1
|
Niu N, Dou LN, Yang S, Wang HX, Zhuang S, Fan YP, Liu YQ, Zhang WM, Ma WR. Drug resistance detection of canine origin Escherichia coli in China and inhibition by genipin. Vet J 2025; 310:106307. [PMID: 39889817 DOI: 10.1016/j.tvjl.2025.106307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Zoonotic transmission from pets to their owners is a major health problem. It is important to determine and control the drug resistance in pets to mitigate risks of human transmission. In this work, the current prevalence of multi-drug resistance (MDR) and resistance gene in Escherichia coli (E. coli) derived from dogs in nine cities across various regions of China initially evaluated using microfluidic dilution methods and polymerase chain reaction (PCR) technology. To control antibiotic resistance, genipin as natural product was used to combat MDR E. coli. Finally, the synergistic effect of genipin and norfloxacin on MDR E. coli was studied using time-kill curves to retard the resistance spread. A total of 126 E. coli strains were isolated from 154 collected fecal samples of dogs. Minimum inhibitory concentrations (MIC) results revealed that the highest detection rate of MDR E. coli appeared in Zhengzhou at 90.9 %, and the lowest in Shenyang at 10.0 %. The results of drug resistance gene testing indicated that the blaTEM gene had the highest detection rate (99.2 %), then tetA and blaCTX-M-1, whose detection rates all exceed 50 %. Furthermore, the MIC of genipin against MDR E. coli was found to be 4096 μg/mL, and genipin at ½ MIC demonstrated significant inhibition on MDR E. coli within 6 h. Finally, the combination of ¼ MIC genipin with ½ MIC norfloxacin showed partial synergistic inhibitory effect on MDR E. coli. Our findings suggest that although antibiotic resistance in canine origin E. coli varies across different regions of China, it remains concerning, and genipin shows potential as a treatment option for MDR E. coli infections.
Collapse
Affiliation(s)
- Nan Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Lei-Na Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Shuo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Hai-Xin Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, PR China
| | - Shen Zhuang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Yun-Peng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Ying-Qiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Wei-Min Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Wu-Ren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Xi'an Veterinary Teaching Hospital, Northwest A&F University, Xi'an 710065, PR China.
| |
Collapse
|
2
|
Cheng KKW, Fingerhut L, Duncan S, Prajna NV, Rossi AG, Mills B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog Retin Eye Res 2024; 102:101287. [PMID: 39004166 DOI: 10.1016/j.preteyeres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK. However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.
Collapse
Affiliation(s)
- Kelvin Kah Wai Cheng
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Leonie Fingerhut
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Bethany Mills
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Sushmasri K, Mishra P, Roy S, Joseph J, Ramachandran C, Srinivas K, Chaurasia S. Safety and efficacy of McCarey-Kaufman medium supplemented with colistin (polymyxin E) and amphotericin B in inhibiting the multidrug-resistant Pseudomonas aeruginosa using an ex vivo donor corneal infection model. Indian J Ophthalmol 2024; 72:S696-S701. [PMID: 38389253 PMCID: PMC11338415 DOI: 10.4103/ijo.ijo_2616_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
PURPOSE This study aimed to evaluate the efficacy and safety of McCarey-Kaufman (MK) medium supplemented with colistin and amphotericin B in inhibiting the growth of multidrug-resistant Pseudomonas (P.) aeruginosa , using an ex vivo experimental model with human donor corneas. METHODS Cadaveric human corneas deemed unsuitable for corneal transplantation were obtained, and MK media were supplemented with colistin and amphotericin B. Multidrug-resistant P. aeruginosa was cultured and used to infect the human donor corneas ex vivo . Infected corneas were placed in the MK media with additional antibiotics (colistin and amphotericin B) and the standard MK media, which served as the control arm for comparison. Corneal opacity due to infiltration and quantitative analysis of colony-forming units (CFUs) were assessed. The viability of the corneal endothelium was assessed using trypan blue staining. RESULTS Corneas incubated in MK media supplemented with additional antibiotics showed less corneal opacification compared with those in standard MK media at both 48- and 96-hour (hr) time points. Quantitative analysis revealed a lower bacterial load and a significant reduction in CFU in the corneas incubated in MK media with additional antibiotics compared with the control group. At 48 hrs, there was 84% ( P value = 0.024) reduction in bacterial load, and at 96 hr, a 53% ( P value = 0.016) reduction was observed in comparison with those placed in standard MK media. The trypan blue staining tests revealed that the extent of endothelial cell loss in corneas incubated in supplemented MK media was comparable to the ones in standard MK media. CONCLUSION The addition of colistin and amphotericin B to MK media demonstrated efficacy in inhibiting the growth of multidrug-resistant P. aeruginosa in an ex vivo cornea infection model. The supplemented media had no detrimental effect on the corneal endothelium. The findings suggest that supplementing the MK media with these broad-spectrum antimicrobial agents may help mitigate the risk of postoperative donor-related infection in the recipients by reducing and containing the load of microbial contamination in donor corneas.
Collapse
Affiliation(s)
- Kukutam Sushmasri
- Ramayamma International Eye Bank, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Center, LVPEI, Hyderabad, Telangana, India
| | - Priyasha Mishra
- Prof. Brien Holden Eye Research Center, LVPEI, Hyderabad, Telangana, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Center, LVPEI, Hyderabad, Telangana, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, LVPEI, Hyderabad, Telangana, India
| | | | - Kandibanda Srinivas
- Ramayamma International Eye Bank, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sunita Chaurasia
- Ramayamma International Eye Bank, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
- Shantilal Shanghvi Cornea Institute, LVPEI, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Ahmed R, Ul Ain Hira N, Wang M, Iqbal S, Yi J, Hemar Y. Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications. Food Chem 2024; 434:137498. [PMID: 37741231 DOI: 10.1016/j.foodchem.2023.137498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Natural cross-linkers are extensively employed due to their low toxicity and biocompatibility benefits. Genipin acts as a precursor for producing blue colorants. The formation of these colorants involves the cross-linking reaction between genipin and primary amines present in amino acids, peptides, and proteins. Genipin is extracted from Gardenia jasminoides and Genipa americana. This article explains the cross-linking mechanism of genipin with proteins/polysaccharides to provide an overall understanding of its properties. Furthermore, it explores new sources of genipin and innovative methodologies to make the genipin recovery process efficient. Genipin increases food products' texture, gel strength, stability, and shelf life. The antibacterial, anti-inflammatory, and antioxidant properties of chitosan, gelatin, alginate, and hyaluronic acid increased after genipin cross-linking. Lastly, drawbacks, toxicity, and directions regarding the genipin cross-linking have also been addressed. The review article covers how to recover and cross-link genipin with biopolymers for industrial applications.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Noor Ul Ain Hira
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shahid Iqbal
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yacine Hemar
- School of Natural Sciences, Massey University, Private Bag 11 222. Palmerston North, 4442, New Zealand
| |
Collapse
|
5
|
Li J, Achal V. Self-assembled silk fibroin cross-linked with genipin supplements microbial carbonate precipitation in building material. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:797-808. [PMID: 37814459 PMCID: PMC10667665 DOI: 10.1111/1758-2229.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The process of microbially induced carbonate precipitation (MICP) is known to effectively improve engineering properties of building materials and so does silk fibroin (SF). Thus, in this study, an attempt was taken to see the improvement in sand, that is, basic building material coupled with MICP and SF. Urease producing Bacillus megaterium was utilized for MICP in Nutri-Calci medium. To improve the strength of SF itself in bacterial solution, it was cross-linked with genipin at the optimized concentration of 3.12 mg/mL. The Fourier transform infrared (FTIR) spectra confirmed the crosslinking of SF with genipin in bacterial solution. In order to understand how such cross-linking can improve engineering properties, sand moulds of 50 mm3 dimension were prepared that resulted in 35% and 55% more compressive strength than the one prepared with bacterial solution with SF and bacterial solution only, respectively with higher calcite content in former one. The FTIR, SEM, x-ray powder diffraction spectrometry and x-ray photoelectron spectroscopy analyses confirmed higher biomineral precipitation in bacterial solution coupled with genipin cross-linked SF. As the process of MICP is proven to replace cement partially from concrete without negatively influence mechanical properties, SF cross-linked with genipin can provide additional significance in developing low-carbon cement-based composites.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Environmental Science and EngineeringGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy ConversionGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
| | - Varenyam Achal
- Department of Environmental Science and EngineeringGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy ConversionGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
| |
Collapse
|
6
|
Roberts D, Salmon J, Cubeta MA, Gilger BC. Phase-Dependent Differential In Vitro and Ex Vivo Susceptibility of Aspergillus flavus and Fusarium keratoplasticum to Azole Antifungals. J Fungi (Basel) 2023; 9:966. [PMID: 37888221 PMCID: PMC10608098 DOI: 10.3390/jof9100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Fungal keratitis (FK) is an invasive infection of the cornea primarily associated with Aspergillus and Fusarium species. FK is treated empirically with a limited selection of topical antifungals with varying levels of success. Though clinical infections are typically characterized by a dense network of mature mycelium, traditional models used to test antifungal susceptibility of FK isolates exclusively evaluate susceptibility in fungal cultures derived from asexual spores known as conidia. The purpose of this study was to characterize differences in fungal response when topical antifungal treatment is initiated at progressive phases of fungal development. We compared the efficacy of voriconazole and luliconazole against in vitro cultures of A. flavus and F. keratoplasticum at 0, 24, and 48 h of fungal development. A porcine cadaver corneal model was used to compare antifungal efficacy of voriconazole and luliconazole in ex vivo tissue cultures of A. flavus and F. keratoplasticum at 0, 24, and 48 h of fungal development. Our results demonstrate phase-dependent susceptibility of both A. flavus and F. keratoplasticum to both azoles in vitro as well as ex vivo. We conclude that traditional antifungal susceptibility testing with conidial suspensions does not correlate with fungal susceptibility in cultures of a more advanced developmental phase. A revised method of antifungal susceptibility testing that evaluates hyphal susceptibility may better predict fungal response in the clinical setting where treatment is often delayed until days after the initial insult.
Collapse
Affiliation(s)
- Darby Roberts
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (D.R.)
| | - Jacklyn Salmon
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (D.R.)
| | - Marc A. Cubeta
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27606, USA;
| | - Brian C. Gilger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (D.R.)
| |
Collapse
|
7
|
Sun KX, Chen YY, Li Z, Zheng SJ, Wan WJ, Ji Y, Hu K. Genipin relieves diabetic retinopathy by down-regulation of advanced glycation end products via the mitochondrial metabolism related signaling pathway. World J Diabetes 2023; 14:1349-1368. [PMID: 37771331 PMCID: PMC10523227 DOI: 10.4239/wjd.v14.i9.1349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Glycation is an important step in aging and oxidative stress, which can lead to endothelial dysfunction and cause severe damage to the eyes or kidneys of diabetics. Inhibition of the formation of advanced glycation end products (AGEs) and their cell toxicity can be a useful therapeutic strategy in the prevention of diabetic retinopathy (DR). Gardenia jasminoides Ellis (GJE) fruit is a selective inhibitor of AGEs. Genipin is an active compound of GJE fruit, which can be employed to treat diabetes. AIM To confirm the effect of genipin, a vital component of GJE fruit, in preventing human retinal microvascular endothelial cells (hRMECs) from AGEs damage in DR, to investigate the effect of genipin in the down-regulation of AGEs expression, and to explore the role of the CHGA/UCP2/glucose transporter 1 (GLUT1) signal pathway in this process. METHODS In vitro, cell viability was tested to determine the effects of different doses of glucose and genipin in hRMECs. Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, immunofluorescence, wound healing assay, transwell assay, and tube-forming assay were used to detect the effect of genipin on hRMECs cultured in high glucose conditions. In vivo, streptozotocin (STZ) induced mice were used, and genipin was administered by intraocular injection (IOI). To explore the effect and mechanism of genipin in diabetic-induced retinal dysfunction, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assays were performed to explore energy metabolism and oxidative stress damage in high glucose-induced hRMECs and STZ mouse retinas. Immunofluorescence and Western blot were used to investigate the expression of inflammatory cytokines [vascular endothelial growth factor (VEGF), SCG3, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-18, and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3 (NLRP3)]. The protein expression of the receptor of AGEs (RAGE) and the mitochondria-related signal molecules CHGA, GLUT1, and UCP2 in high glucose-induced hRMECs and STZ mouse retinas were measured and compared with the genipin-treated group. RESULTS The results of CCK-8 and colony formation assay showed that genipin promoted cell viability in high glucose (30 mmol/L D-Glucose)-induced hRMECs, especially at a 0.4 μmol/L dose for 7 d. Flow cytometry results showed that high glucose can increase apoptosis rate by 30%, and genipin alleviated cell apoptosis in AGEs-induced hRMECs. A high glucose environment promoted ATP, ROS, MMP, and 2-NBDG levels, while genipin inhibited these phenotypic abnormalities in AGEs-induced hRMECs. Furthermore, genipin remarkably reduced the levels of the pro-inflammatory cytokines TNF-α, IL-1β, IL-18, and NLRP3 and impeded the expression of VEGF and SCG3 in AGEs-damaged hRMECs. These results showed that genipin can reverse high glucose induced damage with regard to cell proliferation and apoptosis in vitro, while reducing energy metabolism, oxidative stress, and inflammatory injury caused by high glucose. In addition, ROS levels and glucose uptake levels were higher in the retina from the untreated eye than in the genipin-treated eye of STZ mice. The expression of inflammatory cytokines and pathway protein in the untreated eye compared with the genipin-treated eye was significantly increased, as measured by Western blot. These results showed that IOI of genipin reduced the expression of CHGA, UCP2, and GLUT1, maintained the retinal structure, and decreased ROS, glucose uptake, and inflammation levels in vivo. In addition, we found that SCG3 expression might have a higher sensitivity in DR than VEGF as a diagnostic marker at the protein level. CONCLUSION Our study suggested that genipin ameliorates AGEs-induced hRMECs proliferation, apoptosis, energy metabolism, oxidative stress, and inflammatory injury, partially via the CHGA/UCP2/GLUT1 pathway. Control of advanced glycation by IOI of genipin may represent a strategy to prevent severe retinopathy and vision loss.
Collapse
Affiliation(s)
- Ke-Xin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan-Yi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhen Li
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan 400000, Sichuan Province, China
| | - Shi-Jie Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen-Juan Wan
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Ji
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Hu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Wang Z, Jin X, Zhang B, Kong J, Deng R, Wu K, Xie L, Liu X, Kang R. Stress stimulation maintaining by genipin crosslinked hydrogel promotes annulus fibrosus healing. J Orthop Translat 2023; 40:104-115. [PMID: 37457311 PMCID: PMC10338907 DOI: 10.1016/j.jot.2023.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To explore the repair effect of tissue engineering for annulus fibrosus (AF) injury in stress-stimulation environment. Methods Non-adhesive fibrinogen (Fib) representing the repair with non-stress stimulation and adhesive hydrogel of fibrinogen, thrombin and genipin mixture (Fib-T-G) representing the repair with stress stimulation were prepared to repair the AF lesion. The relationship between adhesion and stress stimulation was studied in rheological measurements, tension tests and atomic force microscopy (AFM) experiments. The repair effect of stress stimulation was studied in designed acellular AF scaffold models with fissures and defects. The models were repaired by the two different hydrogels, then implanted subcutaneously and cultured for 21 d in rats. Histology and qPCR of COL1A1, COL2A1, aggrecan, RhoA, and ROCK of the tissue engineering of the interface were evaluated afterward. Moreover, the repair effect was also studied in an AF fissure model in caudal disc of rats by the two different hydrogels. Discs were harvested after 21 d, and the disc degeneration score and AF healing quality were evaluated by histology. Result In interfacial stress experiment, Fib-T-G hydrogel showed greater viscosity than Fib hydrogel (24.67 ± 1.007 vs 459333 ± 169205 mPa s). Representative force-displacement and sample modulus for each group demonstrate that Fib-T-G group significantly increased the interfacial stress level and enhanced the modulus of samples, compared with Fib group (P < 0.01). The Fib-T-G group could better bond the interface to resist the loading strain force with the broken point at 1.11 ± 0.10 N compared to the Fib group at 0.12 ± 0.08 N (P < 0.01). Focusing on the interfacial healing in acellular AF scaffold model, compared with Fib + MSCs group, the fissure and defect were connected closely in Fib-T-G + MSCs group (P < 0.01). Relative higher gene expression of COL2A1 and RhoA in Fib-T-G + MSCs group than Fib + MSCs group in AF fissure and AF defect model (P < 0.05). The immunohistochemistry staining showed more positive staining of COL2A1 and RhoA in Fib-T-G + MSCs group than in Fib + MSCs group in both AF fissure and AF defect models. The degree of disc degeneration was more severe in Fib + MSCs group than Fib-T-G + MSCs group in vivo experiment (11.80 ± 1.11 vs 7.00 ± 1.76, P < 0.01). The dorsal AF defect in Fib-T-G + MSCs group (0.02 ± 0.01 mm2) was significantly smaller than that (0.13 ± 0.05 mm2) in Fib + MSCs group (P < 0.05). Immunohistochemical staining showed more positive staining of COL2A1 and Aggrecan in Fib-T-G + MSCs group than in Fib + MSCs group. Conclusion Genipin crosslinked hydrogel can bond the interface of AF lesions and transfer strain force. Stress stimulation maintained by adhesive hydrogel promotes AF healing. The translational potential of this article We believe the effect of stress stimulation could be concluded through this study and provides more ideals in mechanical effects for further research, which is a key technique for repairing intervertebral disc in clinic. The adhesive hydrogel of Fib-T-G+MSCs has low toxicity and helps bond the interface of AF lesion and transfer strain force, having great potential in the repair of AF lesion.
Collapse
Affiliation(s)
- Zihan Wang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Xiaoyu Jin
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Botao Zhang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Jiaxin Kong
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Rongrong Deng
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Ke Wu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Lin Xie
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Xin Liu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Ran Kang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| |
Collapse
|
9
|
Huertas-Bello M, Cuéllar-Sáenz JA, Rodriguez CN, Cortés-Vecino JA, Navarrete ML, Avila MY, Koudouna E. A Pilot Study to Evaluate Genipin in Staphylococcus aureus and Pseudomonas aeruginosa Keratitis Models: Modulation of Pro-Inflammatory Cytokines and Matrix Metalloproteinases. Int J Mol Sci 2023; 24:ijms24086904. [PMID: 37108070 PMCID: PMC10138382 DOI: 10.3390/ijms24086904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Infectious keratitis is a vision-threatening microbial infection. The increasing antimicrobial resistance and the fact that severe cases often evolve into corneal perforation necessitate the development of alternative therapeutics for effective medical management. Genipin, a natural crosslinker, was recently shown to exert antimicrobial effects in an ex vivo model of microbial keratitis, highlighting its potential to serve as a novel treatment for infectious keratitis. This study aimed to evaluate the antimicrobial and anti-inflammatory effects of genipin in an in vivo model of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) keratitis. Clinical scores, confocal microscopy, plate count, and histology were carried out to evaluate the severity of keratitis. To assess the effect of genipin on inflammation, the gene expression of pro- and anti-inflammatory factors, including matrix metalloproteinases (MMPs), were evaluated. Genipin treatment alleviated the severity of bacterial keratitis by reducing bacterial load and repressing neutrophil infiltration. The expression of interleukin 1B (IL1B), interleukin 6 (IL6), interleukin 8 (IL8), interleukin 15 (IL15), tumor necrosis factor-α (TNF-α), and interferon γ (IFNγ), as well as MMP2 and MMP9, were significantly reduced in genipin-treated corneas. Genipin promoted corneal proteolysis and host resistance to S. aureus and P. aeruginosa infection by suppressing inflammatory cell infiltration, regulating inflammatory mediators, and downregulating the expression of MMP2 and MMP9.
Collapse
Affiliation(s)
- Marcela Huertas-Bello
- Department of Ophthalmology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Jerson Andrés Cuéllar-Sáenz
- Grupo de Investigación Parasitología Veterinaria, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, Bogota DC, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Cristian Nicolas Rodriguez
- Department of Microbiology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Jesús Alfredo Cortés-Vecino
- Grupo de Investigación Parasitología Veterinaria, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, Bogota DC, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Myriam Lucia Navarrete
- Department of Microbiology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Marcel Yecid Avila
- Department of Ophthalmology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Elena Koudouna
- Department of Ophthalmology, Faculty of Medicine, Bogota DC, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
10
|
Anti- Candida Activity of Extracts Containing Ellagitannins, Triterpenes and Flavonoids of Terminalia brownii, a Medicinal Plant Growing in Semi-Arid and Savannah Woodland in Sudan. Pharmaceutics 2022; 14:pharmaceutics14112469. [PMID: 36432659 PMCID: PMC9692435 DOI: 10.3390/pharmaceutics14112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Various parts of Terminalia brownii (Fresen) are used in Sudanese traditional medicine against fungal infections. The present study aimed to verify these uses by investigating the anti-Candida activity and phytochemistry of T. brownii extracts. Established agar diffusion and microplate dilution methods were used for the antifungal screenings. HPLC-DAD and UHPLC/QTOF-MS were used for the chemical fingerprinting of extracts and for determination of molecular masses. Large inhibition zones and MIC values of 312 µg/mL were obtained with acetone, ethyl acetate and methanol extracts of the leaves and acetone and methanol extracts of the roots. In addition, decoctions and macerations of the leaves and stem bark showed good activity. Sixty compounds were identified from a leaf ethyl acetate extract, showing good antifungal activity. Di-, tri- and tetra-gallotannins, chebulinic acid (eutannin) and ellagitannins, including an isomer of methyl-(S)-flavogallonate, terflavin B and corilagin, were detected in T. brownii leaves for the first time. In addition, genipin, luteolin-7-O-glucoside, apigenin, kaempferol-4’-sulfate, myricetin-3-rhamnoside and sericic acid were also characterized. Amongst the pure compounds present in T. brownii leaves, apigenin and β-sitosterol gave the strongest growth inhibitory effects. From this study, it was evident that the leaf extracts of T. brownii have considerable anti-Candida activity with MIC values ranging from 312 to 2500 µg/mL.
Collapse
|
11
|
Jeang L, Tuli SS. Therapy for contact lens-related ulcers. Curr Opin Ophthalmol 2022; 33:282-289. [PMID: 35779052 DOI: 10.1097/icu.0000000000000861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current review covers the current literature and practice patterns of antimicrobial therapy for contact lens-related microbial keratitis (CLMK). Although the majority of corneal ulcers are bacterial, fungus and acanthamoeba are substantial contributors in CLMK and are harder to treat due to the lack of commercially available topical medications and low efficacy of available topical therapy. RECENT FINDINGS Topical antimicrobials remain the mainstay of therapy for corneal ulcers. Fluoroquinolones may be used as monotherapy for small, peripheral bacterial ulcers. Antibiotic resistance is a persistent problem. Fungal ulcers are less responsive to topical medications and adjunct oral or intrastromal antifungal medications may be helpful. Acanthamoeba keratitis continues to remain a therapeutic challenge but newer antifungal and antiparasitic agents may be helpful adjuncts. Other novel and innovative therapies are being studied currently and show promise. SUMMARY Contact lens-associated microbial keratitis is a significant health issue that can cause vision loss. Treatment remains a challenge but many promising diagnostics and procedures are in the pipeline and offer hope.
Collapse
Affiliation(s)
- Lauren Jeang
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|