.B.-O.)
| | - Patricia Checa-Casalengua
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
| | - Alfredo Garcia-Layana
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.G.-L.); (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Irene T. Molina-Martinez
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.G.-L.); (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Michael J. Young
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA;
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA;
| | - Rocío Herrero-Vanrell
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.G.-L.); (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Irene Bravo-Osuna
- Pharmaceutical Innovation in Ophthalmology (InnOftal), Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.-R.); (P.C.-C.); (I.T.M.-M.); (R.H.-V.)
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Correspondence: (M.H.); (I.B.-O.)
| |
Collapse
|
20
|
Kelada M, Hill D, Yap TE, Manzar H, Cordeiro MF. Innovations and revolutions in reducing retinal ganglion cell loss in glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2021.1835470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mary Kelada
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - Daniel Hill
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - M. Francesca Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| |
Collapse
|
21
|
Jun YH, Kim ST. Brain-derived neurotrophic factor in non-proliferative diabetic retinopathy with diabetic macular edema. Eur J Ophthalmol 2020; 31:1915-1919. [PMID: 32686489 DOI: 10.1177/1120672120944801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate aqueous humor (AH) and serum levels of brain-derived neurotrophic factor (BDNF) in non-proliferative diabetic retinopathy (NPDR) patients with diabetic macular edema (DME). METHODS The prospective study consists of 20 patients with DME NPDR, 20 patients with no-DME NPDR, and 20 healthy control subjects. Serum and AH samples were obtained during cataract surgery and intravitreal injection. Serum and AH levels of BDNF were measured by enzyme-linked immunosorbent assay. RESULTS The mean serum levels of BDNF were lower in both NPDR groups compared to the control group (DME NPDR group, p = 0.015; no-DME NPDR group, p = 0.024). Furthermore, the mean serum level of BDNF was lower in the DME NPDR group compared to the no-DME NPDR group (p = 0.041). The mean AH levels of BDNF were significantly reduced in both NPDR groups compared to the control group (DME NPDR group, p < 0.001; no-DME NPDR group, p = 0.006). Further, the mean AH level of BDNF was significantly lower in the DME NPDR group compared to the no-DME NPDR group (p = 0.037). CONCLUSION Serum and AH levels of BDNF were reduced in NPDR patients with DME than without DME.
Collapse
Affiliation(s)
- Yong Hyun Jun
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Seong Taeck Kim
- Department of Ophthalmology, School of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Kojima H, Raut B, Chen LJ, Nagai N, Abe T, Kaji H. A 3D Printed Self-Sustainable Cell-Encapsulation Drug Delivery Device for Periocular Transplant-Based Treatment of Retinal Degenerative Diseases. MICROMACHINES 2020; 11:mi11040436. [PMID: 32326233 PMCID: PMC7231335 DOI: 10.3390/mi11040436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023]
Abstract
Self-sustainable release of brain-derived neurotrophic factor (BDNF) to the retina using minimally invasive cell-encapsulation devices is a promising approach to treat retinal degenerative diseases (RDD). Herein, we describe such a self-sustainable drug delivery device with human retinal pigment epithelial (ARPE-19) cells (cultured on collagen coated polystyrene (PS) sheets) enclosed inside a 3D printed semi-porous capsule. The capsule was 3D printed with two photo curable polymers: triethylene glycol dimethacrylate (TEGDM) and polyethylene glycol dimethylacrylate (PEGDM). The capsule's semi-porous membrane (PEGDM) could serve three functions: protecting the cells from body's immune system by limiting diffusion (5.97 ± 0.11%) of large molecules like immunoglobin G (IgG)(150 kDa); helping the cells to survive inside the capsule by allowing diffusion (43.20 ± 2.16%) of small molecules (40 kDa) like oxygen and necessary nutrients; and helping in the treatment of RDD by allowing diffusion of cell-secreted BDNF to the outside environment. In vitro results showed a continuous BDNF secretion from the device for at least 16 days, demonstrating future potential of the cell-encapsulation device for the treatment of RDD in a minimally invasive and self-sustainable way through a periocular transplant.
Collapse
Affiliation(s)
- Hideto Kojima
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Bibek Raut
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (N.N.); (T.A.)
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (N.N.); (T.A.)
| | - Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan; (H.K.); (B.R.); (L.-J.C.)
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Correspondence: ; Tel.: +81-22-795-4249
| |
Collapse
|
23
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|