1
|
Kumar NR, Khamar P, Kannan R, Padmanabhan A, Shetty R, D'Souza S, Vaidya T, Sethu S, Ghosh A. Distinct Ocular Surface Microbiome in Keratoconus Patients Correlate With Local Immune Dysregulation. Invest Ophthalmol Vis Sci 2025; 66:60. [PMID: 39869087 PMCID: PMC11771523 DOI: 10.1167/iovs.66.1.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/14/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Keratoconus (KC) is characterized by irregular astigmatism along with corneal stromal weakness and is associated with altered immune status. Tissue resident microbiomes are known to influence the immune status in other organs, but such a nexus has not been described in ocular conditions. Therefore, we examined the ocular surface microbiome of patients with KC and correlated it to the immune cell and tear molecular factor profiles. Methods Sixty-two patients with KC and 21 healthy controls underwent corneal topography analysis and eye examination followed by a collection of Schirmer's strip, ocular surface wash, and ocular surface swabs. Microbiomes were analyzed by extracting DNA from the swabs followed by 16S rRNA gene V3-V4 amplicon sequencing and analyzed using QIIME. Fifty-two molecular factors from Schirmer's strip tear extracts and 11 immune cells from ocular wash were measured using multiplex ELISA and flow cytometry. Alpha diversity, linear discriminant analysis effect size (LEfSe), relative abundance and receiver operating characteristic - area under the curve (ROC-AUC) analysis were performed. Unsupervised clustering at the genus level with clinical parameters, soluble factors, and immune cells was performed. Results Fifty-two phyla/class, 132 order, 283 family, and 718 genera were identified in our cohort. Alpha diversity indices were comparable between patients with KC and the healthy controls. Dominant phyla across groups were Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes. Alphaproteobacteria increased in KC eyes whereas Actinobacteria, Firmicutes_Bacilli reduced compared with the healthy controls. We found a significant positive correlation of Microbacterium, Cutibacterium, and Brevundimonas genera abundance with keratometry and corneal thickness. Levels of IL-21, IL-9, Fractalkine, and VEGF positively correlated with Tetrasphaera (P < 0.05). β2-microglobulin and CD66bhigh cells correlated with Bacteroides (P < 0.05). CD45+ cells correlated with Escherichia_Shigella (P < 0.02). Conclusions We discovered a unique microbiome signature of KC which correlated to disease grades and secreted molecular factors and immune cells. Therefore, the altered microbiome on the ocular surface may drive immune dysregulation in KC and provide scope for potential interventions in the future.
Collapse
Affiliation(s)
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Ramaraj Kannan
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India
| | | | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India
| |
Collapse
|
2
|
Cheng KKW, Fingerhut L, Duncan S, Prajna NV, Rossi AG, Mills B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog Retin Eye Res 2024; 102:101287. [PMID: 39004166 DOI: 10.1016/j.preteyeres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK. However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.
Collapse
Affiliation(s)
- Kelvin Kah Wai Cheng
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Leonie Fingerhut
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Bethany Mills
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Lin J, Wang J, Feng J, Zhu R, Guo Y, Dong Y, Zhang H, Jin X. Changes in the ocular surface microbiome of patients with coronavirus disease 2019 (COVID-19). Front Microbiol 2024; 15:1389139. [PMID: 39040901 PMCID: PMC11262004 DOI: 10.3389/fmicb.2024.1389139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose To elucidate the reasons behind the increased incidence of ocular disease in patients with coronavirus disease 2019 (COVID-19), this study delved deeper into the specific effects of COVID-19 on patients' ocular surface microbiome (OSM) and investigated its relationship with the increased incidence of ocular disease. Methods In this study, conjunctival sac swabs were collected from 43 participants for 16S rRNA amplicon sequencing. The participants were categorized into three groups based on their COVID-19 status: the control group (C group) consisted of 15 participants who showed no evidence of COVID-19, the experimental group (E group) included 15 participants who tested positive for COVID-19, and the COVID-19 recovery period group (R group) comprised 13 participants. Results In the comparison of alpha diversity, group E had a higher Shannon, Chao1 and Goods coverage index. When comparing beta diversity, groups E and R were more similar to each other. At the phylum level, although the OSM of the three groups was dominated by Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes, the compositional proportions were significantly different. At the genus level, the dominant species in the three OSM groups were significantly different, with Pseudomonas becoming the dominant genus in groups E and R compared to group C, and the abundance of Ralstonia decreasing significantly. Conclusion This study provides additional evidence supporting the association between the OSM and COVID-19, which contributes to our understanding of the potential mechanisms underlying ocular symptoms and complications associated with COVID-19 in the future.
Collapse
|
4
|
Voinescu A, Licker M, Muntean D, Musuroi C, Musuroi SI, Izmendi O, Vulpie S, Jumanca R, Munteanu M, Cosnita A. A Comprehensive Review of Microbial Biofilms on Contact Lenses: Challenges and Solutions. Infect Drug Resist 2024; 17:2659-2671. [PMID: 38947374 PMCID: PMC11214797 DOI: 10.2147/idr.s463779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Contact lenses (CL) have become an immensely popular means of vision correction, offering comfort to millions worldwide. However, the persistent issue of biofilm formation on lenses raises significant problems, leading to various ocular complications and discomfort. The aim of this review is to develop safer and more effective strategies for preventing and managing microbial biofilms on CL, improving the eye health and comfort of wearers. Taking these into consideration, the present study investigates the intricate mechanisms of biofilm formation, by exploring the interplay between microbial adhesion, the production of extracellular polymeric substances, and the properties of the lens material itself. Moreover, it emphasizes the diverse range of microorganisms involved, encompassing bacteria, fungi, and other opportunistic pathogens, elucidating their implications within lenses and other medical device-related infections and inflammatory responses. Going beyond the challenges posed by biofilms on CL, this work explores the advancements in biofilm detection techniques and their clinical relevance. It discusses diagnostic tools like confocal microscopy, genetic assays, and emerging technologies, assessing their capacity to identify and quantify biofilm-related infections. Finally, the paper delves into contemporary strategies and innovative approaches for managing and preventing biofilms development on CL. In Conclusion, this review provides insights for eye care practitioners, lens manufacturers, and microbiology researchers. It highlights the intricate interactions between biofilms and CL, serving as a foundation for the development of effective preventive measures and innovative solutions to enhance CL safety, comfort, and overall ocular health. Research into microbial biofilms on CL is continuously evolving, with several future directions being explored to address challenges and improve eye health outcomes as far as CL wearers are concerned.
Collapse
Affiliation(s)
- Adela Voinescu
- Doctoral School “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Clinical Laboratory, “Pius Brinzeu” Emergency Clinical County Hospital, Timisoara, Romania
| | - Monica Licker
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Clinical Laboratory, “Pius Brinzeu” Emergency Clinical County Hospital, Timisoara, Romania
| | - Delia Muntean
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Clinical Laboratory, “Pius Brinzeu” Emergency Clinical County Hospital, Timisoara, Romania
| | - Corina Musuroi
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Clinical Laboratory, “Pius Brinzeu” Emergency Clinical County Hospital, Timisoara, Romania
| | - Silvia Ioana Musuroi
- Doctoral School “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana Izmendi
- Doctoral School “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Silvana Vulpie
- Doctoral School “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Romanita Jumanca
- Romanian and Foreign Languages Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Mihnea Munteanu
- Department IX, Surgery and Ophthalmology “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrei Cosnita
- Department IX, Surgery and Ophthalmology “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
5
|
Zilliox MJ, Bouchard CS. The Microbiome, Ocular Surface, and Corneal Disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1648-1661. [PMID: 37236506 DOI: 10.1016/j.ajpath.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The ocular surface microbiome is an emerging field of study that seeks to understand how the community of microorganisms found on the ocular surface may help maintain homeostasis or can potentially lead to disease and dysbiosis. Initial questions include whether the organisms detected on the ocular surface inhabit that ecological niche and, if so, whether there exists a core microbiome found in most or all healthy eyes. Many questions have emerged around whether novel organisms and/or a redistribution of organisms play a role in disease pathogenesis, response to therapies, or convalescence. Although there is much enthusiasm about this topic, the ocular surface microbiome is a new field with many technical challenges. These challenges are discussed in this review as well as a need for standardization to adequately compare studies and advance the field. In addition, this review summarizes the current research on the microbiome of various ocular surface diseases and how these findings may impact treatments and clinical decision-making.
Collapse
Affiliation(s)
- Michael J Zilliox
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois
| | - Charles S Bouchard
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois.
| |
Collapse
|
6
|
Cheng Y, An N, Ishaq HM, Xu J. Ocular microbial dysbiosis and its linkage with infectious keratitis patients in Northwest China: A cross-sectional study. Microb Pathog 2023; 184:106371. [PMID: 37741304 DOI: 10.1016/j.micpath.2023.106371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVES To evaluate the alteration of ocular surface microbiome of patients with infectious keratitis in northwest of China. METHODS The corneal scrapings, eyelid margin and conjunctiva samples were collected from 57 participants, who were divided into bacterial keratitis, fungal keratitis, viral keratitis and control group. The V3-V4 region of bacterial 16S rDNA in each sample was amplified and sequenced on the Illumina HiSeq 2500 sequencing platform, and the differences among different groups were compared bioinformatically. RESULTS Significant alterations of the microbiome were observed in alpha-diversity and beta-diversity analysis between the keratitis groups and the control group (p < 0.05). There was no significant differences between eyelid margin and conjunctiva samples in Alpha-Diversity analysis, but a significant difference between eyelid margin and corneal scraping samples in the keratitis group (p < 0.05, independent t-test). The abundances of Bacillus, Megamonas, Acinetobacter, and Rhodococcu were significantly elevated, while the abundance of Staphylococcus was decreased in the keratitis group compared to the control group. CONCLUSIONS The abundance of the ocular microbiome in patients with bacterial keratitis, fungal keratitis, or viral keratitis was significantly higher than those in the control group. Keratitis patients may have ecological disorder on ocular surface microbiome compared with controls. We believe that the conjunctiva and eyelid margin microbiome combined analysis can more comprehensively reflect the composition and abundance of ocular surface microbiome.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Na An
- The Fist Affiliated Hospital of Northwestern University, Department of Ophthalmology, The Xi'an Fist Hospital, Shaanxi Institute of Ophthalmology, China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| | - Jiru Xu
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Leis ML. An Update on the Ocular Surface Bacterial Microbiota in Small Animals. Vet Clin North Am Small Anim Pract 2023; 53:299-318. [PMID: 36813387 DOI: 10.1016/j.cvsm.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
High-throughput sequencing (HTS) techniques have revolutionized the way we understand microbial communities in both research and clinical settings and are bringing new insights into what constitutes a healthy ocular surface (and a diseased one). As more diagnostic laboratories incorporate HTS into their technique repertoire, practitioners can expect this technology to become increasingly accessible for clinical practice, potentially becoming the new standard. However, particularly regarding ophthalmic microbiota, considerable research remains to render HTS accessible and applicable.
Collapse
Affiliation(s)
- Marina L Leis
- Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
8
|
Cavuoto KM, Zhu AY. The Role of the Ocular Surface Microbiome (OSM) in Diseases of the Anterior Segment and Ocular Surface. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|