1
|
Delrue C, Speeckaert MM. Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. J Pers Med 2024; 14:1157. [PMID: 39728069 DOI: 10.3390/jpm14121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide health concern because of its progressive nature and complex biology. Traditional diagnostic and therapeutic approaches usually fail to account for disease heterogeneity, resulting in low efficacy. Precision medicine offers a novel approach to studying kidney disease by combining omics technologies such as genomics, transcriptomics, proteomics, metabolomics, and epigenomics. By identifying discrete disease subtypes, molecular biomarkers, and therapeutic targets, these technologies pave the way for personalized treatment approaches. Multi-omics integration has enhanced our understanding of CKD by revealing intricate molecular linkages and pathways that contribute to treatment resistance and disease progression. While pharmacogenomics offers insights into expected responses to personalized treatments, single-cell and spatial transcriptomics can be utilized to investigate biological heterogeneity. Despite significant development, challenges persist, including data integration concerns, high costs, and ethical quandaries. Standardized data protocols, collaborative data-sharing frameworks, and advanced computational tools such as machine learning and causal inference models are required to address these challenges. With the advancement of omics technology, nephrology may benefit from improved diagnostic accuracy, risk assessment, and personalized care. By overcoming these barriers, precision medicine has the potential to develop novel techniques for improving patient outcomes in kidney disease treatment.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Saraswati S, Martínez P, Serrano R, Mejías D, Graña-Castro O, Álvarez Díaz R, Blasco MA. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp Mol Med 2024; 56:2216-2230. [PMID: 39349834 PMCID: PMC11541748 DOI: 10.1038/s12276-024-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/03/2024] Open
Abstract
Tubulointerstitial fibrosis associated with chronic kidney disease (CKD) represents a global health care problem. We previously reported that short and dysfunctional telomeres lead to interstitial renal fibrosis; however, the cell-of-origin of kidney fibrosis associated with telomere dysfunction is currently unknown. We induced telomere dysfunction by deleting the Trf1 gene encoding a telomere-binding factor specifically in renal fibroblasts in both short-term and long-term life-long experiments in mice to identify the role of fibroblasts in renal fibrosis. Short-term Trf1 deletion in renal fibroblasts was not sufficient to trigger kidney fibrosis but was sufficient to induce inflammatory responses, ECM deposition, cell cycle arrest, fibrogenesis, and vascular rarefaction. However, long-term persistent deletion of Trf1 in fibroblasts resulted in kidney fibrosis accompanied by an elevated urinary albumin-to-creatinine ratio (uACR) and a decrease in mouse survival. These cellular responses lead to the macrophage-to-myofibroblast transition (MMT), endothelial-to-mesenchymal transition (EndMT), and partial epithelial-to-mesenchymal transition (EMT), ultimately causing kidney fibrosis at the humane endpoint (HEP) when the deletion of Trf1 in fibroblasts is maintained throughout the lifespan of mice. Our findings contribute to a better understanding of the role of dysfunctional telomeres in the onset of the profibrotic alterations that lead to kidney fibrosis.
Collapse
Affiliation(s)
- Sarita Saraswati
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Diego Mejías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ruth Álvarez Díaz
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
3
|
Claude-Taupin A, Isnard P, Bagattin A, Kuperwasser N, Roccio F, Ruscica B, Goudin N, Garfa-Traoré M, Regnier A, Turinsky L, Burtin M, Foretz M, Pontoglio M, Morel E, Viollet B, Terzi F, Codogno P, Dupont N. The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and controls autophagy flux in kidney epithelial cells. Nat Commun 2023; 14:8056. [PMID: 38052799 PMCID: PMC10698145 DOI: 10.1038/s41467-023-43775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Shear stress generated by urinary fluid flow is an important regulator of renal function. Its dysregulation is observed in various chronic and acute kidney diseases. Previously, we demonstrated that primary cilium-dependent autophagy allows kidney epithelial cells to adapt their metabolism in response to fluid flow. Here, we show that nuclear YAP/TAZ negatively regulates autophagy flux in kidney epithelial cells subjected to fluid flow. This crosstalk is supported by a primary cilium-dependent activation of AMPK and SIRT1, independently of the Hippo pathway. We confirm the relevance of the YAP/TAZ-autophagy molecular dialog in vivo using a zebrafish model of kidney development and a unilateral ureteral obstruction mouse model. In addition, an in vitro assay simulating pathological accelerated flow observed at early stages of chronic kidney disease (CKD) activates YAP, leading to a primary cilium-dependent inhibition of autophagic flux. We confirm this YAP/autophagy relationship in renal biopsies from patients suffering from diabetic kidney disease (DKD), the leading cause of CKD. Our findings demonstrate the importance of YAP/TAZ and autophagy in the translation of fluid flow into cellular and physiological responses. Dysregulation of this pathway is associated with the early onset of CKD.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France.
| | - Pierre Isnard
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Alessia Bagattin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | | | - Federica Roccio
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Biagina Ruscica
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Nicolas Goudin
- Structure Fédérative de Recherche Necker, US24-UMS3633, Paris, France
| | | | - Alice Regnier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Lisa Turinsky
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Martine Burtin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Marc Foretz
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Université Paris Cité, 75014, Paris, France
| | - Marco Pontoglio
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Benoit Viollet
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Université Paris Cité, 75014, Paris, France
| | - Fabiola Terzi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Nicolas Dupont
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
4
|
Zhao Y, Wang Y, Yang D, Suh K, Zhang M. A Computational Framework to Characterize the Cancer Drug Induced Effect on Aging Using Transcriptomic Data. Front Pharmacol 2022; 13:906429. [PMID: 35847024 PMCID: PMC9277350 DOI: 10.3389/fphar.2022.906429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer treatments such as chemotherapies may change or accelerate aging trajectories in cancer patients. Emerging evidence has shown that “omics” data can be used to study molecular changes of the aging process. Here, we integrated the drug-induced and normal aging transcriptomic data to computationally characterize the potential cancer drug-induced aging process in patients. Our analyses demonstrated that the aging-associated gene expression in the GTEx dataset can recapitulate the well-established aging hallmarks. We next characterized the drug-induced transcriptomic changes of 28 FDA approved cancer drugs in brain, kidney, muscle, and adipose tissues. Further drug-aging interaction analysis identified 34 potential drug regulated aging events. Those events include aging accelerating effects of vandetanib (Caprelsa®) and dasatinib (Sprycel®) in brain and muscle, respectively. Our result also demonstrated aging protective effect of vorinostat (Zolinza®), everolimus (Afinitor®), and bosutinib (Bosulif®) in brain.
Collapse
Affiliation(s)
- Yueshan Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kangho Suh
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Min Zhang,
| |
Collapse
|
5
|
Yang Z, Stemmer PM, Petriello MC. Proteomics-Based Identification of Interaction Partners of the Xenobiotic Detoxification Enzyme FMO3 Reveals Involvement in Urea Cycle. TOXICS 2022; 10:60. [PMID: 35202247 PMCID: PMC8877285 DOI: 10.3390/toxics10020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
The hepatic xenobiotic metabolizing enzyme flavin-containing monooxygenase 3 (FMO3) has been implicated in the development of cardiometabolic disease primarily due to its enzymatic product trimethylamine-N oxide (TMAO), which has recently been shown to be associated with multiple chronic diseases, including kidney and coronary artery diseases. Although TMAO may have causative roles as a pro-inflammatory mediator, the possibility for roles in metabolic disease for FMO3, irrespective of TMAO formation, does exist. We hypothesized that FMO3 may interact with other proteins known to be involved in cardiometabolic diseases and that modulating the expression of FMO3 may impact on these interaction partners. Here, we combine a co-immunoprecipitation strategy coupled to unbiased proteomic workflow to report a novel protein:protein interaction network for FMO3. We identified 51 FMO3 protein interaction partners, and through gene ontology analysis, have identified urea cycle as an enriched pathway. Using mice deficient in FMO3 on two separate backgrounds, we validated and further investigated expressional and functional associations between FMO3 and the identified urea cycle genes. FMO3-deficient mice showed hepatic overexpression of carbamoylphosphate synthetase (CPS1), the rate-limiting gene of urea cycle, and increased hepatic urea levels, especially in mice of FVB (Friend leukemia virus B strain) background. Finally, overexpression of FMO3 in murine AML12 hepatocytes led to downregulation of CPS1. Although there is past literature linking TMAO to urea cycle, this is the first published work showing that FMO3 and CPS1 may directly interact, implicating a role for FMO3 in chronic kidney disease irrespective of TMAO formation.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.Y.); (P.M.S.)
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.Y.); (P.M.S.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.Y.); (P.M.S.)
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
6
|
Chavda V, Chaurasia B, Deora H, Umana GE. Chronic Kidney disease and stroke: A Bi-directional risk cascade and therapeutic update. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
7
|
Diet Significantly Influences the Immunopathology and Severity of Kidney Injury in Male C57Bl/6J Mice in a Model Dependent Manner. Nutrients 2021; 13:nu13051521. [PMID: 33946347 PMCID: PMC8145177 DOI: 10.3390/nu13051521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Diet is a leading causative risk factor for morbidity and mortality worldwide, yet it is rarely considered in the design of preclinical animal studies. Several of the nutritional inadequacies reported in Americans have been shown to be detrimental to kidney health; however, the mechanisms responsible are unclear and have been largely attributed to the development of diabetes or hypertension. Here, we set out to determine whether diet influences the susceptibility to kidney injury in male C57Bl/6 mice. Mice were fed a standard chow diet, a commercially available “Western” diet (WD), or a novel Americanized diet (AD) for 12 weeks prior to the induction of kidney injury using the folic acid nephropathy (FAN) or unilateral renal ischemia reperfusion injury (uIRI) models. In FAN, the mice that were fed the WD and AD had worse histological evidence of tissue injury and greater renal expression of genes associated with nephrotoxicity as compared to mice fed chow. Mice fed the AD developed more severe renal hypertrophy following FAN, and gene expression data suggest the mechanism for FAN differed among the diets. Meanwhile, mice fed the WD had the greatest circulating interleukin-6 concentrations. In uIRI, no difference was observed in renal tissue injury between the diets; however, mice fed the WD and AD displayed evidence of suppressed inflammatory response. Taken together, our data support the hypothesis that diet directly impacts the severity and pathophysiology of kidney disease and is a critical experimental variable that needs to be considered in mechanistic preclinical animal studies.
Collapse
|
8
|
Manning JA, Shah SS, Nikolic A, Henshall TL, Khew-Goodall Y, Kumar S. The ubiquitin ligase NEDD4-2/NEDD4L regulates both sodium homeostasis and fibrotic signaling to prevent end-stage renal disease. Cell Death Dis 2021; 12:398. [PMID: 33854040 PMCID: PMC8046789 DOI: 10.1038/s41419-021-03688-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Kidney disease progression can be affected by Na+ abundance. A key regulator of Na+ homeostasis is the ubiquitin ligase NEDD4-2 and its deficiency leads to increased Na+ transport activity and salt-sensitive progressive kidney damage. However, the mechanisms responsible for high Na+ induced damage remain poorly understood. Here we show that a high Na+ diet compromised kidney function in Nedd4-2-deficient mice, indicative of progression toward end-stage renal disease. Injury was characterized by enhanced tubule dilation and extracellular matrix accumulation, together with sustained activation of both Wnt/β-catenin and TGF-β signaling. Nedd4-2 knockout in cortical collecting duct cells also activated these pathways and led to epithelial-mesenchymal transition. Furthermore, low dietary Na+ rescued kidney disease in Nedd4-2-deficient mice and silenced Wnt/β-catenin and TGF-β signaling. Our study reveals the important role of NEDD4-2-dependent ubiquitination in Na+ homeostasis and protecting against aberrant Wnt/β-catenin/TGF-β signaling in progressive kidney disease.
Collapse
Affiliation(s)
- Jantina A. Manning
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Sonia S. Shah
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Andrej Nikolic
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Tanya L. Henshall
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Yeesim Khew-Goodall
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Sharad Kumar
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| |
Collapse
|