1
|
Ikeda HO, Hasegawa T, Abe H, Amino Y, Nakagawa T, Tada H, Miyata M, Oishi A, Morita S, Tsujikawa A. Efficacy and Safety of Branched Chain Amino Acids on Retinitis Pigmentosa: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Transl Vis Sci Technol 2024; 13:29. [PMID: 39150715 PMCID: PMC11343008 DOI: 10.1167/tvst.13.8.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
Purpose The aim of this study was to investigate the efficacy and safety of orally administered branched-chain amino acids (BCAAs) on disease progression in patients with retinitis pigmentosa (RP). Methods A double-blind, randomized, placebo-controlled study was conducted at the Kyoto University Hospital. Seventy patients with RP aged 20 years or above were randomly assigned to the TK-98 (a combination of BCAAs in granule form) or placebo group. One packet (4.15 g) of the study drug was administered orally thrice daily for 78 weeks. Results There was no significant difference in the rate of change in the total point score, the primary endpoint, between the TK-98 (-52.4 ± 10.3 dB/year) and placebo (-42.9 ± 13.8 dB/year) groups. Ellipsoid zone length decreased by -76.5 ± 8.9 and -95.5 ± 12.2 µm/year in the TK-98 and placebo groups, respectively; although this difference was not significant, the TK-98 group showed slower degeneration. No serious adverse events were associated with the oral administration of TK-98 in patients with RP. Conclusions This study did not yield conclusive evidence supporting BCAA combination granules' effectiveness in slowing visual field progression in patients with RP. An insignificant trend toward a slower reduction in ellipsoid zone length was found in morphological tests. Further studies are required to fully understand the potential benefits of BCAA supplementation in RP. Translational Relevance Our study demonstrates the safety of administering BCAAs to patients with RP. Accordingly, larger, more homogeneous clinical studies with longer durations may suggest their potential as therapeutic agents.
Collapse
Affiliation(s)
- Hanako O. Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroyasu Abe
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Yoko Amino
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Harue Tada
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Manabu Miyata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Satoshi Morita
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| |
Collapse
|
2
|
Kazek G, Głuch-Lutwin M, Mordyl B, Menaszek E, Kubacka M, Jurowska A, Cież D, Trzewik B, Szklarzewicz J, Papież MA. Vanadium Complexes with Thioanilide Derivatives of Amino Acids: Inhibition of Human Phosphatases and Specificity in Various Cell Models of Metabolic Disturbances. Pharmaceuticals (Basel) 2024; 17:229. [PMID: 38399444 PMCID: PMC10892041 DOI: 10.3390/ph17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the text, the synthesis and characteristics of the novel ONS-type vanadium (V) complexes with thioanilide derivatives of amino acids are described. They showed the inhibition of human protein tyrosine phosphatases (PTP1B, LAR, SHP1, and SHP2) in the submicromolar range, as well as the inhibition of non-tyrosine phosphatases (CDC25A and PPA2) similar to bis(maltolato)oxidovanadium(IV) (BMOV). The ONS complexes increased [14C]-deoxy-D-glucose transport into C2C12 myocytes, and one of them, VC070, also enhanced this transport in 3T3-L1 adipocytes. These complexes inhibited gluconeogenesis in hepatocytes HepG2, but none of them decreased lipid accumulation in the non-alcoholic fatty liver disease model using the same cells. Compared to the tested ONO-type vanadium complexes with 5-bromosalicylaldehyde and substituted benzhydrazides as Schiff base ligand components, the ONS complexes revealed stronger inhibition of protein tyrosine phosphatases, but the ONO complexes showed greater activity in the cell models in general. Moreover, the majority of the active complexes from both groups showed better effects than VOSO4 and BMOV. Complexes from both groups activated AKT and ERK signaling pathways in hepatocytes to a comparable extent. One of the ONO complexes, VC068, showed activity in all of the above models, including also glucose utilizatiand ONO Complexes are Inhibitors ofon in the myocytes and glucose transport in insulin-resistant hepatocytes. The discussion section explicates the results within the wider scope of the knowledge about vanadium complexes.
Collapse
Affiliation(s)
- Grzegorz Kazek
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Kubacka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Jurowska
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bartosz Trzewik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Janusz Szklarzewicz
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika A Papież
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
3
|
Meng J, Liu S, Gao L, Hong K, Liu S, Wu X. Economical production of Pichia pastoris single cell protein from methanol at industrial pilot scale. Microb Cell Fact 2023; 22:198. [PMID: 37770920 PMCID: PMC10540378 DOI: 10.1186/s12934-023-02198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Methanol, synthesized from CO2, is a potentially sustainable one-carbon (C1) resource for biomanufacturing. The use of methanol as a feedstock to produce single cell protein (SCP) has been investigated for decades as an alternative to alleviate the high global demand for animal-derived proteins. The methylotrophic yeast Pichia pastoris is an ideal host for methanol-based SCP synthesis due to its natural methanol assimilation ability. However, improving methanol utilization, tolerance to higher temperature, and the protein content of P. pastoris are also current challenges, which are of great significance to the economical industrial application using methanol as a feedstock for SCP production. RESULTS In the present work, adaptive laboratory evolution (ALE) has been employed to overcome the low methanol utilization efficiency and intolerance to a higher temperature of 33 °C in P. pastoris, associated with reduced carbon loss due to the lessened detoxification of intracellular formaldehyde through the dissimilation pathway and cell wall rearrangement to temperature stress resistance following long-term evolution as revealed by transcriptomic and phenotypic analysis. By strengthening nitrogen metabolism and impairing cell wall synthesis, metabolic engineering further increased protein content. Finally, the engineered strain via multi-strategy produced high levels of SCP from methanol in a pilot-scale fed-batch culture at 33 °C with a biomass of 63.37 g DCW/L, methanol conversion rate of 0.43 g DCW/g, and protein content of 0.506 g/g DCW. SCP obtained from P. pastoris contains a higher percentage of protein compared to conventional foods like soy, fish, meat, whole milk, and is a source of essential amino acids, including methionine, lysine, and branched-chain amino acids (BCAAs: valine, isoleucine, leucine). CONCLUSIONS This study clarified the unique mechanism of P. pastoris for efficient methanol utilization, higher temperature resistance, and high protein synthesis, providing a P. pastoris cell factory for SCP production with environmental, economic, and nutritional benefits.
Collapse
Affiliation(s)
- Jiao Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China
| | - Shufan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China
| | - Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China
| | - Kai Hong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China
| | - Shuguang Liu
- Ningxia Future Biotechnology Co., Ltd, Jingsan Road, Ningdong Linhe Industrial Zone, Ningdong Town, Ningxia, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308, Tianjin, Tianjin, China.
| |
Collapse
|
4
|
Lohkamp KJ, van den Hoek AM, Solé-Guardia G, Lisovets M, Alves Hoffmann T, Velanaki K, Geenen B, Verweij V, Morrison MC, Kleemann R, Wiesmann M, Kiliaan AJ. The Preventive Effect of Exercise and Oral Branched-Chain Amino Acid Supplementation on Obesity-Induced Brain Changes in Ldlr−/−.Leiden Mice. Nutrients 2023; 15:nu15071716. [PMID: 37049556 PMCID: PMC10097391 DOI: 10.3390/nu15071716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Exercise and dietary interventions are promising approaches to tackle obesity and its obesogenic effects on the brain. We investigated the impact of exercise and possible synergistic effects of exercise and branched-chain amino acids (BCAA) supplementation on the brain and behavior in high-fat-diet (HFD)-induced obese Ldlr−/−.Leiden mice. Baseline measurements were performed in chow-fed Ldlr−/−.Leiden mice to assess metabolic risk factors, cognition, and brain structure using magnetic resonance imaging. Thereafter, a subgroup was sacrificed, serving as a healthy reference. The remaining mice were fed an HFD and divided into three groups: (i) no exercise, (ii) exercise, or (iii) exercise and dietary BCAA. Mice were followed for 6 months and aforementioned tests were repeated. We found that exercise alone changed cerebral blood flow, attenuated white matter loss, and reduced neuroinflammation compared to non-exercising HFD-fed mice. Contrarily, no favorable effects of exercise on the brain were found in combination with BCAA, and neuroinflammation was increased. However, cognition was slightly improved in exercising mice on BCAA. Moreover, BCAA and exercise increased the percentage of epididymal white adipose tissue and muscle weight, decreased body weight and fasting insulin levels, improved the circadian rhythm, and transiently improved grip strength. In conclusion, BCAA should be supplemented with caution, although beneficial effects on metabolism, behavior, and cognition were observed.
Collapse
Affiliation(s)
- Klara J. Lohkamp
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Anita M. van den Hoek
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Gemma Solé-Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Maria Lisovets
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Talissa Alves Hoffmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Konstantina Velanaki
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
- Correspondence:
| |
Collapse
|