1
|
Liang S, Zheng Y, Sharma V, Shows A, Dunbar DC, Shi X, Wu JY. Surface and Antifouling Properties of a Biomimetic Reusable Contact Lens Material. ACS OMEGA 2025; 10:19697-19704. [PMID: 40415849 PMCID: PMC12096226 DOI: 10.1021/acsomega.5c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/27/2025]
Abstract
A comprehensive in vitro and ex vivo study was conducted for a newly developed biomimetic silicone hydrogel contact lens material, lehfilcon A, with poly-(2-methacryloyloxyethyl phosphorylcholine) (PMPC) surface modification. In vitro studies, including Sudan Black staining and fluorescence imaging, were executed to assess the surface wettability and lipid deposition of contact lenses after simulated prolonged exposure. Additionally, the lens surface softness and lubricity were characterized by ex vivo studies, including atomic force microscopy and tribological testing. The PMPC-modified surface stayed hydrophilic and resisted lipid accumulation during the simulated wearing cycles. The coefficient of friction and surface modulus were maintained, even after 30 days of patient use. These findings demonstrate that the PMPC-modified material offers exceptional surface properties and antifouling performance, presenting an advancement in biomimetic contact lens technology.
Collapse
Affiliation(s)
- Shuang Liang
- Alcon
Research, LLC, Fort Worth, Texas76134, United States
| | - Ying Zheng
- Alcon
Research, LLC, Duluth, Georgia30097, United States
| | - Vinay Sharma
- Alcon
Research, LLC, Fort Worth, Texas76134, United States
| | - Amanda Shows
- Alcon
Research, LLC, Fort Worth, Texas76134, United States
| | | | - Xinfeng Shi
- Alcon
Research, LLC, Fort Worth, Texas76134, United States
| | | |
Collapse
|
2
|
Suliński T, Nowak N, Szymański J, Pniewski J. Analysis of Deposition and Diffusion of Cholesterol in Silicone Hydrogel Contact Lenses Using Confocal Microscopy. Vision (Basel) 2024; 8:55. [PMID: 39311323 PMCID: PMC11417713 DOI: 10.3390/vision8030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
In this study, we investigated lipid deposition and diffusion in silicone hydrogel (Si-Hy) contact lenses using confocal microscopy. Different Si-Hy lenses were analyzed to understand the interaction patterns of cholesterol with various lens materials. The results highlight significant differences in the deposition and diffusion of lipids through the lenses, revealing that some materials, such as comfilcon A, allow lipids to diffuse more freely compared to others, such as samfilcon A, which provides a greater barrier. The study also observed different morphology and movement of lipid agglomerates across the lenses and above it surfaces. These findings contribute to the understanding of lipid-lens interaction, which is important for the development of lenses with improved comfort and functionality. The research highlights the importance of considering lipid interactions in the design and selection of Si-Hy contact lenses to enhance wearer comfort and lens performance.
Collapse
Affiliation(s)
- Tomasz Suliński
- Alcon Polska, Marynarska 15, 02-674 Warsaw, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland;
| | - Natalia Nowak
- Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warsaw, Poland; (N.N.)
| | - Jędrzej Szymański
- Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warsaw, Poland; (N.N.)
| | - Jacek Pniewski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland;
| |
Collapse
|
3
|
Phan CM, Wy Chan V, Drolle E, Hui A, Ngo W, Bose S, Shows A, Liang S, Sharma V, Subbaraman L, Zheng Y, Shi X, Wu J, Jones L. Evaluating the in vitro wettability and coefficient of friction of a novel and contemporary reusable silicone hydrogel contact lens materials using an in vitro blink model. Cont Lens Anterior Eye 2024; 47:102129. [PMID: 38423868 DOI: 10.1016/j.clae.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To evaluate the in vitro wettability and coefficient of friction of a novel amphiphilic polymeric surfactant (APS), poly(oxyethylene)-co-poly(oxybutylene) (PEO-PBO) releasing silicone hydrogel (SiHy) contact lens material (serafilcon A), compared to other reusable SiHy lens materials. METHODS The release of fluorescently-labelled nitrobenzoxadiazole (NBD)-PEO-PBO was evaluated from serafilcon A over 7 days in a vial. The wettability and coefficient of friction of serafilcon A and three contemporary SiHy contact lens materials (senofilcon A; samfilcon A; comfilcon A) were evaluated using an in vitro blink model over their recommended wearing period; t = 0, 1, 7, 14 days for all lens types and t = 30 days for samfilcon A and comfilcon A (n = 4). Sessile drop contact angles were determined and in vitro non-invasive keratographic break-up time (NIKBUT) measurements were assessed on a blink model via the OCULUS Keratograph 5 M. The coefficient of friction was measured using a nano tribometer. RESULTS The relative fluorescence of NBD-PEO-PBO decreased in serafilcon A by approximately 18 % after 7 days. The amount of NBD-PEO-PBO released on day 7 was 50 % less than the amount released on day 1 (6.5±1.0 vs 3.4±0.5 µg/lens). The reduction in PEO-PBO in the lens also coincided with an increase in contact angles for serafilcon A after 7 days (p < 0.05), although there were no changes in NIKBUT or coefficient of friction (p > 0.05). The other contact lens materials had stable contact angles and NIKBUT over their recommended wearing period (p > 0.05), with the exception of samfilcon A, which had an increase in contact angle after 14 days as compared to t = 0 (p < 0.05). Senofilcon A and samfilcon A also showed an increase in coefficient of friction at 14 and 30 days, respectively, compared to their blister pack values (p < 0.05). CONCLUSION The results indicate that serafilcon A gradually depletes its reserve of PEO-PBO over 1 week, but this decrease did not significantly change the lens performance in vitro during this time frame.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China.
| | - Vivian Wy Chan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Elizabeth Drolle
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Alex Hui
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - William Ngo
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Susmita Bose
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amanda Shows
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Shuang Liang
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Vinay Sharma
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | | | - Ying Zheng
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Xinfeng Shi
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - James Wu
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
4
|
Jones L, Efron N, Bandamwar K, Barnett M, Jacobs DS, Jalbert I, Pult H, Rhee MK, Sheardown H, Shovlin JP, Stahl U, Stanila A, Tan J, Tavazzi S, Ucakhan OO, Willcox MDP, Downie LE. TFOS Lifestyle: Impact of contact lenses on the ocular surface. Ocul Surf 2023; 29:175-219. [PMID: 37149139 DOI: 10.1016/j.jtos.2023.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Several lifestyle choices made by contact lens wearers can have adverse consequences on ocular health. These include being non-adherent to contact lens care, sleeping in lenses, ill-advised purchasing options, not seeing an eyecare professional for regular aftercare visits, wearing lenses when feeling unwell, wearing lenses too soon after various forms of ophthalmic surgery, and wearing lenses when engaged in risky behaviors (e.g., when using tobacco, alcohol or recreational drugs). Those with a pre-existing compromised ocular surface may find that contact lens wear exacerbates ocular disease morbidity. Conversely, contact lenses may have various therapeutic benefits. The coronavirus disease-2019 (COVID-19) pandemic impinged upon the lifestyle of contact lens wearers, introducing challenges such as mask-associated dry eye, contact lens discomfort with increased use of digital devices, inadvertent exposure to hand sanitizers, and reduced use of lenses. Wearing contact lenses in challenging environments, such as in the presence of dust and noxious chemicals, or where there is the possibility of ocular trauma (e.g., sport or working with tools) can be problematic, although in some instances lenses can be protective. Contact lenses can be worn for sport, theatre, at high altitude, driving at night, in the military and in space, and special considerations are required when prescribing in such situations to ensure successful outcomes. A systematic review and meta-analysis, incorporated within the review, identified that the influence of lifestyle factors on soft contact lens dropout remains poorly understood, and is an area in need of further research. Overall, this report investigated lifestyle-related choices made by clinicians and contact lens wearers and discovered that when appropriate lifestyle choices are made, contact lens wear can enhance the quality of life of wearers.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada.
| | - Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Kalika Bandamwar
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Deborah S Jacobs
- Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA
| | - Isabelle Jalbert
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Heiko Pult
- Dr Heiko Pult Optometry & Vision Research, Weinheim, Germany
| | | | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Ulli Stahl
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | | | - Jacqueline Tan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | | | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Ponzini E, Recchioni A, Cheloni R, Zeri F, Tavazzi S. Physical Properties and Interaction With the Ocular Surface of Water-Gradient Contact Lenses. Eye Contact Lens 2023; 49:152-159. [PMID: 36811833 DOI: 10.1097/icl.0000000000000974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
ABSTRACT Since the introduction of silicone hydrogel contact lenses, many silicone-hydrogel materials have been produced, including water-gradient contact lenses with a silicone hydrogel core and a thin hydrogel outer layer (e.g., delefilcon A, verofilcon A, and lehfilcon A). Their properties have been investigated in various studies assessing both the chemical-physical characteristics and the comfort, but the overall picture is not always consistent. In this study, water-gradient technology is reviewed by looking at basic physical properties both in vitro and in vivo and at the interaction with the human ocular surface. Surface and bulk dehydration, surface wetting and dewetting, shear stress, interaction with tear components and with other environmental compounds, and comfort are discussed.
Collapse
Affiliation(s)
- Erika Ponzini
- Materials Science Department (E.P., F.Z., S.T.), University of Milano Bicocca, Via R. Cozzi 55-I-20125 Milan, Italy; COMiB Research Center (E.P., F.Z., S.T.), University of Milano Bicocca, Via R. Cozzi 55-I-20125 Milan, Italy; Academic Unit of Ophthalmology (A.R.), Institute of Inflammation and Ageing, University of Birmingham, UK; Birmingham and Midland Eye Centre (A.R.), Birmingham, UK; Optometry & Vision Sciences Group (A.R.), School of Life & Health Sciences, Aston University, Birmingham, 8UK; UCL Institute of Ophthalmology (R.C.), London, UK; and College of Health and Life Sciences (F.Z.), Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | | | | | | | | |
Collapse
|
6
|
Masoudi S, Willcox M. A method for studying lipid adsorption to silicone hydrogel contact lenses. BIOFOULING 2021; 37:862-878. [PMID: 34615411 DOI: 10.1080/08927014.2021.1978433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to develop an experimental methodology to measure lipid deposition with contact lenses. Contact lenses were incubated in a lipid solution. The amount and types of adsorbed lipids were assessed using mass spectrometry and confocal microscopy. The recovery of lipids from lenses varied with lipid and lens type. Most non-polar and polar lipids were desorbed from lenses during the first 5 min of extraction. Fluorescently labelled phosphatidylcholine bound within the matrix of Senofilcon A lenses but to the surface of Lotrafilcon B lenses, whereas fluorescently labelled cholesteryl ester was found throughout both lenses. The efficacy of extraction of lipids from contact lenses varies for different lipid classes and different lens materials. Differences in the amount and time of lipid desorption probably resulted from the strength of the bond between lipid and lens polymer and the depth of adsorption of lipid in the polymer.
Collapse
Affiliation(s)
- Simin Masoudi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Chan VWY, Phan CM, Walther H, Ngo W, Jones L. Effects of Temperature and Blinking on Contact Lens Dehydration of Contemporary Soft Lens Materials Using an In Vitro Blink Model. Transl Vis Sci Technol 2021; 10:11. [PMID: 34251425 PMCID: PMC8287047 DOI: 10.1167/tvst.10.8.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the effects of temperature and blinking on contact lens (CL) dehydration using an in vitro blink model. Methods Three silicone hydrogel (delefilcon A, senofilcon A, and comfilcon A) and two conventional hydrogel (etafilcon A and omafilcon A) CL materials were evaluated at 1 and 16 hours. The water content (WC) of the CLs was measured using a gravimetric method. Lenses were incubated on a blink model, internally heated to achieve a clinically relevant surface temperature of 35°C. An artificial tear solution (ATS) was delivered to the blink model at 4.5 µL/min with a blink rate of 6 blinks/min. A comparison set of lenses were incubated in a vial containing either 2 mL of ATS or phosphate-buffered saline (PBS) at 35°C. Results Increasing temperature to 35°C resulted in a decrease in WC for all tested CLs over time (P ≤ 0.0052). For most CLs, there was no significant difference in WC over time between ATS or PBS in the vial (P > 0.05). With the vial system, WC decreased and plateaued over time. However, on the blink model, for most CLs, the WC significantly decreased after 1 hour but returned toward initial WC levels after 16 hours (P > 0.05). Conclusions The reduction in WC of CLs on the eye is likely due to both an increase in temperature and dehydration from air exposure and blinking. Translational Relevance This study showed that the novel, heated, in vitro blink model could be used to provide clinical insights into CL dehydration on the eye.
Collapse
Affiliation(s)
- Vivian W Y Chan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Hendrik Walther
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - William Ngo
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong
| |
Collapse
|
8
|
Chan VWY, Phan CM, Ngo W, Jones L. Lysozyme Deposition on Contact Lenses in an In Vitro Blink-Simulation Eye Model Versus a Static Vial Deposition Model. Eye Contact Lens 2021; 47:388-393. [PMID: 33840748 DOI: 10.1097/icl.0000000000000784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate active lysozyme deposition on daily disposable (DD) contact lenses (CL) using a novel in vitro blink model. METHODS Three conventional hydrogel DD CL materials (etafilcon A, omafilcon A, nelfilcon A) and three silicone hydrogel DD CL materials (delefilcon A, senofilcon A, somofilcon A) were tested. The device blink rate was set to 6 blinks/min with a tear flow rate of 1 μL/min using an artificial tear solution (ATS) containing lysozyme and other typical tear film components. After incubation at 2, 4, or 8 hr, lenses were removed, and lysozyme activity was measured. A separate experiment was conducted with lenses incubated in a static vial containing 480 μL of ATS. RESULTS Etafilcon A deposited significantly higher amounts of active lysozyme (402±102 μg/lens) than other lens materials after 8 hr (P<0.0001). Etafilcon A had a higher amount of active lysozyme using the blink model compared with the static vial (P=0.0435), whereas somofilcon A (P=0.0076) and senofilcon A (P=0.0019) had a higher amount of lysozyme activity in the vial compared with the blink model. CONCLUSION The blink model can be tuned to provide quantitative data that closely mimics ex vivo studies and can be used to model deposition of lysozyme on CL materials.
Collapse
Affiliation(s)
- Vivian W Y Chan
- Centre for Ocular Research and Education (CORE) (V.W.Y.C., C.-M.P., W.N., L.J.), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada ; and Centre for Eye and Vision Research (CEVR) (C.-M.P., W.N., L.J.), Hong Kong, China
| | | | | | | |
Collapse
|
9
|
Walther H, Lorentz H, Heynen M, Kay L, Jones LW. The Impact of Incubation Conditions on In Vitro Phosphatidylcholine Deposition on Contact Lens Materials. Optom Vis Sci 2021; 98:341-349. [PMID: 33828039 DOI: 10.1097/opx.0000000000001680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SIGNIFICANCE Previous in vitro measurements of contact lenses commonly investigate the impact of nonpolar tear film lipids (i.e., sterols). Polar lipids, however, are equally important stabilizing components of the tear film. This research explores and presents further knowledge about various aspects of polar lipid uptake that may impact contact lens performance. PURPOSE This study evaluated the impact of incubation time, lipid concentration, and replenishment of an artificial tear solution (ATS) on the uptake of phosphatidylcholine (PC) onto conventional hydrogel (CH) and silicone hydrogel (SH) contact lens materials. METHODS Four SHs and two CH lens materials (n = 4) were soaked in a complex ATS containing radioactive 14C-PC as a probe molecule. Phosphatidylcholine uptake was monitored at various incubation time points (1, 3, 7, 14, and 28 days), with different ATS lipid concentrations (0.5×, 1×, 2×) and with and without regular replenishment of the ATS. Phosphatidylcholine was extracted from the lenses, processed, and counted by a β counter, and accumulated PC (μg/lens) was extrapolated from standard lipid calibration curves. RESULTS All materials exhibited increasing PC deposition over time. Conventional hydrogel materials showed significantly lower PC uptake rates (P < .001) than any of the SH materials. Increasing lipid concentration in the ATS resulted in increased PC binding onto the contact lens materials (P < .001). Replenishing the ATS every other day, however, impacted the PC deposition differently, showing increased binding (P < .001) on CHs and reduced PC deposition for SH materials (P < .001). CONCLUSIONS Length of incubation, lipid concentration in the ATS, and renewal of the incubation solution all influenced the amount of PC that sorbed onto various lens materials and therefore need to be considered when conducting future in vitro deposition studies.
Collapse
Affiliation(s)
| | | | - Miriam Heynen
- Centre for Ocular Research & Education, School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Lise Kay
- Centre for Ocular Research & Education, School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
10
|
Phan CM, Shukla M, Walther H, Heynen M, Suh D, Jones L. Development of an In Vitro Blink Model for Ophthalmic Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13030300. [PMID: 33668884 PMCID: PMC7996515 DOI: 10.3390/pharmaceutics13030300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose: The purpose of this study was to develop an advanced in vitro blink model that can be used to examine the release of a wide variety of components (for example, topical ophthalmic drugs, comfort-inducing agents) from soft contact lenses. Methods: The model was designed using computer-aided design software and printed using a stereolithography 3D printer. The eyelid and eyeball were synthesized from polyvinyl alcohol and silicone material, respectively. Simulated tear fluid was infused through tubing attached to the eyelid using a syringe pump. With each blink cycle, the eyelid slides and flexes across the eyeball to create an artificial tear film layer. The flow-through fluid was collected using a specialized trough. Two contact lenses, etafilcon A and senofilcon A, were incubated in 2 mL of a water-soluble red dye for 24 h and then placed on the eye model (n = 3). The release of the dye was measured over 24 h using a tear flow rate of 5 µL/min. Results: Approximately 25% of the fluid that flowed over the eye model was lost due to evaporation, nonspecific absorption, and residual dead volume. Senofilcon A absorbed more dye (47.6 ± 2.7 µL) than etafilcon A (22.3 ± 2.0 µL). For etafilcon A, the release of the dye followed a burst-plateau profile in the vial but was sustained in the eye model. For senofilcon A, the release of the dye was sustained in both the vial and the eye model, though more dye was released in the vial (p < 0.05). Overall, the release of the dye from the contact lenses was higher in the vial compared with the eye model (p < 0.05). Conclusion: The blink model developed in this study could be used to measure the release of topical ophthalmic drugs or comfort agents from contact lenses. Simulation of a blink mechanism, an artificial tear film, and nonspecific absorption in an eye model may provide better results than a simple, static vial incubation model.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Correspondence: ; Tel.: +1-519-888-4567 (ext. 37009)
| | - Manish Shukla
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Hendrik Walther
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
| | - Miriam Heynen
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
| | - David Suh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (M.S.); (H.W.); (M.H.); (D.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| |
Collapse
|
11
|
Phan CM, Qiao H, Yee A, Jones L. Deposition of Fluorescently Tagged Lysozyme on Contact Lenses in a Physiological Blink Model. Eye Contact Lens 2021; 47:127-133. [PMID: 31789754 DOI: 10.1097/icl.0000000000000683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE To visualize the deposition of fluorescein isothiocyanate (FITC) lysozyme on daily disposable contact lenses (CLs) using a novel blink model. METHODS Three daily disposable conventional hydrogel CLs (etafilcon A, omafilcon A, and nelfilcon A) and three silicone hydrogel CLs (delefilcon A, senofilcon A, and somofilcon A) were evaluated in the study. The CLs were mounted onto a novel blink model and exposed to an artificial tear solution containing FITC lysozyme for 2 and 10 hr. The flow rate and blink speed were set to 1 μL/min and 6 blinks/min, respectively. After the incubation period, a 5-mm-diameter disc was punched out from the center of the lens and mounted on a microscope slide. The slides were imaged using the Zeiss 510 Meta confocal laser scanning microscope, which scanned the lens from the front to the back surface at 5-μm increments. RESULTS There was an increase in deposition of FITC lysozyme for all lens types with increasing incubation time (P<0.05), with the exception of somofilcon A, which did not show statistical significance between 2 and 10 hr (P>0.05). The conventional hydrogel CLs deposited higher amounts of FITC lysozyme than the silicone hydrogel CLs (P<0.001), with etafilcon A depositing the highest at all time points (P<0.05). Interestingly, at the 2-hr incubation time, most CLs showed a higher amount of deposition at the front surface than the back surface of the lens. In particular, etafilcon A showed preferred deposition at the front surface at all time points. CONCLUSION The results suggest that there is differential deposition at the front surface of the CL, which is exposed to the prelens tear film, compared with the back surface of the CL, which is exposed to the postlens tear film. Therefore, it may be beneficial to design CL materials with differing surface properties for the front and back surfaces of the CL to enhance interactions with the tear film and ocular surface.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research and Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
Qiao H, Luensmann D, Heynen M, Drolle E, Subbaraman LN, Scales C, Riederer D, Fadli Z, Jones L. In vitro Evaluation of the Location of Cholesteryl Ester Deposits on Monthly Replacement Silicone Hydrogel Contact Lens Materials. Clin Ophthalmol 2020; 14:2821-2828. [PMID: 33061266 PMCID: PMC7522414 DOI: 10.2147/opth.s270575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/22/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The deposition profile of cholesteryl ester on the surface and throughout the matrix of silicone hydrogel contact lens (CL) materials was determined under conditions that mimic a daily wear regimen. Methods In this in vitro study, four SiHy CL materials (senofilcon C, lotrafilcon B, comfilcon A and samfilcon A) were incubated in an artificial tear solution (ATS) for up to 30 days. CL incubation was alternated between the ATS (16 hours) and a multipurpose care regimen (8 hours). The ATS included fluorescently tagged cholesteryl ester (5-cholesten-3ß-ol 6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]caproate; CE-NBD) and confocal laser scanning microscopy visualized the distribution of the lipid through the CLs. Results The distribution of CE-NBD was homogenous from the anterior to posterior surface in senofilcon C and comfilcon A, at all time points. For lotrafilcon B and samfilcon A, CE-NBD localization was heterogeneous, with greater amounts on the surfaces on Day 1 and Day 14 compared to the lens matrix; however, differences in concentration between the surface and bulk diminished by Day 30. Conclusion The distribution of the non-polar lipid CE-NBD varied with lens material chemistry. While some lens materials deposited the lipid primarily on the surface after 16 hours of exposure, all materials exhibited a homogenous distribution after one month.
Collapse
Affiliation(s)
- Han Qiao
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Doerte Luensmann
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Miriam Heynen
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Elizabeth Drolle
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Lakshman N Subbaraman
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Charles Scales
- Johnson & Johnson Vision Care, Inc, Jacksonville, FL, USA
| | | | - Zohra Fadli
- Johnson & Johnson Vision Care, Inc, Jacksonville, FL, USA
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada.,Centre for Eye & Vision Research (CEVR), Hong Kong, People's Republic of China
| |
Collapse
|
13
|
Luensmann D, Omali NB, Suko A, Drolle E, Heynen M, Subbaraman LN, Scales C, Fadli Z, Jones L. Kinetic Deposition of Polar and Non-polar Lipids on Silicone Hydrogel Contact Lenses. Curr Eye Res 2020; 45:1477-1483. [PMID: 32281422 DOI: 10.1080/02713683.2020.1755696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This study investigated kinetic lipid uptake to four silicone hydrogel (SiHy) lenses over a period of four weeks, using an in-vitro radiolabel method. Methods: Four contemporary monthly replacement SiHy lenses (lotrafilcon B, senofilcon C, comfilcon A, samfilcon A) were incubated in three different solutions: 1) An artificial tear solution (ATS) containing 14C-labeled phosphatidylcholine (PC), 2) an ATS containing 14C-cholesteryl oleate (CO) and 3) an ATS containing four 14C-radiolabeled lipids (PC, phosphatidylethanolamine, CO, and cholesterol (total lipid)). After 16 hours, lipids were extracted twice from the lenses with chloroform:methanol and the radioactive counts determined the lipid quantities to simulate 1 day of wear. OPTI-FREE PureMoist (Alcon) was used to clean and disinfect the remaining lenses daily and the lipid quantities were further determined after 2 weeks and 4 weeks. Results: The amount of total lipid increased for all lenses over time (p < .01). After four weeks, total lipid accumulated was 20.26 ± 0.15 µg/lens for senofilcon C, which was significantly higher (p < .01) than all other lens materials (samfilcon A - 17.84 ± 0.21; comfilcon A - 16.65 ± 0.12; lotrafilcon B - 7.41 ± 0.56 µg/lens). CO was highest on lotrafilcon B (1.26 ± 0.13 µg/lens) and senofilcon C attracted the most PC (3.95 ± 0.12 µg/lens) compared to the other materials. Conclusion: The amount of both polar and non-polar lipid deposition on monthly replacement SiHy lenses increased over 4 weeks, with significant differences being seen between lens materials.
Collapse
Affiliation(s)
- Doerte Luensmann
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo , Waterloo, Canada
| | - Negar Babaei Omali
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo , Waterloo, Canada
| | - Adeline Suko
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo , Waterloo, Canada
| | - Elizabeth Drolle
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo , Waterloo, Canada
| | - Miriam Heynen
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo , Waterloo, Canada
| | - Lakshman N Subbaraman
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo , Waterloo, Canada
| | | | - Zohra Fadli
- Johnson & Johnson Vision Care, Inc , Jacksonville, USA
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo , Waterloo, Canada
| |
Collapse
|
14
|
Phan CM, Walther H, Qiao H, Shinde R, Jones L. Development of an Eye Model With a Physiological Blink Mechanism. Transl Vis Sci Technol 2019; 8:1. [PMID: 31534830 PMCID: PMC6727780 DOI: 10.1167/tvst.8.5.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 01/26/2023] Open
Abstract
Purpose To develop an eye model with a physiological blink mechanism. Methods All parts of the eye model were designed using computer-aided design software. The eyelid consisted of a unique 3D printed structure containing teeth to physically secure a flexible membrane. Both the eyeball and eyelid membrane were synthesized using polyvinyl alcohol (PVA). Four molecular weights of PVA (89–98, 85–124, 130, and 146–186 kDa) were tested at a range of concentrations between 5% and 30% weight/volume. The wettability and water content of these materials were compared with the bovine cornea and sclera. The model was connected to a microfluidic pump, which delivers artificial tear solution (ATS) to the eyelid. A corneal topographer was used to evaluate the tear break-up and tear film regeneration. Results The eyelid flexes and slides across the eyeball during each blink, which ensures direct contact between the two surfaces. When loaded with an ATS, this mechanism evenly spreads the solution over the eyeball to generate an artificial tear film. The artificial tear film in this eye model had a tear break-up time (TBUT) of 5.13 ± 0.09 seconds at 1.4 μL/min flow rate, 6 blinks/min, and <25% humidity. Conclusions This model simulates a physiological blink actuation and an artificial tear film layer. Future studies will examine variations in flow rates and ATS composition to simulate clinical values of TBUT. Translational Relevance The eye model could be used to study in vitro TBUT, tear deposition, and simple drug delivery.
Collapse
Affiliation(s)
- Chau-Min Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Hendri Walther
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Ha Qiao
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Ra Shinde
- Manipal Academy of Higher Education, Manipal Institute of Technology, Madhav Nagar, Manipal, Karnataka, India
| | - Lyndo Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
15
|
Phan CM, Walther H, Smith RW, Riederer D, Lau C, Osborn Lorenz K, Subbaraman LN, Jones L. Determination of the release of PEG and HPMC from nelfilcon A daily disposable contact lenses using a novel in vitro eye model. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2124-2136. [PMID: 30157706 DOI: 10.1080/09205063.2018.1514192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The traditional method to measure release of components from CLs is a vial containing a static volume of PBS (phosphate buffered saline). However, this model does not simulate physiologically relevant tear volume and natural tear flow, air exposure, and mechanical rubbing. These factors can significantly impact release kinetics. We have developed an in vitro eye model (OcuFlow) that simulates these parameters. The aim of the study was to measure the release of PEG (polyethylene glycol), and HPMC (hydroxypropyl methylcellulose) from a daily disposable hydrogel contact lens material (nelfilcon A; Dailies AquaComfort PLUS; DACP;) over 24 hrs using the OcuFlow platform. The elution of PEG and HPMC from DACP lenses was analyzed using LCMS (liquid chromatography mass spectrometry). The release of all wetting agents from the lenses followed a burst release pattern, which occurred within the first 1.5 hrs (P < 0.05). The release of PEG was greater than that of HPMC (P < 0.05). The amount of PEG and HPMC released at any given time was less than 1% of the amount in the blister pack solution. Our results suggest that HPMC and PEG are rapidly released from the CL.
Collapse
Affiliation(s)
- Chau-Minh Phan
- a Centre for Ocular Research & Education (CORE) - formerly Centre for Contact Lens Research (CCLR) , School of Optometry and Vision Science , Waterloo , ON , Canada
| | - Hendrik Walther
- a Centre for Ocular Research & Education (CORE) - formerly Centre for Contact Lens Research (CCLR) , School of Optometry and Vision Science , Waterloo , ON , Canada
| | - Richard W Smith
- b University of Waterloo Mass Spectrometry Facility, Department of Chemistry , University of Waterloo , Waterloo , ON , Canada
| | | | - Charis Lau
- c Johnson & Johnson Vision , Jacksonville , FL , USA
| | | | - Lakshman N Subbaraman
- a Centre for Ocular Research & Education (CORE) - formerly Centre for Contact Lens Research (CCLR) , School of Optometry and Vision Science , Waterloo , ON , Canada
| | - Lyndon Jones
- a Centre for Ocular Research & Education (CORE) - formerly Centre for Contact Lens Research (CCLR) , School of Optometry and Vision Science , Waterloo , ON , Canada
| |
Collapse
|
16
|
Phan CM, Walther H, Riederer D, Lau C, Lorenz KO, Subbaraman LN, Jones L. Analysis of polyvinyl alcohol release from commercially available daily disposable contact lenses using an in vitro eye model. J Biomed Mater Res B Appl Biomater 2018; 107:1662-1668. [PMID: 30325095 PMCID: PMC6587498 DOI: 10.1002/jbm.b.34259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to determine the release of polyvinyl alcohol (PVA) from etafilcon A, omafilcon A, and nelfilcon A daily disposable hydrogel contact lenses using a novel in vitro model. PVA is an ocular lubricant that can be found in multiple formulations of artificial tears. Nelfilcon A innately contains PVA, so only the release of PVA from this lens was evaluated. Etafilcon A and omafilcon A lenses were incubated in a PBS solution containing PVA. The release of PVA was evaluated using a novel in vitro blink platform with Milli‐Q water and PBS under various blink conditions and flow rates. Nelfilcon A lenses significantly released more PVA than other lenses at 0.5 and 1.5 h in both PBS and Milli‐Q water (p < 0.001). For nelfilcon A, there was no statistical significance between the release profiles of PVA between the blink and no‐blink conditions, or for the various flow rates (p > 0.05). All tested groups and lenses showed a burst release within the first 4.5 h and rapidly plateaued thereafter. The current study demonstrates that releasable PVA (whether through uptake or through being inherently available from the material) is loosely bound on hydrogel lenses, and the majority is released within 4.5 h. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1662–1668, 2019.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research & Education (CORE) - formerly Centre for Contact Lens Research (CCLR), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Hendrik Walther
- Centre for Ocular Research & Education (CORE) - formerly Centre for Contact Lens Research (CCLR), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | | | - Charis Lau
- Johnson & Johnson Vision, Inc, Jacksonville, Florida
| | | | - Lakshman Nagapatnam Subbaraman
- Centre for Ocular Research & Education (CORE) - formerly Centre for Contact Lens Research (CCLR), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE) - formerly Centre for Contact Lens Research (CCLR), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|