1
|
Lee CC, Suttikhana I, Ashaolu TJ. Techno-Functions and Safety Concerns of Plant-Based Peptides in Food Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12398-12414. [PMID: 38797944 DOI: 10.1021/acs.jafc.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.
Collapse
Affiliation(s)
- Chi-Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkalı Avenue No: 28, Halkalı, Küçükçekmece, Istanbul 34303, Türkiye
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| |
Collapse
|
2
|
Ajay A, Rasoul D, Abdullah A, Lee Wei En B, Mashida K, Al-Munaer M, Ajay H, Duvva D, Mathew J, Adenaya A, Lip GYH, Sankaranarayanan R. Augmentation of natriuretic peptide (NP) receptor A and B (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) signalling as a therapeutic strategy in heart failure. Expert Opin Investig Drugs 2023; 32:1157-1170. [PMID: 38032188 DOI: 10.1080/13543784.2023.2290064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Heart failure is a complex, debilitating condition and despite advances in treatment, it remains a significant cause of morbidity and mortality worldwide. Therefore, the need for alternative treatment strategies is essential. In this review, we explore the therapeutic strategies of augmenting natriuretic peptide receptors (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) in heart failure. AREAS COVERED We aim to provide an overview of the evidence of preclinical and clinical studies on novel heart failure treatment strategies. Papers collected in this review have been filtered and screened following PubMed searches. This includes epigenetics, modulating enzyme activity in natriuretic peptide (NP) synthesis, gene therapy, modulation of downstream signaling by augmenting soluble guanylate cyclase (sGC) and phosphodiesterase (PDE) inhibition, nitrates, c-GMP-dependent protein kinase, synthetic and designer NP and RNA therapy. EXPERT OPINION The novel treatment strategies mentioned above have shown great potential, however, large randomized controlled trials are still lacking. The biggest challenge is translating the results seen in preclinical trials into clinical trials. We recommend a multi-disciplinary team approach with cardiologists, geneticist, pharmacologists, bioengineers, researchers, regulators, and patients to improve heart failure outcomes. Future management can involve telemedicine, remote monitoring, and artificial intelligence to optimize patient care.
Collapse
Affiliation(s)
- Ashwin Ajay
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Debar Rasoul
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Alend Abdullah
- General Medicine, The Dudley Group NHS Foundation Trust Dudley, Dudley, United Kingdom
| | - Benjamin Lee Wei En
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Knievel Mashida
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| | | | - Hanan Ajay
- General Medicine, Southport and Ormskirk Hospital NHS Trust, Southport, United Kingdom
| | - Dileep Duvva
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Jean Mathew
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Adeoye Adenaya
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Cedar House, University of Liverpool, Liverpool, United Kingdom
- Cardiology Department, Liverpool Heart & Chest Hospital NHS Trust, Liverpool, United Kingdom
- Cardiology Department, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rajiv Sankaranarayanan
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Gallo G, Rubattu S, Autore C, Volpe M. Natriuretic Peptides: It Is Time for Guided Therapeutic Strategies Based on Their Molecular Mechanisms. Int J Mol Sci 2023; 24:5131. [PMID: 36982204 PMCID: PMC10049669 DOI: 10.3390/ijms24065131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Natriuretic peptides (NPs) are the principal expression products of the endocrine function of the heart. They exert several beneficial effects, mostly mediated through guanylate cyclase-A coupled receptors, including natriuresis, diuresis, vasorelaxation, blood volume and blood pressure reduction, and regulation of electrolyte homeostasis. As a result of their biological functions, NPs counterbalance neurohormonal dysregulation in heart failure and other cardiovascular diseases. NPs have been also validated as diagnostic and prognostic biomarkers in cardiovascular diseases such as atrial fibrillation, coronary artery disease, and valvular heart disease, as well as in the presence of left ventricular hypertrophy and severe cardiac remodeling. Serial measurements of their levels may be used to contribute to more accurate risk stratification by identifying patients who are more likely to experience death from cardiovascular causes, heart failure, and cardiac hospitalizations and to guide tailored pharmacological and non-pharmacological strategies with the aim to improve clinical outcomes. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new targeted cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors to the current management of heart failure, novel promising molecules including M-atrial natriuretic peptide (a novel atrial NP-based compound) have been tested for the treatment of human hypertension with promising results. Moreover, different therapeutic strategies based on the molecular mechanisms involved in NP regulation and function are under development for the management of heart failure, hypertension, and other cardiovascular conditions.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, RM, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, RM, Italy
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Camillo Autore
- IRCCS San Raffaele Cassino, Via G. Di Biasio 1, 03043 Cassino, FR, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, RM, Italy
- IRCCS San Raffaele Roma, Via della Pisana 235, 00163 Rome, RM, Italy
| |
Collapse
|
4
|
Volpe M, Gallo G, Rubattu S. Endocrine functions of the heart: from bench to bedside. Eur Heart J 2023; 44:643-655. [PMID: 36582126 DOI: 10.1093/eurheartj/ehac759] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Heart has a recognized endocrine function as it produces several biologically active substances with hormonal properties. Among these hormones, the natriuretic peptide (NP) system has been extensively characterized and represents a prominent expression of the endocrine function of the heart. Over the years, knowledge about the mechanisms governing their synthesis, secretion, processing, and receptors interaction of NPs has been intensively investigated. Their main physiological endocrine and paracrine effects on cardiovascular and renal systems are mostly mediated through guanylate cyclase-A coupled receptors. The potential role of NPs in the pathophysiology of heart failure and particularly their counterbalancing action opposing the overactivation of renin-angiotensin-aldosterone and sympathetic nervous systems has been described. In addition, NPs are used today as key biomarkers in cardiovascular diseases with both diagnostic and prognostic significance. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors in the current management of heart failure, novel promising molecules, including M-atrial natriuretic peptide (a novel atrial NP-based compound), have been tested for the treatment of human hypertension. The development of new drugs is currently underway, and we are probably only at the dawn of novel NPs-based therapeutic strategies. The present article also provides an updated overview of the regulation of NPs synthesis and secretion by microRNAs and epigenetics as well as interactions of cardiac hormones with other endocrine systems.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS San Raffaele, Via della Pisana 235, 00163 Rome, Italy
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy
| |
Collapse
|
5
|
Sangaralingham SJ, Kuhn M, Cannone V, Chen HH, Burnett JC. Natriuretic peptide pathways in heart failure: further therapeutic possibilities. Cardiovasc Res 2022; 118:3416-3433. [PMID: 36004816 PMCID: PMC9897690 DOI: 10.1093/cvr/cvac125] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the heart as an endocrine organ resulted in a remarkable recognition of the natriuretic peptide system (NPS). Specifically, research has established the production of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) from the heart, which exert pleiotropic cardiovascular, endocrine, renal, and metabolic actions via the particulate guanylyl cyclase A receptor (GC-A) and the second messenger, cGMP. C-type natriuretic peptide (CNP) is produced in the endothelium and kidney and mediates important protective auto/paracrine actions via GC-B and cGMP. These actions, in part, participate in the efficacy of sacubitril/valsartan in heart failure (HF) due to the augmentation of the NPS. Here, we will review important insights into the biology of the NPS, the role of precision medicine, and focus on the phenotypes of human genetic variants of ANP and BNP in the general population and the relevance to HF. We will also provide an update of the existence of NP deficiency states, including in HF, which provide the rationale for further therapeutics for the NPS. Finally, we will review the field of peptide engineering and the development of novel designer NPs for the treatment of HF. Notably, the recent discovery of a first-in-class small molecule GC-A enhancer, which is orally deliverable, will be highlighted. These innovative designer NPs and small molecule possess enhanced and novel properties for the treatment of HF and cardiovascular diseases.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic 200 1st St SW, Rochester MN 55905, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Wuerzburg, Roentgenring 9, D-97070 Wuerzburg, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - John C Burnett
- Corresponding author. Tel: 507 284-4343; fax: 507 266-4710; E-mail:
| |
Collapse
|
6
|
Boileau E, Li X, Naarmann-de Vries IS, Becker C, Casper R, Altmüller J, Leuschner F, Dieterich C. Full-Length Spatial Transcriptomics Reveals the Unexplored Isoform Diversity of the Myocardium Post-MI. Front Genet 2022; 13:912572. [PMID: 35937994 PMCID: PMC9354982 DOI: 10.3389/fgene.2022.912572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
We introduce Single-cell Nanopore Spatial Transcriptomics (scNaST), a software suite to facilitate the analysis of spatial gene expression from second- and third-generation sequencing, allowing to generate a full-length near-single-cell transcriptional landscape of the tissue microenvironment. Taking advantage of the Visium Spatial platform, we adapted a strategy recently developed to assign barcodes to long-read single-cell sequencing data for spatial capture technology. Here, we demonstrate our workflow using four short axis sections of the mouse heart following myocardial infarction. We constructed a de novo transcriptome using long-read data, and successfully assigned 19,794 transcript isoforms in total, including clinically-relevant, but yet uncharacterized modes of transcription, such as intron retention or antisense overlapping transcription. We showed a higher transcriptome complexity in the healthy regions, and identified intron retention as a mode of transcription associated with the infarct area. Our data revealed a clear regional isoform switching among differentially used transcripts for genes involved in cardiac muscle contraction and tissue morphogenesis. Molecular signatures involved in cardiac remodeling integrated with morphological context may support the development of new therapeutics towards the treatment of heart failure and the reduction of cardiac complications.
Collapse
Affiliation(s)
- Etienne Boileau
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Xue Li
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Isabel S Naarmann-de Vries
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Ramona Casper
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Florian Leuschner
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
7
|
Feng Y, Cai L, Hong W, Zhang C, Tan N, Wang M, Wang C, Liu F, Wang X, Ma J, Gao C, Kumar M, Mo Y, Geng Q, Luo C, Lin Y, Chen H, Wang SY, Watson MJ, Jegga AG, Pedersen RA, Fu JD, Wang ZV, Fan GC, Sadayappan S, Wang Y, Pauklin S, Huang F, Huang W, Jiang L. Rewiring of 3D Chromatin Topology Orchestrates Transcriptional Reprogramming and the Development of Human Dilated Cardiomyopathy. Circulation 2022; 145:1663-1683. [PMID: 35400201 PMCID: PMC9251830 DOI: 10.1161/circulationaha.121.055781] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/18/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, Headington, Oxford, OX3 7LD, UK
- These authors contributed equally to this work
| | - Liuyang Cai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
- These authors contributed equally to this work
| | - Wanzi Hong
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
- These authors contributed equally to this work
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- These authors contributed equally to this work
| | - Ning Tan
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Mingyang Wang
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland D02 VF25
| | - Feng Liu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, Headington, Oxford, OX3 7LD, UK
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohit Kumar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45236, USA
| | - Yuanxi Mo
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Qingshan Geng
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Changjun Luo
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yan Lin
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Haiyang Chen
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shuang-Yin Wang
- Department of Immunology, Weizmann Institute of Science, Rehovot WR35+R8, Israel
| | - Michael J. Watson
- Department of Surgery, Cardiovascular & Thoracic, Duke University, Durham, NC 27710, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45221, USA
| | - Roger A. Pedersen
- Department of OB-GYN/Reproductive, Perinatal and Stem Cell Biology Research, Stanford University, Stanford, California, USA
| | - Ji-dong Fu
- Departments of Physiology and Cell Biology, the Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, the Ohio State University, Columbus, OH 43210, USA
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45236, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, Headington, Oxford, OX3 7LD, UK
| | - Feng Huang
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lei Jiang
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
- Lead contact
| |
Collapse
|
8
|
Fu W, Ren H, Shou J, Liao Q, Li L, Shi Y, Jose PA, Zeng C, Wang WE. Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ-NONO heteromer-induced DNA repair. Basic Res Cardiol 2022; 117:10. [PMID: 35247074 DOI: 10.1007/s00395-022-00921-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/31/2023]
Abstract
The role of long non-coding RNA (lncRNA) in endogenous cardiac regeneration remains largely elusive. The mammalian cardiomyocyte is capable of regeneration for a brief period after birth. This fact allows the exploration of the roles of critical lncRNAs in the regulation of cardiac regeneration. Through a cardiac regeneration model by apical resection (AR) of the left ventricle in neonatal mice, we identified an lncRNA named natriuretic peptide A antisense RNA 1 (NPPA-AS1), which negatively regulated cardiomyocyte proliferation. In neonates, NPPA-AS1 deletion did not affect heart development, but was sufficient to prolong the postnatal window of regeneration after AR. In adult mice, NPPA-AS1 deletion improved cardiac function and reduced infarct size after myocardial infarction (MI), associated with a significant improvement in cardiomyocyte proliferation. Further analysis showed that NPPA-AS1 interacted with DNA repair-related molecule splicing factor, proline- and glutamine-rich (SFPQ). A heteromer of SFPQ and non-POU domain-containing octamer-binding protein (NONO) was required for double-strand DNA break repair, but NPPA-AS1 was competitively bound with SFPQ due to the overlapped binding sites of SFPQ and NONO. NPPA-AS1 deletion promoted the binding of SFPQ-NONO heteromer, decreased DNA damage, and activated cardiomyocyte cell cycle re-entry. Together, loss of NPPA-AS1 promoted cardiomyocyte proliferation by stabilizing SFPQ-NONO heteromer-induced DNA repair and exerted a therapeutic effect against MI in adult mice. Consequently, NPPA-AS1 may be a novel target for stimulating cardiac regeneration to treat MI.
Collapse
Affiliation(s)
- Wenbin Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Jialing Shou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Pedro A Jose
- Division of Kidney Diseases & Hypertension, Department of Medicine and Department of Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China. .,Department of Cardiology, Chongqing General Hospital, Chongqing, People's Republic of China. .,Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China.
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Gidlöf O. Toward a New Paradigm for Targeted Natriuretic Peptide Enhancement in Heart Failure. Front Physiol 2021; 12:650124. [PMID: 34721050 PMCID: PMC8548580 DOI: 10.3389/fphys.2021.650124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The natriuretic peptide system (NPS) plays a fundamental role in maintaining cardiorenal homeostasis, and its potent filling pressure-regulated diuretic and vasodilatory effects constitute a beneficial compensatory mechanism in heart failure (HF). Leveraging the NPS for therapeutic benefit in HF has been the subject of intense investigation during the last three decades and has ultimately reached widespread clinical use in the form of angiotensin receptor-neprilysin inhibition (ARNi). NPS enhancement via ARNi confers beneficial effects on mortality and hospitalization in HF, but inhibition of neprilysin leads to the accumulation of a number of other vasoactive peptides in the circulation, often resulting in hypotension and raising potential concerns over long-term adverse effects. Moreover, ARNi is less effective in the large group of HF patients with preserved ejection fraction. Alternative approaches for therapeutic augmentation of the NPS with increased specificity and efficacy are therefore warranted, and are now becoming feasible particularly with recent development of RNA therapeutics. In this review, the current state-of-the-art in terms of experimental and clinical strategies for NPS augmentation and their implementation will be reviewed and discussed.
Collapse
Affiliation(s)
- Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Rubattu S, Stanzione R, Cotugno M, Bianchi F, Marchitti S, Forte M. Epigenetic control of natriuretic peptides: implications for health and disease. Cell Mol Life Sci 2020; 77:5121-5130. [PMID: 32556416 PMCID: PMC11105024 DOI: 10.1007/s00018-020-03573-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
The natriuretic peptides (NPs) family, including a class of hormones and their receptors, is largely known for its beneficial effects within the cardiovascular system to preserve regular functions and health. The concentration level of each component of the family is of crucial importance to guarantee a proper control of both systemic and local cardiovascular functions. A fine equilibrium between gene expression, protein secretion and clearance is needed to achieve the final optimal level of NPs. To this aim, the regulation of gene expression and translation plays a key role. In this regard, we know the existence of fine regulatory mechanisms, the so-called epigenetic mechanisms, which target many genes at either the promoter or the 3'UTR region to inhibit or activate their expression. The gene encoding ANP (NPPA) is regulated by histone modifications, DNA methylation, distinct microRNAs and a natural antisense transcript (NPPA-AS1) with consequent implications for both health and disease conditions. Notably, ANP modulates microRNAs on its own. Histone modifications of BNP gene (NPPB) are associated with several cardiomyopathies. The proBNP processing is regulated by miR30-GALNT1/2 axis. Among other components of the NPs family, CORIN, NPRA, NPRC and NEP may undergo epigenetic regulation. A better understanding of the epigenetic control of the NPs family will allow to gain more insights on the pathological basis of common cardiovascular diseases and to identify novel therapeutic targets. The present review article aims to discuss the major achievements obtained so far with studies on the epigenetic modulation of the NPs family.
Collapse
Affiliation(s)
- Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Murphy SP, Prescott MF, Camacho A, Iyer SR, Maisel AS, Felker GM, Butler J, Piña IL, Ibrahim NE, Abbas C, Burnett JC, Solomon SD, Januzzi JL. Atrial Natriuretic Peptide and Treatment With Sacubitril/Valsartan in Heart Failure With Reduced Ejection Fraction. JACC-HEART FAILURE 2020; 9:127-136. [PMID: 33189632 DOI: 10.1016/j.jchf.2020.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES This study sought to assess associations between longitudinal change in atrial natriuretic peptide (ANP) and reverse cardiac remodeling following initiation of sacubitril/valsartan in patients with heart failure with reduced ejection fraction (HFrEF). BACKGROUND Neprilysin inhibition results in an increase of several vasoactive peptides that may mediate the beneficial effects of sacubitril/valsartan, including ANP. METHODS In a prospective study of initiation and titration of sacubitril/valsartan in patients with HFrEF, blood was collected at scheduled time points into tubes containing protease inhibitors. This pre-specified exploratory analysis included patients in whom ANP was measured at baseline and serially through 12 months of treatment. RESULTS Among 144 participants (mean age: 64.5 years; left ventricular ejection fraction: 30.8%), following initiation of sacubitril/valsartan, there was an early and significant increase in ANP, with the majority of rise from 99 pg/ml at baseline to 156 pg/ml at day 14 (p < 0.001). There was a further trend toward a second increase from day 30 to day 45 (p = 0.07). At maximal rise, ANP had doubled. In longitudinal analyses, early rise in ANP was followed by a subsequent increase in urinary cycle guanosine monophosphate. Larger early increase in ANP was associated with larger later improvements in left ventricular ejection fraction and left atrial volume index (p < 0.001 for both). CONCLUSIONS Concentrations of ANP doubled after initiation of sacubitril/valsartan in patients with HFrEF. Larger early increases in ANP were associated with a greater magnitude of subsequent reverse cardiac remodeling. (Effects of Sacubitril/Valsartan Therapy on Biomarkers, Myocardial Remodeling and Outcomes [PROVE-HF]; NCT02887183).
Collapse
Affiliation(s)
- Sean P Murphy
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | - Alan S Maisel
- University of California, San Diego School of Medicine, San Diego, California, USA
| | - G Michael Felker
- Duke University Medical Center and Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Javed Butler
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Nasrien E Ibrahim
- Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Cheryl Abbas
- Novartis Pharmaceuticals, East Hanover, New Jersey, USA
| | | | - Scott D Solomon
- Harvard Medical School, Boston, Massachusetts, USA; Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James L Januzzi
- Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Baim Institute for Clinical Research, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Bektik E, Cowan DB, Wang DZ. Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. Int J Mol Sci 2020; 21:ijms21155424. [PMID: 32751460 PMCID: PMC7432754 DOI: 10.3390/ijms21155424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a type of sustained arrhythmia in humans often characterized by devastating alterations to the cardiac conduction system as well as the structure of the atria. AF can lead to decreased cardiac function, heart failure, and other complications. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the cardiovascular system, including AF; however, a large group of lncRNAs is not conserved between mouse and human. Furthermore, AF has complex networks showing variations in mechanisms in different species, making it challenging to utilize conventional animal models to investigate the functional roles and potential therapeutic benefits of lncRNAs for AF. Fortunately, pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) offer a reliable platform to study lncRNA functions in AF because of certain electrophysiological and molecular similarities with native human CMs. In this review, we first summarize the broad aspects of lncRNAs in various heart disease settings, then focus on their potential roles in AF development and pathophysiology. We also discuss current uses of PSCs in AF research and describe how these studies could be developed into novel therapeutics for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Douglas B. Cowan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
13
|
Dong XQ, Li XY, Kong XH, Wu LJ, Huang QF, Yang YT, Yang L, Yang G, Ma XP, Shi JR. Analysis of clinical application patterns in acupuncture-moxibustion treatment of Alzheimer disease. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2020. [DOI: 10.1007/s11726-020-1183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Reginauld SH, Burnett JC. Reply: The Role of miRNAs and lncRNAs in ANP Production Downregulation in Heart Failure. JACC-HEART FAILURE 2020; 8:85. [PMID: 31896422 DOI: 10.1016/j.jchf.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022]
|
15
|
Patanè S. The Role of miRNAs and lncRNAs in ANP Production Downregulation in Heart Failure. JACC. HEART FAILURE 2020; 8:84-85. [PMID: 31896421 DOI: 10.1016/j.jchf.2019.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
|