1
|
Zou Z, Li S, Zhang H. Advances in keratoconus animal models: From genetics to biomechanics. Exp Eye Res 2025; 254:110330. [PMID: 40081753 DOI: 10.1016/j.exer.2025.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/23/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Keratoconus is a disorder characterized by thinning and protrusion of the cornea into a cone shape, potentially leading to decreased vision and blindness. Understanding the pathogenesis of keratoconus and developing treatment strategies is crucial. Currently, animal models of keratoconus created through gene knockout and collagenase digestion have made significant progress in studying the pathogenesis of the disease. However, these models have limitations, such as unverified long-term effects. Future research should focus on optimizing the construction methods of animal models and enhancing long-term observation and evaluation to more accurately simulate human keratoconus. This paper reviews research progress on animal models of keratoconus, examining models constructed using methods such as gene editing, drug induction, cutting of corneal stroma, and mechanical stimulation.
Collapse
Affiliation(s)
- Zongzheng Zou
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Shanshan Li
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Haixia Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Moon L, Kaur P, Wang J, Sodhi A, Eberhart C, Soiberman U. Mechanical Strain of Corneal Epithelium Influences the Expression of Genes Implicated in Keratoconus. Invest Ophthalmol Vis Sci 2025; 66:52. [PMID: 39847367 PMCID: PMC11758933 DOI: 10.1167/iovs.66.1.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known. Here, we set out to determine how eye rubbing can influence keratoconus progression by exploring the expression of known disease markers in mechanically stressed corneal epithelial cells. Methods To explore the effects of mechanical stress on the expression of genes implicated in keratoconus (e.g. WNT10A, COL12A1, and TGFB1), we measured their expression using an in vitro model that simulates eye rubbing by cyclic stretching of an immortalized human corneal epithelial cell line (hTCEpi) for 16 hours. We further examined the influence of WNT10A expression in hTCEpi cells using loss-of-function approaches. Results Mechanical strain led to a marked reduction in WNT10A mRNA and protein expression, as well as decreased collagen XII mRNA and protein expression, in hTCEpi cells. Reduced expression of WNT10A protein in WNT10A knockdown cells resulted in reduced protein expression of collagens I and XII, and reduced mRNA expression of MMP9 and TGFB1. Conversely, primary keratocytes treated with recombinant WNT10A protein increased TGFB1 mRNA expression. Conclusions We provide a molecular explanation for how mechanical strain results in reduced expression of WNT10A in the corneal epithelium, which, in turn, leads to depletion of collagen type I and XII, and TGFβ1 expression. These results provide a molecular link among mechanical strain, WNT10A expression, and the biomechanical failure of the keratoconus cornea.
Collapse
Affiliation(s)
- Loren Moon
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States
| | - Pritpal Kaur
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States
| | - Jiangxia Wang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States
| | - Charles Eberhart
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States
| | - Uri Soiberman
- Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Yang X, Zhong X, Lin H, Huang AJW, Reneker LW. Deletion of Fgfr2 in Ductal Basal Epithelium With Tamoxifen Induces Obstructive Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 39546290 DOI: 10.1167/iovs.65.13.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose Fibroblast growth factor receptor 2 (Fgfr2) is crucial for the homeostasis of meibomian gland (MG). However, the role of Fgfr2 in MG ductal epithelial progenitors remains to be delineated. Herein, we created a new transgenic mouse model with conditional deletion of Fgfr2 from MG ductal progenitors and investigated the cell-specific role in the pathogenesis of obstructive meibomian gland dysfunction. Methods Peritoneal injection of tamoxifen (TAM) at 50 µg/gm for three consecutive days was performed to induce conditional deletion of Fgfr2 in two-month-old Krt5Fgfr2CKO or Krt5Fgfr2CKO-mTmG mice. Phenotypes of MG after Fgfr2 deletion were monitored by meibography, lipid staining, and immunostaining against keratin-6a in MG whole mounts. Lineage tracing of the Krt5+ progenitors of MG and biomarkers for ductal differentiation and proliferation were also examined by immunostainings. Results The Krt5Fgfr2CKO mice developed extensive ductal occlusion and acinar atrophy at day 10 after TAM administration. Robust thickening of ductal epithelium with abnormal differentiation and proliferation of ductal basal meibocytes were observed in the MGs of Krt5Fgfr2CKO mice. In Krt5Fgfr2CKO-mTmG mice, the Krt5+ progenitors and its progeny were labeled by EGFP after Fgfr2 depletion by TAM with evident expansion of the suprabasal and superficial layers of MG ductal epithelium when compared with the controls. Conclusions Our results substantiated the crucial role of Fgfr2 in homeostasis of the MG ductal epithelium. Deletion of Fgfr2 affects the MG ductal basal progenitors by impacting the differentiation of ductal meibocytes and the maintenance of acinar meibocytes, which are likely the underlying pathogenesis of obstructive MGD.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Andrew J W Huang
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Lixing W Reneker
- Mason Eye Institute, Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri, United States
| |
Collapse
|
4
|
Shankar S, Deshmukh R, Pingali T, Sonar R, Basu S, Singh V. Experimental models for keratoconus: Insights and challenges. Exp Eye Res 2024; 248:110122. [PMID: 39395558 DOI: 10.1016/j.exer.2024.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Keratoconus, a progressive corneal disorder characterized by the thinning and conical protrusion of the cornea because of collagen degradation, poses significant challenges to both clinicians and researchers. Most successful animal models of keratoconus are based on genetic mutations and knock-outs in mice and rats that hinder normal corneal stromal architecture, thickness, or strength. While mice and rat models are suitable to study the molecular mechanism and physiological changes to the cornea, they are not suitable for experimental research; especially for surgical interventions like: deep anterior lamellar keratoplasty (DALK), stromal lenticule addition keratoplasty, and other advanced therapies. This review article comprehensively examines recent advancements in experimental models for keratoconus, focusing on their potential for translational research and the challenges ahead. It explores the historical context of experimental models, focusing on animal-based models, mainly rabbits in particular. These advancements enable researchers to mimic the biomechanical and biochemical alterations observed in keratoconic corneas. While these models offer valuable insights into disease mechanisms and treatment development, several challenges remain in transforming experimental findings into clinical applications.
Collapse
Affiliation(s)
- Sujithra Shankar
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India
| | | | - Tejaswini Pingali
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India
| | - Rohini Sonar
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India; The Shantilal Shanghvi Cornea Institute, Hyderabad, India.
| | - Vivek Singh
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India.
| |
Collapse
|
5
|
Okoyeocha EOM, Tewari-Singh N. Chloropicrin induced ocular injury: Biomarkers, potential mechanisms, and treatments. Toxicol Lett 2024; 396:70-80. [PMID: 38677567 DOI: 10.1016/j.toxlet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Ocular tissue, especially the cornea, is overly sensitive to chemical exposures. The availability and adoption of chemical threat agent chloropicrin (CP) is growing in the United States as a pesticide and fumigant; thereby increasing the risk of its use in warfare, terrorist attacks and non-intentional exposure. Exposure to CP results in immediate ocular, respiratory, and dermal injury; however, we lack knowledge on its mechanism of toxicity as well as of its breakdown products like chlorine and phosgene, and effective therapies are elusive. Herein, we have reviewed the recent findings on exposure route, toxicity and likely mechanisms of CP induced ocular toxicity based on other vesicating chemical warfare agents that cause ocular injury. We have focused on the implication of their toxicity and mechanistic outcomes in the ocular tissue, especially the cornea, which could be useful in the development of broad-spectrum effective therapeutic options. We have discussed on the potential countermeasures, overall hallmarks and challenges involved in studying ocular injuries from chemical threat agent exposures. Finally, we reviewed useful available technologies and methods that can assist in the identification of effective medical countermeasures for chemical threat agents related ocular injuries.
Collapse
Affiliation(s)
- Ebenezar O M Okoyeocha
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Gong J, Ding G, Hao Z, Li Y, Deng A, Zhang C. Elucidating the mechanism of corneal epithelial cell repair: unraveling the impact of growth factors. Front Med (Lausanne) 2024; 11:1384500. [PMID: 38638937 PMCID: PMC11024251 DOI: 10.3389/fmed.2024.1384500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The repair mechanism for corneal epithelial cell injuries encompasses migration, proliferation, and differentiation of corneal epithelial cells, and extracellular matrix remodeling of the stromal structural integrity. Furthermore, it involves the consequential impact of corneal limbal stem cells (LSCs). In recent years, as our comprehension of the mediating mechanisms underlying corneal epithelial injury repair has advanced, it has become increasingly apparent that growth factors play a pivotal role in this intricate process. These growth factors actively contribute to the restoration of corneal epithelial injuries by orchestrating responses and facilitating specific interactions at targeted sites. This article systematically summarizes the role of growth factors in corneal epithelial cell injury repair by searching relevant literature in recent years, and explores the limitations of current literature search, providing a certain scientific basis for subsequent basic research and clinical applications.
Collapse
Affiliation(s)
- Jinjin Gong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Gang Ding
- Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Zhongkai Hao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Yuchun Li
- Wuxi No. 2 Chinese Medicine Hospital, Wuxi, China
| | - Aijun Deng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Chenming Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| |
Collapse
|
7
|
Hadvina R, Estes A, Liu Y. Animal Models for the Study of Keratoconus. Cells 2023; 12:2681. [PMID: 38067109 PMCID: PMC10705680 DOI: 10.3390/cells12232681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Keratoconus (KC) is characterized by localized, central thinning and cone-like protrusion of the cornea. Its precise etiology remains undetermined, although both genetic and environmental factors are known to contribute to disease susceptibility. Due to KC's complex nature, there is currently no ideal animal model to represent both the corneal phenotype and underlying pathophysiology. Attempts to establish a KC model have involved mice, rats, and rabbits, with some additional novel animals suggested. Genetic animal models have only been attempted in mice. Similarly, spontaneously occurring animal models for KC have only been discovered in mice. Models generated using chemical or environmental treatments have been attempted in mice, rats, and rabbits. Among several methods used to induce KC in animals, ultraviolet radiation exposure and treatment with collagenase are some of the most prevalent. There is a clear need for an experimental model animal to elucidate the underlying mechanisms behind the development and progression of keratoconus. An appropriate animal model could also aid in the development of treatments to slow or arrest the disorder.
Collapse
Affiliation(s)
- Rachel Hadvina
- Department of Cellular Biology & Anatomy, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Amy Estes
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|