1
|
Nghiem TAE, Witten JL, Dufour O, Harmening WM, Azeredo da Silveira R. Fixational eye movements as active sensation for high visual acuity. Proc Natl Acad Sci U S A 2025; 122:e2416266122. [PMID: 39903111 PMCID: PMC11831129 DOI: 10.1073/pnas.2416266122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
Perception and action are inherently entangled: our world view is shaped by how we explore our environment through complex and variable self-motion. Even when fixating stable stimuli, our eyes undergo small, involuntary movements. Fixational eye movements (FEM) render a stable world jittery on our retinae, which can be expected to harm neural coding. Yet, empirical evidence suggests that FEM help rather than harm human perception of fine detail. Here, we elucidate this paradox by uncovering under which conditions FEM improve or impair retinal coding and human acuity. We combine theory and experiment: model accuracy is directly compared to that of healthy human subjects in a visual acuity task. Acuity is modeled by applying an ideal Bayesian classifier to simulations of retinal spiking activity in the presence of FEM. In addition, empirical FEM are monitored using high-resolution eye-tracking by an adaptive optics scanning laser ophthalmoscope. FEM introduce variability in retinal ganglion cell activity, but they also effectively preprocess inputs to facilitate retinal information encoding. Based on an interplay of these mechanisms, our model predicts a relation between visual acuity, FEM amplitude, and single-trial stimulus size that quantitatively accounts for experimental observations and captures the beneficial effect of FEM. Moreover, we observe that while human subjects' FEM statistics vary with stimulus size, our model suggests that subjects' FEM amplitude remains within a near-optimal range, where acuity is enhanced compared to much larger or smaller amplitudes. Overall, our findings indicate that perception benefits from action even at the fine spatiotemporal scale of FEM.
Collapse
Affiliation(s)
- Trang-Anh E. Nghiem
- Département de Physique, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris75005, France
- Institute of Molecular and Clinical Ophthalmology Basel, Basel4031, Switzerland
| | - Jenny L. Witten
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn53127, Germany
| | - Oscar Dufour
- Département de Physique, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris75005, France
- Institute of Molecular and Clinical Ophthalmology Basel, Basel4031, Switzerland
| | - Wolf M. Harmening
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn53127, Germany
| | - Rava Azeredo da Silveira
- Département de Physique, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris75005, France
- Institute of Molecular and Clinical Ophthalmology Basel, Basel4031, Switzerland
- Faculty of Science, University of Basel, Basel4056, Switzerland
- Department of Economics, University of Zurich, Zurich8001, Switzerland
| |
Collapse
|
2
|
Meier K, Warner S, Spering M, Giaschi D. Poor fixation stability does not account for motion perception deficits in amblyopia. Sci Rep 2025; 15:3183. [PMID: 39863630 PMCID: PMC11762986 DOI: 10.1038/s41598-024-83624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/15/2024] [Indexed: 01/27/2025] Open
Abstract
People with amblyopia show deficits in global motion perception, especially at slow speeds. These observers are also known to have unstable fixation when viewing stationary fixation targets, relative to healthy controls. It is possible that poor fixation stability during motion viewing interferes with the fidelity of the input to motion-sensitive neurons in visual cortex. To probe these mechanisms at a behavioral level, we assessed motion coherence thresholds in adults with amblyopia while measuring fixation stability. Consistent with prior work, participants with amblyopia had elevated coherence thresholds for the slow speed stimuli, but not the fast speed stimuli, using either the amblyopic or the fellow eye. Fixation stability was elevated in the amblyopic eye relative to controls across all motion stimuli, and not selective for conditions on which perceptual deficits were observed. Fixation stability was not related to visual acuity, nor did it predict coherence thresholds. These results suggest that motion perception deficits might not be a result of poor input to the motion processing system due to unstable fixation, but rather due to processing deficits in motion-sensitive visual areas.
Collapse
Affiliation(s)
- Kimberly Meier
- College of Optometry, University of Houston, Houston, TX, USA.
| | - Simon Warner
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Miriam Spering
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Edwin S.H. Leong Center for Healthy Aging, Institute for Computing, Information, and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Jenks SK, Carrasco M, Poletti M. Asymmetries in foveal vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629715. [PMID: 39763996 PMCID: PMC11702834 DOI: 10.1101/2024.12.20.629715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Visual perception is characterized by known asymmetries in the visual field; human's visual sensitivity is higher along the horizontal than the vertical meridian, and along the lower than the upper vertical meridian. These asymmetries decrease with decreasing eccentricity from the periphery to the center of gaze, suggesting that they may be absent in the 1-deg foveola, the retinal region used to explore scenes at high-resolution. Using high-precision eyetracking and gaze-contingent display, allowing for accurate control over the stimulated foveolar location despite the continuous eye motion at fixation, we investigated fine visual discrimination at different isoeccentric locations across the foveola and parafovea. Although the tested foveolar locations were only 0.3 deg away from the center of gaze, we show that, similar to more eccentric locations, humans are more sensitive to stimuli presented along the horizontal than the vertical meridian. Whereas the magnitude of this asymmetry is reduced in the foveola, the magnitude of the vertical meridian asymmetry is comparable but, interestingly, reversed: objects presented slightly above the center of gaze are more easily discerned than when presented at the same eccentricity below the center of gaze. Therefore, far from being uniform, as often assumed, foveolar vision is characterized by perceptual asymmetries. Further, these asymmetries differ not only in magnitude but also in direction compared to those present just ~4deg away from the center of gaze, resulting in overall different foveal and extrafoveal perceptual fields.
Collapse
Affiliation(s)
- Samantha K. Jenks
- Department of Brain and Cognitive Sciences, University of Rochester
- Center for Visual Science, University of Rochester
| | - Marisa Carrasco
- Department of Psychology, New York University
- Center for Neural Science, New York University
| | - Martina Poletti
- Department of Brain and Cognitive Sciences, University of Rochester
- Department of Neuroscience, University of Rochester
- Center for Visual Science, University of Rochester
| |
Collapse
|
4
|
Witten JL, Lukyanova V, Harmening WM. Sub-cone visual resolution by active, adaptive sampling in the human foveola. eLife 2024; 13:RP98648. [PMID: 39468921 PMCID: PMC11521370 DOI: 10.7554/elife.98648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The foveated architecture of the human retina and the eye's mobility enables prime spatial vision, yet the interplay between photoreceptor cell topography and the constant motion of the eye during fixation remains unexplored. With in vivo foveal cone-resolved imaging and simultaneous microscopic photo stimulation, we examined visual acuity in both eyes of 16 participants while precisely recording the stimulus path on the retina. We find that resolution thresholds were correlated with the individual retina's sampling capacity, and exceeded what static sampling limits would predict by 18%, on average. The length and direction of fixational drift motion, previously thought to be primarily random, played a key role in achieving this sub-cone diameter resolution. The oculomotor system finely adjusts drift behavior towards retinal areas with higher cone densities within only a few hundred milliseconds to enhance retinal sampling.
Collapse
Affiliation(s)
- Jenny L Witten
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| | - Veronika Lukyanova
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| | - Wolf M Harmening
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| |
Collapse
|
5
|
Bowers NR, Gautier J, Chung STL, Banks MS, Roorda A. The preferred retinal loci when the eyes converge. J Vis 2024; 24:15. [PMID: 39312251 PMCID: PMC11440557 DOI: 10.1167/jov.24.9.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
The preferred retinal locus (PRL) is the position on the retina to which humans direct stimuli during fixation. In healthy normal eyes, it has been shown to be very stable across time and between different tasks. Previous measurements of the PRL have been made under monocular viewing conditions. The current study examines where the PRLs in the two eyes' retinas are when subjects fixate binocularly and whether they shift when the demand for the eyes to converge is changed. Our apparatus allows us to see exactly where binocular stimuli fell on the two retinas during binocular fixation. Thus, our technique bypasses some of the issues involved in measuring binocular alignment with subjective techniques and previous objective techniques that use conventional eye trackers. These results show that PRLs shift slightly but systematically as the demand for convergence increases. The shifts cause under-convergence (also called exo fixation disparity) for near targets. They are not large enough to cause a break in binocular fusion. The fixation disparity we observed with increasing vergence demand is similar to fixation disparity observed in previous reports.
Collapse
Affiliation(s)
- Norick R Bowers
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- https://vision.berkeley.edu/
| | - Josselin Gautier
- LTSI, Inserm UMR 1099, University of Rennes, France
- https://medicis.univ-rennes1.fr/
| | - Susana T L Chung
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Martin S Banks
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- https://vision.berkeley.edu/
| |
Collapse
|
6
|
Moon B, Linebach G, Yang A, Jenks SK, Rucci M, Poletti M, Rolland JP. High refresh rate display for natural monocular viewing in AOSLO psychophysics experiments. OPTICS EXPRESS 2024; 32:31142-31161. [PMID: 39573257 PMCID: PMC11595291 DOI: 10.1364/oe.529199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 11/27/2024]
Abstract
By combining an external display operating at 360 frames per second with an adaptive optics scanning laser ophthalmoscope (AOSLO) for human foveal imaging, we demonstrate color stimulus delivery at high spatial and temporal resolution in AOSLO psychophysics experiments. A custom pupil relay enables viewing of the stimulus through a 3-mm effective pupil diameter and provides refractive error correction from -8 to +4 diopters. Performance of the assembled and aligned pupil relay was validated by measuring the wavefront error across the field of view and correction range, and the as-built Strehl ratio was 0.64 or better. High-acuity stimuli were rendered on the external display and imaged through the pupil relay to demonstrate that spatial frequencies up to 54 cycles per degree, corresponding to 20/11 visual acuity, are resolved. The completed external display was then used to render fixation markers across the field of view of the monitor, and a continuous retinal montage spanning 9.4 by 5.4 degrees of visual angle was acquired with the AOSLO. We conducted eye-tracking experiments during free-viewing and high-acuity tasks with polychromatic images presented on the external display. Sub-arcminute eye position uncertainty was achieved over a 1.5 by 1.5-degree trackable range, enabling precise localization of the line of sight on the stimulus while simultaneously imaging the fine structure of the human central fovea. This high refresh rate display overcomes the temporal, spectral, and field of view limitations of AOSLO-based stimulus presentation, enabling natural monocular viewing of stimuli in psychophysics experiments conducted with AOSLO.
Collapse
Affiliation(s)
- Benjamin Moon
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Glory Linebach
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Angelina Yang
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Samantha K. Jenks
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Michele Rucci
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Martina Poletti
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
7
|
Murari J, Gautier J, Daout J, Krafft L, Senée P, Mecê P, Grieve K, Seiple W, Sheynikhovich D, Meimon S, Paques M, Arleo A. Foveolar Drusen Decrease Fixation Stability in Pre-Symptomatic AMD. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 38975944 PMCID: PMC11232898 DOI: 10.1167/iovs.65.8.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose This study aims at linking subtle changes of fixational eye movements (FEM) in controls and in patients with foveal drusen using adaptive optics retinal imaging in order to find anatomo-functional markers for pre-symptomatic age-related macular degeneration (AMD). Methods We recruited 7 young controls, 4 older controls, and 16 patients with presymptomatic AMD with foveal drusen from the Silversight Cohort. A high-speed research-grade adaptive optics flood illumination ophthalmoscope (AO-FIO) was used for monocular retinal tracking of fixational eye movements. The system allows for sub-arcminute resolution, and high-speed and distortion-free imaging of the foveal area. Foveal drusen position and size were documented using gaze-dependent imaging on a clinical-grade AO-FIO. Results FEM were measured with high precision (RMS-S2S = 0.0015 degrees on human eyes) and small foveal drusen (median diameter = 60 µm) were detected with high contrast imaging. Microsaccade amplitude, drift diffusion coefficient, and ISOline area (ISOA) were significantly larger for patients with foveal drusen compared with controls. Among the drusen participants, microsaccade amplitude was correlated to drusen eccentricity from the center of the fovea. Conclusions A novel high-speed high-precision retinal tracking technique allowed for the characterization of FEM at the microscopic level. Foveal drusen altered fixation stability, resulting in compensatory FEM changes. Particularly, drusen at the foveolar level seemed to have a stronger impact on microsaccade amplitudes and ISOA. The unexpected anatomo-functional link between small foveal drusen and fixation stability opens up a new perspective of detecting oculomotor signatures of eye diseases at the presymptomatic stage.
Collapse
Affiliation(s)
- Jimmy Murari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Josselin Gautier
- CHNO des Quinze-Vingts, INSERM-DGOS CIC, Paris, France
- LTSI, Inserm UMR 1099, University of Rennes, Rennes, France
| | - Joël Daout
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Léa Krafft
- Office National d'Etudes et de Recherches Aérospatiales (ONERA), Hauts-de-Seine, France
| | - Pierre Senée
- Office National d'Etudes et de Recherches Aérospatiales (ONERA), Hauts-de-Seine, France
- Quantel Medical SA, Cournon d'Auvergne, France
| | - Pedro Mecê
- Office National d'Etudes et de Recherches Aérospatiales (ONERA), Hauts-de-Seine, France
- Institut Langevin, CNRS, ESPCI, Paris, France
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC, Paris, France
| | | | | | - Serge Meimon
- Office National d'Etudes et de Recherches Aérospatiales (ONERA), Hauts-de-Seine, France
| | - Michel Paques
- CHNO des Quinze-Vingts, INSERM-DGOS CIC, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
8
|
Moon B, Linebach G, Yang A, Jenks SK, Rucci M, Poletti M, Rolland JP. High refresh rate display for natural monocular viewing in AOSLO psychophysics experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595808. [PMID: 38854135 PMCID: PMC11160679 DOI: 10.1101/2024.05.26.595808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
By combining an external display operating at 360 frames per second with an Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) for human foveal imaging, we demonstrate color stimulus delivery at high spatial and temporal resolution in AOSLO psychophysics experiments. A custom pupil relay enables viewing of the stimulus through a 3-mm effective pupil diameter and provides refractive error correction from -8 to +4 diopters. Performance of the assembled and aligned pupil relay was validated by measuring the wavefront error across the field of view and correction range, and the as-built Strehl ratio was 0.64 or better. High-acuity stimuli were rendered on the external display and imaged through the pupil relay to demonstrate that spatial frequencies up to 54 cycles per degree, corresponding to 20/11 visual acuity, are resolved. The completed external display was then used to render fixation markers across the field of view of the monitor, and a continuous retinal montage spanning 9.4 by 5.4 degrees of visual angle was acquired with the AOSLO. We conducted eye-tracking experiments during free-viewing and high-acuity tasks with polychromatic images presented on the external display. Sub-arcminute eye position uncertainty was achieved, enabling precise localization of the line of sight on the monitor while simultaneously imaging the fine structure of the human central fovea. This high refresh rate display overcomes the temporal, spectral, and field of view limitations of AOSLO-based stimulus presentation, enabling natural monocular viewing of stimuli in psychophysics experiments conducted with AOSLO.
Collapse
|
9
|
Johnston R, Smith MA. Brain-wide arousal signals are segregated from movement planning in the superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591284. [PMID: 38746466 PMCID: PMC11092505 DOI: 10.1101/2024.04.26.591284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The superior colliculus (SC) is traditionally considered a brain region that functions as an interface between processing visual inputs and generating eye movement outputs. Although its role as a primary reflex center is thought to be conserved across vertebrate species, evidence suggests that the SC has evolved to support higher-order cognitive functions including spatial attention. When it comes to oculomotor areas such as the SC, it is critical that high precision fixation and eye movements are maintained even in the presence of signals related to ongoing changes in cognition and brain state, both of which have the potential to interfere with eye position encoding and movement generation. In this study, we recorded spiking responses of neuronal populations in the SC while monkeys performed a memory-guided saccade task and found that the activity of some of the neurons fluctuated over tens of minutes. By leveraging the statistical power afforded by high-dimensional neuronal recordings, we were able to identify a low-dimensional pattern of activity that was correlated with the subjects' arousal levels. Importantly, we found that the spiking responses of deep-layer SC neurons were less correlated with this brain-wide arousal signal, and that neural activity associated with changes in pupil size and saccade tuning did not overlap in population activity space with movement initiation signals. Taken together, these findings provide a framework for understanding how signals related to cognition and arousal can be embedded in the population activity of oculomotor structures without compromising the fidelity of the motor output.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| | - Matthew A. Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
10
|
Khademi F, Zhang T, Baumann MP, Malevich T, Yu Y, Hafed ZM. Visual Feature Tuning Properties of Short-Latency Stimulus-Driven Ocular Position Drift Responses during Gaze Fixation. J Neurosci 2024; 44:e1815232024. [PMID: 38302441 PMCID: PMC10977026 DOI: 10.1523/jneurosci.1815-23.2024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Ocular position drifts during gaze fixation are significantly less well understood than microsaccades. We recently identified a short-latency ocular position drift response, of ∼1 min arc amplitude, that is triggered within <100 ms by visual onsets. This systematic eye movement response is feature-tuned and seems to be coordinated with a simultaneous resetting of the saccadic system by visual stimuli. However, much remains to be learned about the drift response, especially for designing better-informed neurophysiological experiments unraveling its mechanistic substrates. Here we systematically tested multiple new feature tuning properties of drift responses. Using highly precise eye tracking in three male rhesus macaque monkeys, we found that drift responses still occur for tiny foveal visual stimuli. Moreover, the responses exhibit size tuning, scaling their amplitude (both up and down) as a function of stimulus size, and they also possess a monotonically increasing contrast sensitivity curve. Importantly, short-latency drift responses still occur for small peripheral visual targets, which additionally introduce spatially directed modulations in drift trajectories toward the appearing peripheral stimuli. Drift responses also remain predominantly upward even for stimuli exclusively located in the lower visual field and even when starting gaze position is upward. When we checked the timing of drift responses, we found it was better synchronized to stimulus-induced saccadic inhibition than to stimulus onset. These results, along with a suppression of drift response amplitudes by peristimulus saccades, suggest that drift responses reflect the rapid impacts of short-latency and feature-tuned visual neural activity on final oculomotor control circuitry in the brain.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Tong Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Tatiana Malevich
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Yue Yu
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Liu R, Wang X, Hoshi S, Zhang Y. Substrip-based registration and automatic montaging of adaptive optics retinal images. BIOMEDICAL OPTICS EXPRESS 2024; 15:1311-1330. [PMID: 38404341 PMCID: PMC10890855 DOI: 10.1364/boe.514447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Precise registration and montage are critical for high-resolution adaptive optics retinal image analysis but are challenged by rapid eye movement. We present a substrip-based method to improve image registration and facilitate the automatic montaging of adaptive optics scanning laser ophthalmoscopy (AOSLO). The program first batches the consecutive images into groups based on a translation threshold and selects an image with minimal distortion within each group as the reference. Within each group, the software divides each image into multiple strips and calculates the Normalized Cross-Correlation with the reference frame using two substrips at both ends of the whole strip to estimate the strip translation, producing a registered image. Then, the software aligns the registered images of all groups also using a substrip based registration, thereby generating a montage with cell-for-cell precision in the overlapping areas of adjacent frames. The algorithm was evaluated with AOSLO images acquired in human subjects with normal macular health and patients with age-related macular degeneration (AMD). Images with a motion amplitude of up to 448 pixels in the fast scanner direction over a frame of 512 × 512 pixels can be precisely registered. Automatic montage spanning up to 22.6 degrees on the retina was achieved on a cell-to-cell precision with a low misplacement rate of 0.07% (11/16,501 frames) in normal eyes and 0.51% (149/29,051 frames) in eyes with AMD. Substrip based registration significantly improved AOSLO registration accuracy.
Collapse
Affiliation(s)
- Ruixue Liu
- Doheny Eye Institute, Pasadena, CA 91103, USA
| | | | - Sujin Hoshi
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA 90024, USA
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Yuhua Zhang
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
12
|
Sato W, Yoshikawa S. Influence of stimulus manipulation on conscious awareness of emotional facial expressions in the match-to-sample paradigm. Sci Rep 2023; 13:20727. [PMID: 38007578 PMCID: PMC10676436 DOI: 10.1038/s41598-023-47995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023] Open
Abstract
The conscious perception of emotional facial expressions plays an indispensable role in social interaction. However, previous psychological studies have reported inconsistent findings regarding whether conscious awareness is greater for emotional expressions than for neutral expressions. Furthermore, whether this phenomenon is attributable to emotional or visual factors remains unknown. To investigate these issues, we conducted five psychological experiments to test the conscious perception of emotional and neutral facial expressions using the match-to-sample paradigm. Facial stimuli were momentarily presented in the peripheral visual fields while participants read simultaneously presented letters in the central visual fields. The participants selected a perceived face from nine samples. The results of all experiments demonstrated that emotional expressions were more accurately identified than neutral expressions. Furthermore, Experiment 4 showed that angry expressions were identified more accurately than anti-angry expressions, which expressed neutral emotions with comparable physical changes to angry expressions. Experiment 5, testing the interaction between emotional expression and face direction, showed that angry expressions looking toward participants were more accurately identified than those looking away from participants, even though they were physically identical. These results suggest that the conscious awareness of emotional facial expressions is enhanced by their emotional significance.
Collapse
Affiliation(s)
- Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.
- Field Science Education and Research Center, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo, Kyoto, 606-8502, Japan.
| | - Sakiko Yoshikawa
- Field Science Education and Research Center, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo, Kyoto, 606-8502, Japan
- Faculty of the Arts, Kyoto University of the Arts, 2-116 Uryuyama, Kitashirakawa, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
13
|
González-Vides L, Hernández-Verdejo JL, Cañadas-Suárez P. Eye Tracking in Optometry: A Systematic Review. J Eye Mov Res 2023; 16:10.16910/jemr.16.3.3. [PMID: 38111688 PMCID: PMC10725735 DOI: 10.16910/jemr.16.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
This systematic review examines the use of eye-tracking devices in optometry, describing their main characteristics, areas of application and metrics used. Using the PRISMA method, a systematic search was performed of three databases. The search strategy identified 141 reports relevant to this topic, indicating the exponential growth over the past ten years of the use of eye trackers in optometry. Eye-tracking technology was applied in at least 12 areas of the field of optometry and rehabilitation, the main ones being optometric device technology, and the assessment, treatment, and analysis of ocular disorders. The main devices reported on were infrared light-based and had an image capture frequency of 60 Hz to 2000 Hz. The main metrics mentioned were fixations, saccadic movements, smooth pursuit, microsaccades, and pupil variables. Study quality was sometimes limited in that incomplete information was provided regarding the devices used, the study design, the methods used, participants' visual function and statistical treatment of data. While there is still a need for more research in this area, eye-tracking devices should be more actively incorporated as a useful tool with both clinical and research applications. This review highlights the robustness this technology offers to obtain objective information about a person's vision in terms of optometry and visual function, with implications for improving visual health services and our understanding of the vision process.
Collapse
|
14
|
Wang Y, Wong J, Duncan JL, Roorda A, Tuten WS. Enhanced S-Cone Syndrome: Elevated Cone Counts Confer Supernormal Visual Acuity in the S-Cone Pathway. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37459066 PMCID: PMC10362924 DOI: 10.1167/iovs.64.10.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose To measure photoreceptor packing density and S-cone spatial resolution as a function of retinal eccentricity in patients with enhanced S-cone syndrome (ESCS) and to discuss the possible mechanisms supporting their supernormal S-cone acuity. Methods We used an adaptive optics scanning laser ophthalmoscope (AOSLO) to characterize photoreceptor packing. A custom non-AO display channel was used to measure L/M- and S-cone-mediated visual acuity during AOSLO imaging. Acuity measurements were obtained using a four-alternative, forced-choice, tumbling E paradigm along the temporal meridian between the fovea and 4° eccentricity in five of six patients and in seven control subjects. L/M acuity was tested by presenting long-pass-filtered optotypes on a black background, excluding wavelengths to which S-cones are sensitive. S-cone isolation was achieved using a two-color, blue-on-yellow chromatic adaptation method that was validated on three control subjects. Results Inter-cone spacing measurements revealed a near-uniform cone density profile (ranging from 0.9-1.5 arcmin spacing) throughout the macula in ESCS. For comparison, normal cone density decreases by a factor of 14 from the fovea to 6°. Cone spacing of ESCS subjects was higher than normal in the fovea and subnormal beyond 2°. Compared to the control subjects (n = 7), S-cone-mediated acuities in patients with ESCS were normal near the fovea and became increasingly supernormal with retinal eccentricity. Beyond 2°, S-cone acuities were superior to L/M-cone-mediated acuity in the ESCS cohort, a reversal of the trend observed in normal retinas. Conclusions Higher than normal parafoveal cone densities (presumably dominated by S-cones) confer better than normal S-cone-mediated acuity in ESCS subjects.
Collapse
Affiliation(s)
- Yiyi Wang
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Jessica Wong
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
15
|
de Castro A, Martínez-Enríquez E, Marcos S. Effect of fixational eye movements in corneal topography measurements with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:2138-2152. [PMID: 37206127 PMCID: PMC10191639 DOI: 10.1364/boe.486460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/21/2023]
Abstract
There is an increasing interest in applying optical coherence tomography (OCT) to quantify the topography of ocular structures. However, in its most usual configuration, OCT data is acquired sequentially while a beam is scanned through the region of interest, and the presence of fixational eye movements can affect the accuracy of the technique. Several scan patterns and motion correction algorithms have been proposed to minimize this effect, but there is no consensus on the ideal parameters to obtain a correct topography. We have acquired corneal OCT images with raster and radial patterns, and modeled the data acquisition in the presence of eye movements. The simulations replicate the experimental variability in shape (radius of curvature and Zernike polynomials), corneal power, astigmatism, and calculated wavefront aberrations. The variability of the Zernike modes is highly dependent on the scan pattern, with higher variability in the direction of the slow scan axis. The model can be a useful tool to design motion correction algorithms and to determine the variability with different scan patterns.
Collapse
Affiliation(s)
- Alberto de Castro
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Madrid, Madrid, Spain
| | | | - Susana Marcos
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Madrid, Madrid, Spain
- Center for Visual Science, The Institute of Optics, Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| |
Collapse
|
16
|
Reeves SM, Otero-Millan J. The influence of scene tilt on saccade directions is amplitude dependent. J Neurol Sci 2023; 448:120635. [PMID: 37031623 DOI: 10.1016/j.jns.2023.120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
When exploring a visual scene, humans make more saccades in the horizontal direction than any other direction. While many have shown that the horizontal saccade bias rotates in response to scene tilt, it is unclear whether this effect depends on saccade amplitude. We addressed this question by examining the effect of image tilt on the saccade direction distributions recorded during freely viewing natural scenes. Participants (n = 20) viewed scenes tilted at -30°, 0°, and 30°. Saccade distributions during free viewing rotated by an angle of 12.1° ± 6.7° (t(19) = 8.04, p < 0.001) in the direction of the image tilt. When we partitioned the saccades according to their amplitude we found that small amplitude saccades occurred most in the horizontal direction while large amplitude saccades were more oriented to the scene tilt (p < 0.001). To further study the characteristics of small saccades and how they are affected by scene tilt, we looked at the effect of image tilt on small fixational saccades made while fixating a central target amidst a larger scene and found that fixational saccade distributions did not rotate with scene tilt (-0.3° ±1.7° degrees; t(19) = -0.8, p = 0.39). These results suggest a combined effect of two reference frames in saccade generation: one egocentric reference frame that dominates for small saccades, biases them horizontally, and may be common for different tasks, and another allocentric reference frame that biases larger saccades along the orientation of an image during free viewing.
Collapse
|
17
|
Hu X, Yang Q. Real-time correction of image rotation with adaptive optics scanning light ophthalmoscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1663-1672. [PMID: 36215635 DOI: 10.1364/josaa.465889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Fixational eye motion includes typical translation and torsion. In the registration of images from adaptive optics scanning light ophthalmoscopy (AOSLO), image rotation due to eye torsion and/or head rotation is often ignored because (a) the amount of rotation is trivial compared to translation within a short duration of imaging or recording time and (b) computational cost increases substantially when the registration algorithm involves simultaneous detection of rotation and translation. However, it becomes critically important under cases such as long exposure, functional measurements, and precise motion tracking. We developed a fast method to detect and correct rotation from AOSLO images, together with the detection of strip-level motion translation. The computational cost for rotation detection and correction alone is about 5 ms/frame (512×512 pixels) on an nVidia GTX960M GPU. Image quality is compared with and without rotation correction from 10 healthy human subjects and 8 diseased eyes with a total of 180 videos. The results show that residual image motions between the reference images and the registered images with rotation correction are a fraction of those without rotation correction, and the ratio is 0.74-0.89 at the image center and 0.37-0.51 at the four corners of the images.
Collapse
|
18
|
Roshandel D, Sampson DM, Mackey DA, Chen FK. Impact of Reference Center Choice on Adaptive Optics Imaging Cone Mosaic Analysis. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35446344 PMCID: PMC9034713 DOI: 10.1167/iovs.63.4.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Foveal center marking is a key step in retinal image analysis. We investigated the discordance between the adaptive optics (AO) montage center (AMC) and the foveal pit center (FPC) and its implications for cone mosaic analysis using a commercial flood-illumination AO camera. Methods Thirty eyes of 30 individuals (including 15 healthy and 15 patients with rod–cone dystrophy) were included. Spectral-domain optical coherence tomography was used to determine the FPC, and flood-illumination AO imaging was performed with overlapping image frames to create an AO montage. The AMC was determined by averaging the (0,0) coordinates in the four paracentral overlapping AO image frames. Cone mosaic measurements at various retinal eccentricities were compared between corresponding retinal loci relative to the AMC or FPC. Results AMCs were located temporally to the FPCs in 14 of 15 eyes in both groups. The average AMC–FPC discordance was 0.85° among healthy controls and 0.33° among patients with rod-cone dystrophy (P < 0.05). The distance of the AMC from the FPC was a significant determinant of the cone density (β estimate = 218 cells/deg2/deg; 95% confidence interval [CI], 107–330; P < 0.001) and inter-cone distance (β estimate = 0.28 arcmin/deg; 95% CI, 0.15–0.40; P < 0.001), after adjustment for age, sex, axial length, spherical equivalent, eccentricity, and disease status. Conclusions There is a marked mismatch between the AMC and FPC in healthy eyes that may be modified by disease process such as rod–cone dystrophy. We recommend users of AO imaging systems carefully align the AO montage with a foveal anatomical landmark, such as the FPC, to ensure precise and reproducible localization of the eccentricities and regions of interest for cone mosaic analysis.
Collapse
Affiliation(s)
- Danial Roshandel
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Danuta M Sampson
- Surrey Biophotonics, Centre for Vision, Speech and Signal Processing and School of Biosciences and Medicine, The University of Surrey, Guildford, United Kingdom
| | - David A Mackey
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| |
Collapse
|