1
|
Ayilam Ramachandran R, Baniasadi H, Robertson DM. Pseudomonas aeruginosa infection increases palmitoyl carnitine release by host-derived extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603378. [PMID: 39026691 PMCID: PMC11257627 DOI: 10.1101/2024.07.13.603378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic gram-negative pathogen, is the most common pathogen identified in all culture positive cases of infectious keratitis. Extracellular vesicles (EVs) are released by most cells in the body and function in intercellular communication. We have previously reported a change in the proteome of host-derived EVs from corneal epithelial cells during PA infection. In the present study, we investigated changes in the metabolome of host-derived EVs from PA infected (PA-C EVs) and non-infected cells (C EVs). We found that one metabolite, palmitoyl carnitine (PAMC), was significantly upregulated in PA-C EVs. To determine the significance of PAMC release, we investigated the effect of PAMC treatment on corneal epithelial cells and neutrophils. EVs were isolated from culture media using size exclusion chromatography. EVs were then characterized using nanoparticle tracking analysis, transmission electron microscopy, and western blot. Metabolomics was performed using an untargeted approach. We found that palmitoyl carnitine (PAMC) was the most abundant metabolite present in PA-C EVs and was increased more than 3 fold compared to C EVs. Treatment of corneal epithelial cells with increasing levels of PAMC increased nuclear translocation of the NF-κB subunit p65. This was associated with an increase in IL-8 production and neutrophil migration. PAMC also increased levels of mitochondrial calcium. Upon inoculation of corneal epithelial cells with PA, 50 μM PAMC completely eradicated intracellular PA, but stimulated growth of extracellular PA. Taken together, these findings suggest that PA exploits EV release by host cells to deplete PAMC from the intracellular environment.
Collapse
|
2
|
Zhou YL, Jin WQ, Yang JW, Song HX, Chang F, Xia F, Zhang F, Lan WZ, Lu F. The efficacy of a device-based approach to microorganism disinfection and protein removal for orthokeratology lenses in varied clinical circumstances. Cont Lens Anterior Eye 2024; 47:102106. [PMID: 38105172 DOI: 10.1016/j.clae.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE RigidCare is an electrolysis-based device that recently obtained approval from the US's FDA to sterilise microorganisms and remove proteins for orthokeratology (O-K) lenses. The study was conducted to investigate the device's performance in varied clinical circumstances. METHODS Trial lenses and private lenses were employed by O-K lens wearers from five hospitals for an evaluation of disinfection and sterilisation and an assessment of protein removal, respectively. Menicon multipurpose solution and protein remover were selected for use with the control group. Following the instructions, pre-cleaning lens samples, post-cleaning lens samples and residual solution samples of trial lenses of the experimental and control groups were collected for microorganism examinations by an experienced third-party testing organisation. The levels of protein deposition for these two approaches were rated by senior O-K experts. Categorical variables were analysed using statistical tests, such as the chi-squared test and Fisher's exact test. RESULTS The microbial positive rate detected from the pre-cleaning and post-cleaning lens samples and the residual solution of the trial lenses for the experimental and control group was 4/76 vs 1/74 (P = 0.37), 1/76 vs 0/74 (P = 1.00) and 0/76 vs 8/74 (P = 0.006), respectively. Following protein removal, the experimental group exhibited a significantly higher overall proportion of lenses rated as 'clean' or with a 'mild deposit' (96.4 %, 79/82) compared to the control group (85.7 %, 66/77), with a significant difference (P < 0.05). CONCLUSION This multi-center study demonstrated that RigidCare exhibited superior efficacy in disinfection, sterilisation and protein removal as compared to Menicon multipurpose solution and protein remover.
Collapse
Affiliation(s)
- Yong-Li Zhou
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, P.R. China
| | - Wan-Qing Jin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ji-Wen Yang
- Liaoning Aier Eye Hospital, Shenyang, Liaoning, China
| | - Hong-Xin Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feng Chang
- Department of Ophthalmology, General Hospital of the Central Theater Command of the People's Liberation Army of China, Wuhan, Hubei, China
| | - Fangfang Xia
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fen Zhang
- Department of Ophthalmology, General Hospital of the Central Theater Command of the People's Liberation Army of China, Wuhan, Hubei, China
| | - Wei-Zhong Lan
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, P.R. China; Hunan Province Optometry Engineering and Technology Research Center, Changsha, Hunan, China; Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha, Hunan, China.
| | - Fan Lu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Ayilam Ramachandran R, Lemoff A, Robertson DM. Pseudomonas aeruginosa-Derived Extracellular Vesicles Modulate Corneal Inflammation: Role in Microbial Keratitis? Infect Immun 2023; 91:e0003623. [PMID: 36995231 PMCID: PMC10112165 DOI: 10.1128/iai.00036-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/16/2023] [Indexed: 03/31/2023] Open
Abstract
Pseudomonas aeruginosa keratitis occurs following trauma, in immunocompromised patients, and in otherwise healthy contact lens wearers. Characterized by a light-blocking infiltrate, P. aeruginosa keratitis is the most serious complication associated with contact lens wear and, in severe cases, can lead to vision loss. Bacterial extracellular vesicles (B EVs) are membrane-enclosed nanometer-scale particles secreted from bacteria and are packed with bioactive molecules. B EVs have been shown to mediate biological functions that regulate host pathogenic responses. In the present study, we isolated P. aeruginosa-derived EVs using size exclusion chromatography and compared the proteomic compositions and functional activities of P. aeruginosa-derived EVs and P. aeruginosa-derived free protein (FP) on corneal epithelial cells and neutrophils. Importantly, P. aeruginosa-derived EVs and FP exhibited unique protein profiles, with EVs being enriched in P. aeruginosa virulence proteins. P. aeruginosa-derived EVs promoted corneal epithelial cell secretion of interleukin-6 (IL-6) and IL-8, whereas these cytokines were not upregulated following treatment with FP. In contrast, FP had a negative effect on the host inflammatory response and impaired neutrophil killing. Both P. aeruginosa-derived EVs and FP promoted intracellular bacterial survival in corneal epithelial cells. Collectively, these data suggest that P. aeruginosa-derived EVs and FP may play a critical role in the pathogenesis of corneal infection by interfering with host innate immune defense mechanisms.
Collapse
Affiliation(s)
| | - Andrew Lemoff
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
4
|
Campolo A, Pifer R, Shannon P, Crary M. Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis. Pathogens 2022; 11:1383. [PMID: 36422634 PMCID: PMC9695309 DOI: 10.3390/pathogens11111383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Microbial keratitis (MK), the infection of the cornea, is a devastating disease and the fifth leading cause of blindness and visual impairment around the world. The overwhelming majority of MK cases are linked to contact lens wear combined with factors which promote infection such as corneal abrasion, an immunocompromised state, improper contact lens use, or failing to routinely disinfect lenses after wear. Contact lens-related MK involves the adherence of microorganisms to the contact lens. Therefore, this review discusses the information currently available regarding the disease pathophysiology, the common types of microorganisms causing MK, physical and organic mechanisms of adhesion, material properties which are involved in adhesion, and current antimicrobial strategies. This review also concludes that Pseudomonas aeruginosa is a model organism for the investigation of contact lens microbial adherence due to its prevalence in MK cases, its extremely robust adhesion, antimicrobial-resistant properties, and the severity of the disease it causes.
Collapse
|
5
|
M de Araújo FB, Morais VC, M de Oliveira BT, G de Lima KY, Gomes VT, G do Amaral IP, Vasconcelos U. Multi-purpose Disinfecting Solutions only Partially Inhibit the Development of Ocular Microbes Biofilms in Contact Lens Storage Cases. Middle East Afr J Ophthalmol 2021; 28:116-122. [PMID: 34759670 PMCID: PMC8547665 DOI: 10.4103/meajo.meajo_414_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/28/2021] [Accepted: 07/14/2021] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Certain ocular resident or pathogenic microbes may remain viable in the presence of multi-purpose disinfectant solutions (MPDSs), subsequently developing biofilms inside contact lens storage cases (CLSCs) which pose a risk of infection to wearers. This study evaluated the formation of ocular microbiota biofilms exposed to three top selling MPDS. METHODS Crystal violet assay was carried out for the verification of biofilm formation. The in vitro assays evaluated Pseudomonas aeruginosa UFPEDA 416 and Staphylococcus aureus UFPEDA 02 exposure of 48 h to MPDS, as well as the use of 40 KHz ultrasound at the beginning and with 24 h immersion in the MPDS. Subsequently, in vivo assays evaluated the formation of microbial biofilms on the CLSC walls containing silicone-hydrogel contact lenses immersed in MPDS from 15 healthy volunteer patients, who had been wearing the lenses for 7 days. RESULTS Biofilms were inhibited by 26%-98% in the in vitro assays, with a statistically significant difference only for P. aeruginosa UFPEDA 416 exposed to diluted MPDS. Most inhibitions occurred moderately and weakly. In addition, adherent cells were detected in more than 90% of the tests. Biofilm was not inhibited in more than one third of the results, nor was it disturbed, especially with the ultrasound treatments. The average of obtained optical densities at 590 nm was between 0.6 and 0.8 in the in vivo assays. The results were similar between the CLSC right and left wells. There was a correlation between microbial biofilm formation and the type of MPDS tested, with statistical difference between the three treatments. CONCLUSION MPDS promoted a partial inhibition of microbial biofilm formation but only one MPDS proved to be more effective in vitro and in vivo. This study, however, could not distinguish the effect of possible errors in the good hygiene practices of the users.
Collapse
Affiliation(s)
- Fabiano B M de Araújo
- Department of Molecular Biology, Curse of Post-Graduation in Cellular and Molecular Biology, CCEN, UFPB, João Pessoa, Brazil
| | - Vinicius C Morais
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Bianca T M de Oliveira
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Kaíque Y G de Lima
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Victor T Gomes
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Ian P G do Amaral
- Department of Cellular and Molecular Biology, Laboratory of Biotechnology of Aquatic Organisms, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Ulrich Vasconcelos
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| |
Collapse
|
6
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
7
|
Stapleton F. Contact lens‐related corneal infection in Australia. Clin Exp Optom 2021; 103:408-417. [DOI: 10.1111/cxo.13082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Fiona Stapleton
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia,
| |
Collapse
|
8
|
Pelletier J, Ocean Ophthalmology Group, Miami, FL, USA. The Role of Biofilms in Pathology of the Ocular Surface. Ophthalmology 2021. [DOI: 10.17925/opht.2021.15.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater 2019; 8:e1900368. [PMID: 31183972 DOI: 10.1002/adhm.201900368] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Contact lenses are ocular prosthetic devices used by over 150 million people worldwide. Primary applications of contact lenses include vision correction, therapeutics, and cosmetics. Contact lens materials have significantly evolved over time to minimize adverse effects associated with contact lens wearing, to maintain a regular corneal metabolism, and to preserve tear film stability. This article encompasses contact lens technology, including materials, chemical and physical properties, manufacturing processes, microbial contamination, and ocular complications. The function and the composition of the tear fluid are discussed to assess its potential as a diagnostic media. The regulatory standards of contact lens devices with regard to biocompatibility and contact lens market are presented. Future prospects in contact lens technology are evaluated, with particular interest given to theranostic applications for in situ continuous monitoring the ocular physiology.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Daniele Vigolo
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
| |
Collapse
|
10
|
Study of the Effectiveness of Multipurpose Solutions on the Bacterial Disinfection of Silicone Hydrogel Contact Lenses In Vitro. Eye Contact Lens 2018; 44 Suppl 2:S24-S28. [PMID: 29064838 PMCID: PMC6221401 DOI: 10.1097/icl.0000000000000428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To assess the antimicrobial effectiveness of multipurpose solutions in regard to the disinfection of silicone hydrogel contact lenses (CL) using a study of clinical bacterial isolates from ocular material. METHODS Three multipurpose solutions (solution A: polyhexamethylene biguanide 0.00025 g/100 mL; solution B: polyquaternary-1 0.001% and myristamidopropyl dimethylamine 0.0006%; and solution C: polyaminopropyl biguanide 0.00013% and polyquaternary 0.0001%) were used as a 3-phase disinfection on silicone hydrogel CL contaminated with bacteria from clinical isolates that were divided into five groups (group 1: Pseudomonas aeruginosa; group 2: Staphylococcus aureus; group 3: Staphylococcus epidermidis; group 4: Streptococcus spp; and group 5: enterobacteria). RESULTS No differences were observed between the 24- and 48-hr measurements in any of the samples, and the positivity of microorganisms in T0 was 100% for all solutions; it was 0% in T3. Therefore, only steps T1 (rubbing followed by rinsing) and T2 (rubbing followed by rinsing and immersion of CL into solution) were considered for analysis at the 24-hr measurement time. Throughout the phases, a decrease in the number of bacteria was observed, culminating in the elimination (no recovery) of all microorganisms in the three solutions. CONCLUSIONS At the end of the proposed process, the tested solutions were effective.
Collapse
|
11
|
CpxR-Dependent Thermoregulation of Serratia marcescens PrtA Metalloprotease Expression and Its Contribution to Bacterial Biofilm Formation. J Bacteriol 2018; 200:JB.00006-18. [PMID: 29378892 DOI: 10.1128/jb.00006-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022] Open
Abstract
PrtA is the major secreted metalloprotease of Serratia marcescens Previous reports implicate PrtA in the pathogenic capacity of this bacterium. PrtA is also clinically used as a potent analgesic and anti-inflammatory drug, and its catalytic properties attract industrial interest. Comparatively, there is scarce knowledge about the mechanisms that physiologically govern PrtA expression in Serratia In this work, we demonstrate that PrtA production is derepressed when the bacterial growth temperature decreases from 37°C to 30°C. We show that this thermoregulation occurs at the transcriptional level. We determined that upstream of prtA, there is a conserved motif that is directly recognized by the CpxR transcriptional regulator. This feature is found along Serratia strains irrespective of their isolation source, suggesting an evolutionary conservation of CpxR-dependent regulation of PrtA expression. We found that in S. marcescens, the CpxAR system is more active at 37°C than at 30°C. In good agreement with these results, in a cpxR mutant background, prtA is derepressed at 37°C, while overexpression of the NlpE lipoprotein, a well-known CpxAR-inducing condition, inhibits PrtA expression, suggesting that the levels of the activated form of CpxR are increased at 37°C over those at 30°C. In addition, we establish that PrtA is involved in the ability of S. marcescens to develop biofilm. In accordance, CpxR influences the biofilm phenotype only when bacteria are grown at 37°C. In sum, our findings shed light on regulatory mechanisms that fine-tune PrtA expression and reveal a novel role for PrtA in the lifestyle of S. marcescensIMPORTANCE We demonstrate that S. marcescens metalloprotease PrtA expression is transcriptionally thermoregulated. While strongly activated below 30°C, its expression is downregulated at 37°C. We found that in S. marcescens, the CpxAR signal transduction system, which responds to envelope stress and bacterial surface adhesion, is activated at 37°C and able to downregulate PrtA expression by direct interaction of CpxR with a binding motif located upstream of the prtA gene. Moreover, we reveal that PrtA expression favors the ability of S. marcescens to develop biofilm, irrespective of the bacterial growth temperature. In this context, thermoregulation along with a highly conserved CpxR-dependent modulation mechanism gives clues about the relevance of PrtA as a factor implicated in the persistence of S. marcescens on abiotic surfaces and in bacterial host colonization capacity.
Collapse
|