1
|
Xiong Y, Wang F, Mu H, Zhang A, Zhao Y, Han K, Zhang J, Zhang H, Wang Z, Ma J, Wei R, Luan X. hPMSCs prevent erythrocytes dysfunction caused by graft versus host disease via promoting GSH synthesis. Int Immunopharmacol 2024; 139:112689. [PMID: 39029234 DOI: 10.1016/j.intimp.2024.112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Oxidative stress is increased in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients and leads to the development of graft versus host disease (GVHD). Mesenchymal stromal cells (MSCs) can ameliorate GVHD by regulating the function of T cells. However, whether MSCs can modulate erythrocyte antioxidant metabolism and thus reduce GVHD is not known. METHODS Forty female BALB/c mice were randomly assigned to four groups: the control, GVHDhigh, hPMSC, and PBS groups. A hypoxanthine/xanthine oxidase system was used to steadily and gradually produce superoxide in an in vitro experiment. A scanning microscope was used to examine the ultrastructure of erythrocytes. Laser diffraction analyses were used to analyze erythrocyte deformability. Western blotting was used to measure the expression of the erythrocyte membrane skeleton proteins Band 3 and β-Spectrin. Corresponding kits were used to assess the levels of oxidative damage and the activity of antioxidant enzymes. RESULTS Morphological and deformability defects were significantly increased in erythrocytes from GVHD patients. Band 3 and β-Spectrin expression was also reduced in GVHD patients and model mice. Furthermore, we observed significantly increased oxidative stress-induce injury and decreased antioxidant capability in erythrocytes from both GVHD patients and model mice. Subsequent research showed that human placenta-derived MSC (hPMSC) therapy decreased the GVHD-induced redox imbalance in erythrocytes. Furthermore, our findings suggested that upregulating glucose metabolism promoted both the de novo synthesis and recycling of GSH, which is the primary mechanism by which hPMSCs mediate the increase in antioxidant capacity in erythrocytes. CONCLUSION Together, our findings suggest that hPMSCs can increase antioxidant capacity by increasing erythrocyte GSH production and thus ameliorate GVHD.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Feifei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Huanmei Mu
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Aiping Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zhuoya Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China
| | - Rongxia Wei
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China.
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
2
|
Tzounakas VL, Anastasiadi AT, Karadimas DG, Velentzas AD, Anastasopoulou VI, Papageorgiou EG, Stamoulis K, Papassideri IS, Kriebardis AG, Antonelou MH. Early and Late-Phase 24 h Responses of Stored Red Blood Cells to Recipient-Mimicking Conditions. Front Physiol 2022; 13:907497. [PMID: 35721567 PMCID: PMC9198496 DOI: 10.3389/fphys.2022.907497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The 24-hour (24 h) post-transfusion survival of donor red blood cells (RBCs) is an important marker of transfusion efficacy. Nonetheless, within that period, donated RBCs may encounter challenges able to evoke rapid stress-responses. The aim of the present study was to assess the effect of exposure to plasma and body temperature upon stored RBCs under recipient-mimicking conditions in vitro from the first hours "post-transfusion" up to 24 h. For this purpose, packed RBCs from seven leukoreduced CPD/SAGM units were reconstituted with plasma of twenty-seven healthy individuals and incubated for 24 h at 37oC. Three units were additionally used to examine stress-responses in 3-hour intervals post mixing with plasma (n = 5) until 24 h. All experiments were performed in shortly-, medium-, and long-stored RBCs. Hemolysis, redox, morphology, membrane protein binding and vesiculation parameters were assessed. Even though spontaneous hemolysis was minimal post-reconstitution, it presented a time-dependent increase. A similar time-course profile was evident for the concentration of procoagulant extracellular vesicles and the osmotic fragility (shortly-stored RBCs). On the contrary, mechanical fragility and reactive oxygen species accumulation were characterized by increases in medium-stored RBCs, evident even from the first hours in the recipient-mimicking environment. Finally, exposure to plasma resulted in rapid improvement of morphology, especially in medium-stored RBCs. Overall, some RBC properties vary significantly during the first 24 h post-mixing, at levels different from both the storage ones and the standard end-of-24 h. Such findings may be useful for understanding the performance of RBCs and their possible clinical effects -especially on susceptible recipients- during the first hours post-transfusion.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios G Karadimas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Athanassios D Velentzas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Violetta I Anastasopoulou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | | | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
3
|
Volkov VV, McMaster J, Aizenberg J, Perry CC. Mapping blood biochemistry by Raman spectroscopy at the cellular level. Chem Sci 2021; 13:133-140. [PMID: 35059161 PMCID: PMC8694331 DOI: 10.1039/d1sc05764b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
We report how Raman difference imaging provides insight on cellular biochemistry in vivo as a function of sub-cellular dimensions and the cellular environment. We show that this approach offers a sensitive diagnostic to address blood biochemistry at the cellular level. We examine Raman microscopic images of the distribution of the different hemoglobins in both healthy (discocyte) and unhealthy (echinocyte) blood cells and interpret these images using pre-calculated, accurate pre-resonant Raman tensors for scattering intensities specific to hemoglobins. These tensors are developed from theoretical calculations of models of the oxy, deoxy and met forms of heme benchmarked against the experimental visible spectra of the corresponding hemoglobins. The calculations also enable assignments of the electronic transitions responsible for the colour of blood: these are mainly ligand to metal charge transfer transitions. We assign the electronic transitions responsible for the colour of blood and present a Raman imaging diagnostic approach for individual blood cells.![]()
Collapse
Affiliation(s)
- Victor V Volkov
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University. Clifton Lane Nottingham NG11 8NS UK +44 (0)115 8486695
| | - Jonathan McMaster
- School of Chemistry, Faculty of Science, The University of Nottingham Nottingham NG7 2RD UK
| | - Joanna Aizenberg
- John A. Poulson School of Engineering and Applied Sciences, Harvard University 29 Oxford Street Cambridge MA 02138 USA
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University. Clifton Lane Nottingham NG11 8NS UK +44 (0)115 8486695
| |
Collapse
|
4
|
Downregulated Recycling Process but Not De Novo Synthesis of Glutathione Limits Antioxidant Capacity of Erythrocytes in Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7834252. [PMID: 32963701 PMCID: PMC7492869 DOI: 10.1155/2020/7834252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Red blood cells (RBCs) are susceptible to sustained free radical damage during circulation, while the changes of antioxidant capacity and regulatory mechanism of RBCs under different oxygen gradients remain unclear. Here, we investigated the changes of oxidative damage and antioxidant capacity of RBCs in different oxygen gradients and identified the underlying mechanisms using an in vitro model of the hypoxanthine/xanthine oxidase (HX/XO) system. In the present study, we reported that the hypoxic RBCs showed much higher oxidative stress injury and lower antioxidant capacity compared with normoxic RBCs. In addition, we found that the disturbance of the recycling process, but not de novo synthesis of glutathione (GSH), accounted for the significantly decreased antioxidant capacity of hypoxic RBCs compared to normoxic RBCs. We further elucidated the underlying molecular mechanism by which oxidative phosphorylation of Band 3 blocked the hexose monophosphate pathway (HMP) and decreased NADPH production aggravating the dysfunction of GSH synthesis in hypoxic RBCs under oxidative conditions.
Collapse
|
5
|
Restoration of Physiological Levels of Uric Acid and Ascorbic Acid Reroutes the Metabolism of Stored Red Blood Cells. Metabolites 2020; 10:metabo10060226. [PMID: 32486030 PMCID: PMC7344535 DOI: 10.3390/metabo10060226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/24/2022] Open
Abstract
After blood donation, the red blood cells (RBCs) for transfusion are generally isolated by centrifugation and then filtrated and supplemented with additive solution. The consecutive changes of the extracellular environment participate to the occurrence of storage lesions. In this study, the hypothesis is that restoring physiological levels of uric and ascorbic acids (major plasmatic antioxidants) might correct metabolism defects and protect RBCs from the very beginning of the storage period, to maintain their quality. Leukoreduced CPD-SAGM RBC concentrates were supplemented with 416 µM uric acid and 114 µM ascorbic acid and stored during six weeks at 4 °C. Different markers, i.e., haematological parameters, metabolism, sensitivity to oxidative stress, morphology and haemolysis were analyzed. Quantitative metabolomic analysis of targeted intracellular metabolites demonstrated a direct modification of several metabolite levels following antioxidant supplementation. No significant differences were observed for the other markers. In conclusion, the results obtained show that uric and ascorbic acids supplementation partially prevented the metabolic shift triggered by plasma depletion that occurs during the RBC concentrate preparation. The treatment directly and indirectly sustains the antioxidant protective system of the stored RBCs.
Collapse
|
6
|
Old, older, the oldest: red blood cell storage and the potential harm of using older red blood cell concentrates. Curr Opin Anaesthesiol 2020; 33:234-239. [PMID: 31876784 DOI: 10.1097/aco.0000000000000824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Over the last decades, clinical studies have suggested that transfusion of red blood cells (RBCs) might negatively impact patient outcomes. Even though large randomized clinical trials did not show differences in mortality when transfusing fresh versus standard-issue RBC units, data imply that RBCs at the very end of storage could elicit negative effects. RECENT FINDINGS Certain alterations of RBCs during cold storage -- such as an increase of potassium and lactate in the storage solution -- have been discovered a century ago. In recent years, proteomic and metabolomic studies have shed more light into pathophysiological changes of RBCs during storage and have helped to specify the definition of old blood. These advancements are now utilized to increase the quality of stored RBCs and devise therapeutic strategies (e.g. nitric oxide, haptoglobin, or reduction of the iron load) when transfusing old blood. SUMMARY Further research to improve the quality of RBC units and to study populations potentially at risk is warranted. Until the question whether transfusion of old blood is detrimental for specific patient populations has been answered, a deliberate use of RBC transfusion should be implemented.
Collapse
|