1
|
Norte-Muñoz M, Portela-Lomba M, Sobrado-Calvo P, Simón D, Di Pierdomenico J, Gallego-Ortega A, Pérez M, Cabrera-Maqueda JM, Sierra J, Vidal-Sanz M, Moreno-Flores MT, Agudo-Barriuso M. Differential response of injured and healthy retinas to syngeneic and allogeneic transplantation of a clonal cell line of immortalized olfactory ensheathing glia: a double-edged sword. Neural Regen Res 2025; 20:2395-2407. [PMID: 39359096 PMCID: PMC11759016 DOI: 10.4103/nrr.nrr-d-23-01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/01/2023] [Accepted: 04/19/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00029/figure1/v/2024-09-30T120553Z/r/image-tiff Olfactory ensheathing glia promote axonal regeneration in the mammalian central nervous system, including retinal ganglion cell axonal growth through the injured optic nerve. Still, it is unknown whether olfactory ensheathing glia also have neuroprotective properties. Olfactory ensheathing glia express brain-derived neurotrophic factor, one of the best neuroprotectants for axotomized retinal ganglion cells. Therefore, we aimed to investigate the neuroprotective capacity of olfactory ensheating glia after optic nerve crush. Olfactory ensheathing glia cells from an established rat immortalized clonal cell line, TEG3, were intravitreally injected in intact and axotomized retinas in syngeneic and allogeneic mode with or without microglial inhibition or immunosuppressive treatments. Anatomical and gene expression analyses were performed. Olfactory bulb-derived primary olfactory ensheathing glia and TEG3 express major histocompatibility complex class II molecules. Allogeneically and syngenically transplanted TEG3 cells survived in the vitreous for up to 21 days, forming an epimembrane. In axotomized retinas, only the allogeneic TEG3 transplant rescued retinal ganglion cells at 7 days but not at 21 days. In these retinas, microglial anatomical activation was higher than after optic nerve crush alone. In intact retinas, both transplants activated microglial cells and caused retinal ganglion cell death at 21 days, a loss that was higher after allotransplantation, triggered by pyroptosis and partially rescued by microglial inhibition or immunosuppression. However, neuroprotection of axotomized retinal ganglion cells did not improve with these treatments. The different neuroprotective properties, different toxic effects, and different responses to microglial inhibitory treatments of olfactory ensheathing glia in the retina depending on the type of transplant highlight the importance of thorough preclinical studies to explore these variables.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - María Portela-Lomba
- Experimental Sciences Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Paloma Sobrado-Calvo
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Diana Simón
- Experimental Sciences Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Johnny Di Pierdomenico
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Mar Pérez
- Anatomy, Histology and Neuroscience Department, Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Cabrera-Maqueda
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
- Center of Neuroimmunology, Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona, Barcelona, Spain
| | - Javier Sierra
- Medicine Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - María Teresa Moreno-Flores
- Anatomy, Histology and Neuroscience Department, Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
2
|
Li J, Zeng Q. Trim9 regulates the directional differentiation of retinal Müller cells to retinal ganglion cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1561-1571. [PMID: 38432885 PMCID: PMC10929896 DOI: 10.11817/j.issn.1672-7347.2023.230108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Glaucoma is a leading cause of irreversible blindness, and effective therapies to reverse the visual system damage caused by glaucoma are still lacking. Recently, the stem cell therapy enable the repair and regeneration of the damaged retinal neurons, but challenges regarding the source of stem cells remain. This study aims to investigate a protocol that allows the dedifferentiation of Müller cells into retinal stem cells, following by directed differentiation into retinal ganglion cells with high efficiency, and to provide a new method of cellular acquisition for retinal stem cells. METHODS Epidermal cell growth factor and fibroblast growth factor 2 were used to induce the dedifferentiation of rat retinal Müller cells into retinal neural stem cells. Retinal stem cells derived from Müller cells were infected with a Trim9 overexpression lentiviral vector (PGC-FU-Trim9-GFP), and the efficiency of viral infection was assessed by fluorescence microscopy and flow cytometry. Retinoic acid and brain-derived neurotrophic factor treatments were used to induce the differentiation of the retinal stem cells into neurons and glial cells with or without the overexpression of Trim9. The expressions of each cellular marker (GLAST, GS, rhodopsin, PKC, HPC-1, Calbindin, Thy1.1, Brn-3b, Nestin, Pax6) were detected by immunofluorescence, PCR/real-time RT-PCR or Western blotting. RESULTS Rat retinal Müller cells expressed neural stem cells markers (Nestin and Pax6) with the treatment of epidermal cell growth factor and fibroblast growth factor 2. The Thy1.1 positive cell rate of retinal stem cells overexpressing Trim9 was significantly increased, indicating their directional differentiation into retinal ganglion cells after treatment with retinoic acid and brain-derived neurotrophic factor. CONCLUSIONS In this study, rat retinal Müller cells are dedifferentiated into retinal stem cells successfully, and Trim9 promotes the directional differentiation from retinal stem cells to retinal ganglion cells effectively.
Collapse
Affiliation(s)
- Jinxiang Li
- Department of Ophthalmology, First Hospital Affiliated with Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, China.
| | - Qi Zeng
- Department of Ophthalmology, First Hospital Affiliated with Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, China.
| |
Collapse
|
3
|
Cell-Based Neuroprotection of Retinal Ganglion Cells in Animal Models of Optic Neuropathies. BIOLOGY 2021; 10:biology10111181. [PMID: 34827174 PMCID: PMC8615038 DOI: 10.3390/biology10111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells (RGCs) comprise a heterogenous group of projection neurons that transmit visual information from the retina to the brain. Progressive degeneration of these cells, as it occurs in inflammatory, ischemic, traumatic or glaucomatous optic neuropathies, results in visual deterioration and is among the leading causes of irreversible blindness. Treatment options for these diseases are limited. Neuroprotective approaches aim to slow down and eventually halt the loss of ganglion cells in these disorders. In this review, we have summarized preclinical studies that have evaluated the efficacy of cell-based neuroprotective treatment strategies to rescue retinal ganglion cells from cell death. Intraocular transplantations of diverse genetically nonmodified cell types or cells engineered to overexpress neurotrophic factors have been demonstrated to result in significant attenuation of ganglion cell loss in animal models of different optic neuropathies. Cell-based combinatorial neuroprotective approaches represent a potential strategy to further increase the survival rates of retinal ganglion cells. However, data about the long-term impact of the different cell-based treatment strategies on retinal ganglion cell survival and detailed analyses of potential adverse effects of a sustained intraocular delivery of neurotrophic factors on retina structure and function are limited, making it difficult to assess their therapeutic potential.
Collapse
|
4
|
Garcia-Herranz D, Rodrigo MJ, Subias M, Martinez-Rincon T, Mendez-Martinez S, Bravo-Osuna I, Bonet A, Ruberte J, Garcia-Feijoo J, Pablo L, Garcia-Martin E, Herrero-Vanrell R. Novel Use of PLGA Microspheres to Create an Animal Model of Glaucoma with Progressive Neuroretinal Degeneration. Pharmaceutics 2021; 13:pharmaceutics13020237. [PMID: 33567776 PMCID: PMC7915113 DOI: 10.3390/pharmaceutics13020237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Progressive degeneration of neuroretinal tissue with maintained elevated intraocular pressure (IOP) to simulate chronic glaucoma was produced by intracameral injections of poly (lactic-co-glycolic) acid (PLGA) microspheres (Ms) in rat eyes. The right eye of 39 rats received different sizes of PLGA-Ms (2 µL suspension; 10% w/v): 14 with 38–20 µm Ms (Ms38/20 model) and 25 with 20–10 µm particles (Ms20/10 model). This novel glaucoma animal model was compared to the episcleral vein sclerosis (EPI) model (25 eyes). Injections were performed at baseline, two, four and six weeks. Clinical signs, IOP, retina and optic nerve thicknesses (using in vivo optical coherence tomography; OCT), and histological studies were performed. An IOP increment was observed in all three groups, however, the values obtained from the PLGA-Ms injection resulted lower with a better preservation of the ocular surface. In fact, the injection of Ms20/10 created a gentler, more progressive, and more sustained increase in IOP. This IOP alteration was correlated with a significant decrease in most OCT parameters and in histological ganglion-cell count for the three conditions throughout the eight-week follow-up. In all cases, progressive degeneration of the retina, retinal ganglion cells and optic nerve, simulating chronic glaucoma, was detected by OCT and corroborated by histological study. Results showed an alternative glaucoma model to the well-known episcleral vein model, which was simpler to perform, more reproducible and easier to monitor in vivo.
Collapse
Affiliation(s)
- David Garcia-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM, 28040 Madrid, Spain; (D.G.-H.); (I.B.-O.); (J.G.-F.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Maria Jesus Rodrigo
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM, 28040 Madrid, Spain; (D.G.-H.); (I.B.-O.); (J.G.-F.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Aina Bonet
- Center for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.B.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesus Ruberte
- Center for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.B.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Julian Garcia-Feijoo
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM, 28040 Madrid, Spain; (D.G.-H.); (I.B.-O.); (J.G.-F.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Luis Pablo
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Elena Garcia-Martin
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM, 28040 Madrid, Spain; (D.G.-H.); (I.B.-O.); (J.G.-F.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-1739; Fax: +34-91-394-1736
| |
Collapse
|
5
|
Wang J, Zhao J, Li S. Research progress on the therapeutic effect of olfactory ensheathing cell transplantation on ischemic stroke. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are a special type of glial cell in the olfactory system, which exhibit neuroprotective, immunomodulatory, and angiogenic effects. Although many studies have focused on the reversal of demyelination and axonal degeneration (during spinal cord injury) by OECs, few reports have focused on the ability of OECs to repair ischemic nerve injury. This article reviews the protective effects of OEC transplantation in ischemic stroke and provides a theoretical basis and new strategy for OEC transplantation in the treatment of ischemic stroke.
Collapse
|
6
|
Hua ZQ, Liu H, Wang N, Jin ZB. Towards stem cell-based neuronal regeneration for glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 257:99-118. [PMID: 32988476 DOI: 10.1016/bs.pbr.2020.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glaucoma is a neurodegenerative disease as a leading cause of global blindness. Retinal ganglion cell (RGC) apoptosis and optic nerve damage are the main pathological changes. Patients have elevated intraocular pressure and progressive visual field loss. Unfortunately, current treatments for glaucoma merely stay at delaying the disease progression. As a promising treatment, stem cell-based neuronal regeneration therapy holds potential for glaucoma, thereby great efforts have been paid on it. RGC regeneration and transplantation are key approaches for the future treatment of glaucoma. A line of studies have shown that a variety of cells can be used to regenerate RGCs, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In this review, we overview the current progress on the regeneration of pluripotent stem cell-derived RGCs and outlook the perspective and challenges in this field.
Collapse
Affiliation(s)
- Zi-Qi Hua
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Liu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
7
|
Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020; 77:100840. [PMID: 31982595 DOI: 10.1016/j.preteyeres.2020.100840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Neuroretinal rim thinning (NRR) is a characteristic glaucomatous optic disc change. However, the precise mechanism of the rim thinning has not been completely elucidated. This review focuses on the structural role of the glioarchitecture in the formation of the glaucomatous NRR thinning. The NRR is a glia-framed structure, with honeycomb geometry and mechanically reinforced astrocyte processes along the transverse plane. When neural damage selectively involves the neuron and spares the glia, the gross structure of the tissue is preserved. The disorganization and loss of the glioarchitecture are the two hallmarks of optic nerve head (ONH) remodeling in glaucoma that leads to the thinning of NRR tissue upon axonal loss. This is in contrast to most non-glaucomatous optic neuropathies with optic disc pallor where hypertrophy of the glioarchitecture is associated with the seemingly absent optic disc cupping. Arteritic anterior ischemic optic neuropathy is an exception where pan-necrosis of ONH tissue leads to NRR thinning. Milder ischemia indicates selective neuronal loss that spares glia in non-arteritic anterior ischemic optic neuropathy. The biological reason is the heterogeneous glial response determined by the site, type, and severity of the injury. The neuroglial interpretation explains how the cellular changes underlie the clinical findings. Updated understandings on glial responses illustrate the mechanical, microenvironmental, and microglial modulation of activated astrocytes in glaucoma. Findings relevant to the possible mechanism of the astrocyte death in advanced glaucoma are also emerging. Ultimately, a better understanding of glaucomatous glial response may lead to glia-targeting neuroprotection in the future.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
8
|
Xie J, Li Y, Dai J, He Y, Sun D, Dai C, Xu H, Yin ZQ. Olfactory Ensheathing Cells Grafted Into the Retina of RCS Rats Suppress Inflammation by Down-Regulating the JAK/STAT Pathway. Front Cell Neurosci 2019; 13:341. [PMID: 31402855 PMCID: PMC6670006 DOI: 10.3389/fncel.2019.00341] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/11/2019] [Indexed: 01/23/2023] Open
Abstract
The inflammatory microenvironment in the retina plays a vital role in the pathogenesis and progression of retinitis pigmentosa (RP). Microglial inflammatory cytokines production leads to gliosis and apoptosis of retinal neurons, and ultimately, visual loss. Cell-based therapies using grafted olfactory ensheathing cells (OECs) have demonstrated modulation of degenerative microenvironments in the central nervous system (CNS), in a number of animal models. However, mechanisms by which grafted OECs can reduce degeneration in the retina are not well understood. In the present study, we set up an in vitro OEC/BV2 microglia co-culture system, and an in vivo royal college of surgeons (RCS) rat model, used cell transplantation, immunohistochemistry, RT-PCR, western blot to explore the mechanisms by which OECs affect expression of pro- or anti-inflammatory cytokines and polarization of M(IL-6) and M(Arg1) type microglial activation in the retina. We found that compared with the LPS (Lipopolysaccharide) and olfactory nerve fibroblast (ONF), the OEC and BV2 co-culture group modulate microglial cytokines releasing toward the anti-inflammation, and away from the pro-inflammation, which was followed by higher IL-4 and IL-10 and lower TNF-a and IL-6 in their expression levels. In vivo, the transplantation group significantly reduced activated resident microglia/infiltrated macrophage, and expression of pro-inflammatory cytokines in RCS rats retina, increased anti-inflammatory cytokines in transplantation area. Additionally, we found that OECs expressed SOCS3 and down-regulated the JAK2/STAT3 (Janus Kinase 2/Signal Transducer and Activator of Transcription 3) pathway. Thirdly, OEC transplantation reduced Caspase-3 expression, protected inner retinal neurons and photoreceptors and therefore, delayed the visual function degeneration. In conclusion, our data suggest that OECs delay retinal degeneration in RP, at least in part through immunomodulation of microglia via the JAK/STAT pathway.
Collapse
Affiliation(s)
- Jing Xie
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yijian Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Jiaman Dai
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yan He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Dayu Sun
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Chao Dai
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| | - Zheng Qin Yin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Laboratory of Visual Damage, Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
9
|
Dai C, Xie J, Dai J, Li D, Khaw PT, Yin Z, Huo S, Collins A, Raisman G, Li Y. Transplantation of cultured olfactory mucosal cells rescues optic nerve axons in a rat glaucoma model. Brain Res 2019; 1714:45-51. [PMID: 30771317 DOI: 10.1016/j.brainres.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE To determine whether transplantation of olfactory mucosal cells (OMCs) is able to rescue the loss of optic nerve axons after the intraocular pressure (IOP) is elevated in rats. METHODS The IOP was raised by injection of magnetic microspheres into the anterior chamber of the eye. OMCs cultured from the adult olfactory mucosa were transplanted into the region of the optic disc. RESULTS We demonstrated that although the raised IOP returned to its normal level at six weeks, there was an irreversible 58% loss of optic nerve axons in the control group. However, the loss of the axons was reduced to 23% in the group with the transplanted OMCs. The Pattern Electroretinograms (pERG) showed that the decrement of the voltage amplitudes in association with the raised IOP was significantly alleviated in the group with transplantation of OMC. CONCLUSIONS Transplantation of OMCs is able to rescue loss of optic nerve axons induced by raised IOP in the rats. The pERG recording suggested that the functional activities of the axons are also protected. TRANSLATIONAL RELEVANCE The results demonstrated the ability of the transplanted OMCs to protect against the loss of the optic nerve axons and the loss of function caused by raised IOPs. The findings provide a basis for future human clinical trials by autografting OMCs from autologous nasal epithelial biopsies to treat or delay glaucoma diseases.
Collapse
Affiliation(s)
- Chao Dai
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China; Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Qingdao Xin Shi Jie Eye Hospital, Qingdao 266000, People's Republic of China
| | - Jing Xie
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Jiaman Dai
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Daqing Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peng T Khaw
- The National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Zhengqin Yin
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Shujia Huo
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China; Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrew Collins
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Geoffrey Raisman
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
10
|
Collins A, Li D, McMahon SB, Raisman G, Li Y. Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses During Recovery From Dorsal Root Avulsion in the Rat. Cell Transplant 2017; 26:913-924. [PMID: 28337957 DOI: 10.3727/096368917x695353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The central branches of the C7 and C8 dorsal roots were avulsed close to their entry point into the spinal cord in adult rats. The forepaw responses to heat and cold stimuli were tested at 1, 2, and 3 weeks after injury. Over this period, the paws were sensitive to both stimuli at 1-2 weeks and returned toward normal at 3 weeks. Immunohistology showed no evidence of axonal regeneration into the spinal cord in a control group of rats with avulsion only, implying that adjacent dorsal roots and their corresponding dermatomes were involved in the recovery. In a further group of rats, a mixture of bulbar olfactory ensheathing cells and olfactory nerve fibroblasts were transplanted into the gap between the avulsed roots and the spinal cord at the time of avulsion. These rats showed no evidence of either loss of sensation or exaggerated responses to stimuli at any of the time points from 1 to 3 weeks. Immunohistology showed that the transplanted cells formed a complete bridge, and the central branches of the dorsal root fibers had regenerated into the dorsal horn of the spinal cord. These regenerating axons, including Tuj1 and CGRP immunoreactive fibers, were ensheathed by the olfactory ensheathing cells. This confirms our previous demonstration of central regeneration by these transplants and suggests that such transplants may provide a useful means to prevent the development of abnormal sensations such as allodynia after spinal root lesions.
Collapse
|
11
|
Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat. Neurochem Res 2017; 42:1599-1609. [PMID: 28120153 DOI: 10.1007/s11064-016-2098-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 02/08/2023]
Abstract
Effective transplant-mediated repair of ischemic brain lesions entails extensive tissue remodeling, especially in the ischemic core. Neural stem cells (NSCs) are promising reparative candidates for stroke induced lesions, however, their survival and integration with the host-tissue post-transplantation is poor. In this study, we address this challenge by testing whether co-grafting of NSCs with olfactory ensheathing cells (OECs), a special type of glia with proven neuroprotective, immunomodulatory, and angiogenic effects, can promote graft survival and host tissue remodelling. Transient focal cerebral ischemia was induced in adult rats by a 60-min middle cerebral artery occlusion (MCAo) followed by reperfusion. Ischemic lesions were verified by neurological testing and magnetic resonance imaging. Transplantation into the globus pallidus of NSCs alone or in combination with OECs was performed at two weeks post-MCAo, followed by histological analyses at three weeks post-transplantation. We found evidence of extensive vascular remodelling in the ischemic core as well as evidence of NSC motility away from the graft and into the infarct border in severely lesioned animals co-grafted with OECs. These findings support a possible role of OECs as part of an in situ tissue engineering paradigm for transplant mediated repair of ischemic brain lesions.
Collapse
|
12
|
Risk factors for open-angle glaucoma in Nigeria: results from the Nigeria National Blindness and Visual Impairment Survey. BMC Ophthalmol 2016; 16:78. [PMID: 27267038 PMCID: PMC4895902 DOI: 10.1186/s12886-016-0264-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The glaucoma-specific blindness prevalence in Nigeria (0.7 %, 95 % CI 0.6-0.9 %) among those aged ≥40 years is one of the highest ever reported. This study determined the risk factors for open-angle glaucoma (OAG) in adults examined in the Nigeria National Blindness and Visual Impairment Survey. METHODS A nationally representative sample of 13,591 people aged ≥40 years in 305 clusters in Nigeria were examined (response rate 90.4 %) between January 2005 to June 2007. Everyone had logMAR visual acuity measurement, Frequency Doubling Technology (FDT) visual field testing, autorefraction, A-scan biometry and optic disc assessment. Full ocular examination (n = 6397), included Goldmann applanation tonometry. Values for defining glaucoma using International Society of Geographical and Epidemiological Ophthalmology criteria were derived from the study population. Disc images were graded by Moorfields Eye Hospital Reading Centre. Socio-demographic factors (age, gender, ethnicity, literacy and place of residence), ocular parameters (intraocular pressure [IOP], axial length and mean ocular perfusion pressure [MOPP]) and systemic parameters (blood pressure, blood glucose and body mass index [BMI]) were assessed for association with OAG. RESULTS Thirteen thousand eighty-one (96 %) of 13,591 participants had vertical cup:disc ratio measured in at least one eye. 682 eyes of 462 participants were classified as OAG, with 12,738 controls. In univariate analyses the following were associated with OAG: increasing age, male gender, Igbo and Yoruba ethnic groups, illiteracy, longer axial length, higher IOP, lower MOPP, greater severity of hypertension and low BMI (underweight). In multivariate analysis, increasing age (odds ratio [OR] 1.04, 95 % CI 1.03-1.05), higher IOP (OR 1.22, 95 % CI 1.18-1.25) and Igbo ethnicity (OR 1.73, 95 % CI 1.18-2.56) were independent risk factors for OAG. CONCLUSION Case detection strategies for OAG should be improved for those aged ≥40 years and for ethnic groups most at risk as a public health intervention.
Collapse
|
13
|
Predegenerated Schwann cells--a novel prospect for cell therapy for glaucoma: neuroprotection, neuroregeneration and neuroplasticity. Sci Rep 2016; 6:23187. [PMID: 27034151 PMCID: PMC4817039 DOI: 10.1038/srep23187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is an optic neuropathy that leads to irreversible blindness. Because the current therapies are not sufficient to protect against glaucoma-induced visual impairment, new treatment approaches are necessary to prevent disease progression. Cell transplantation techniques are currently considered to be among the most promising opportunities for nervous system damage treatment. The beneficial effects of undifferentiated cells have been investigated in experimental models of glaucoma, however experiments were accompanied by various barriers, which would make putative treatment difficult or even impossible to apply in a clinical setting. The novel therapy proposed in our study creates conditions to eliminate some of the identified barriers described for precursor cells transplantation and allows us to observe direct neuroprotective and pro-regenerative effects in ongoing optic neuropathy without additional modifications to the transplanted cells. We demonstrated that the proposed novel Schwann cell therapy might be promising, effective and easy to apply, and is safer than the alternative cell therapies for the treatment of glaucoma.
Collapse
|
14
|
A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure. Sci Rep 2014; 4:5910. [PMID: 25081302 PMCID: PMC4118189 DOI: 10.1038/srep05910] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/01/2014] [Indexed: 11/08/2022] Open
Abstract
Glaucoma is a chronic disease that causes structural and functional damage to retinal ganglion cells (RGC). The currently employed therapeutic options are not sufficient to prevent vision loss in patients with glaucoma; therefore, there is a need to develop novel therapies, which requires the creation of functional, repeatable and easy-to-utilize animal models for use in pre-clinical studies. The currently available models ensure only low to moderate damage in optic nerves, with high variation in the outcomes and poor repeatability. We have developed an effective and reproducible rat glaucoma model based on a previous idea for a "Bead Model" in mice, which could be useful in future glaucoma research. Additionally, in an attempt to achieve rapid elevation of Intraocular Pressure (IOP), we included an initial "high-pressure injury" as part of this method, which serves as the equivalent of a severe glaucoma attack. These modifications made it possible to achieve longer lasting IOP elevation with chronic damage of retinal ganglion cells.
Collapse
|
15
|
Zarbin MA, Arlow T, Ritch R. Regenerative nanomedicine for vision restoration. Mayo Clin Proc 2013; 88:1480-90. [PMID: 24290123 DOI: 10.1016/j.mayocp.2013.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
Herein, we discuss recent applications of nanotechnology to ophthalmology, including nanoparticles for drug, gene, and trophic factor delivery; regenerative medicine (in the areas of optogenetics and optic nerve regeneration); and diagnostics (eg, minimally invasive biometric monitoring). Specific applications for the management of choroidal neovascularization, retinal neovascularization, oxidative damage, optic nerve damage, and retinal degenerative disease are considered. Nanotechnology will play an important role in early- and late-stage interventions in the management of blinding diseases.
Collapse
Affiliation(s)
- Marco A Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, Rutgers University, Newark, NJ.
| | | | | |
Collapse
|