1
|
Poletti V, Montepeloso A, Pellin D, Biffi A. Prostaglandin E2 as transduction enhancer affects competitive engraftment of human hematopoietic stem and progenitor cells. Mol Ther Methods Clin Dev 2023; 31:101131. [PMID: 37920236 PMCID: PMC10618226 DOI: 10.1016/j.omtm.2023.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Ex vivo gene therapy (GT) is a promising treatment for inherited genetic diseases. An ideal transduction protocol should determine high gene marking in long-term self-renewing hematopoietic stem cells (HSCs), preserving their repopulation potential during in vitro manipulation. In the context of the improvement of a clinically applicable transduction protocol, we tested prostaglandin E2 (PGE2) as a transduction enhancer (TE). The addition of PGE2 shortly before transduction of human CD34+ cells determined a significant transduction increase in the in vitro cell progeny paralleled by a significant reduction of their clonogenic potential. This effect increased with the duration of PGE2 exposure and correlated with an increase of CXCR4 expression. Blockage of CXCR4 with AMD3100 (plerixafor, Mozobil) did not affect transduction efficiency but partially rescued CD34+ clonogenic impairment in vitro. Once transplanted in vivo in a competitive repopulation assay, human CD34+ cells transduced with PGE2 contributed significantly less than cells transduced with a standard protocol to the repopulation of recipient mice, indicating a relative repopulation disadvantage of the PGE2-treated CD34+ cells and a counter-selection for the PGE2-treated cell progeny in vivo. In conclusion, our data indicate the need for risk/benefit evaluations in the use of PGE2 as a TE for clinical protocols of GT.
Collapse
Affiliation(s)
- Valentina Poletti
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Woman’s and Child Health Department, University of Padova, 35128 Padova, Italy
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
- Pediatric Research Institute Città Della Speranza, 35127 Padova, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Danilo Pellin
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Woman’s and Child Health Department, University of Padova, 35128 Padova, Italy
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
- Pediatric Research Institute Città Della Speranza, 35127 Padova, Italy
| |
Collapse
|
2
|
Gao JL, Owusu-Ansah A, Yang A, Yim E, McDermott DH, Jacobs P, Majumdar S, Choi U, Sweeney CL, Malech HL, Murphy PM. CRISPR/Cas9-mediated Cxcr4 disease allele inactivation for gene therapy in a mouse model of WHIM syndrome. Blood 2023; 142:23-32. [PMID: 36928087 PMCID: PMC10356574 DOI: 10.1182/blood.2022019142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
WHIM syndrome is an autosomal dominant immunodeficiency disorder caused by gain-of-function mutations in chemokine receptor CXCR4 that promote severe panleukopenia because of retention of mature leukocytes in the bone marrow (BM). We previously reported that Cxcr4-haploinsufficient (Cxcr4+/o) hematopoietic stem cells (HSCs) have a strong selective advantage for durable hematopoietic reconstitution over wild-type (Cxcr4+/+) and WHIM (Cxcr4+/w) HSCs and that a patient with WHIM was spontaneously cured by chromothriptic deletion of the disease allele in an HSC, suggesting that WHIM allele inactivation through gene editing may be a safe genetic cure strategy for the disease. We have developed a 2-step preclinical protocol of autologous hematopoietic stem and progenitor cell (HSPC) transplantation to achieve this goal. First, 1 copy of Cxcr4 in HSPCs was inactivated in vitro by CRISPR/Cas9 editing with a single guide RNA (sgRNA) that does not discriminate between Cxcr4+/w and Cxcr4+/+ alleles. Then, through in vivo natural selection, WHIM allele-inactivated cells were enriched over wild-type allele-inactivated cells. The WHIM allele-inactivated HSCs retained long-term pluripotency and selective hematopoietic reconstitution advantages. To our knowledge, this is the first example of gene therapy for an autosomal dominant gain-of-function disease using a disease allele inactivation strategy in place of the less efficient disease allele repair approach.
Collapse
Affiliation(s)
- Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Albert Owusu-Ansah
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alexander Yang
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Erin Yim
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paejonette Jacobs
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Colin L. Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Multicenter Experience of Hematopoietic Stem Cell Transplantation in WHIM Syndrome. J Clin Immunol 2021; 42:171-182. [PMID: 34697698 PMCID: PMC8821066 DOI: 10.1007/s10875-021-01155-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/11/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare disease, caused by CXCR4 gene mutations, which incorporates features of combined immunodeficiency, congenital neutropenia, and a predisposition to human papillomavirus infection. Established conventional treatment for WHIM syndrome does not fully prevent infectious complications in these patients. Only single case reports of hematopoietic stem cell transplantation (HSCT) efficacy in WHIM have been published. METHODS To summarize current information on HSCT efficacy in disease treatment, seven pediatric patients with WHIM syndrome who underwent allogeneic HSCT were identified in five centers worldwide. RESULTS All patients presented early after birth with neutropenia. Two of seven patients exhibited severe disease complications: poorly controlled autoimmunity (arthritis and anemia) in one and progressive myelofibrosis with recurrent infections in the other. The remaining patients received HSCT to correct milder disease symptoms (recurrent respiratory infections, progressing thrombocytopenia) and/or to preclude severe disease course in older age. All seven patients engrafted but one developed graft rejection and died of infectious complications after third HSCT. Three other patients experienced severe viral infections after HSCT (including post-transplant lymphoproliferative disease in one) which completely resolved with therapy. At last follow-up (median 6.7 years), all six surviving patients were alive with full donor chimerism. One patient 1.4 years after HSCT had moderate thrombocytopenia and delayed immune recovery; the others had adequate immune recovery and were free of prior disease symptoms. CONCLUSION HSCT in WHIM syndrome corrects neutropenia and immunodeficiency, and leads to resolution of autoimmunity and recurrent infections, including warts.
Collapse
|
4
|
Bonaud A, Lemos JP, Espéli M, Balabanian K. Hematopoietic Multipotent Progenitors and Plasma Cells: Neighbors or Roommates in the Mouse Bone Marrow Ecosystem? Front Immunol 2021; 12:658535. [PMID: 33936091 PMCID: PMC8083056 DOI: 10.3389/fimmu.2021.658535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
The bone marrow is a complex ecosystem in which hematopoietic and non-hematopoietic cells reside. In this review, we discuss the bone marrow niches in mice that facilitate the survival, maintenance, and differentiation of cells of hematopoietic origin based on the recent literature. Our review places a special focus on the hematopoietic multipotent progenitors and on plasma cells, corresponding to the last stage of the B-cell lineage, that play a key role in the humoral memory response. We highlight the similarities between the microenvironments necessary for the establishment and the maintenance of these two immune cell subsets, and how the chemokine CXCL12/CXCR4 signaling axis contributes to these processes. Finally, we bring elements to address the following question: are multipotent progenitors and plasma cells neighbors or roommates within the bone marrow?
Collapse
Affiliation(s)
- Amélie Bonaud
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julia P Lemos
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
5
|
McDermott DH, Malech HL. JAGN1 mutations in severe congenital neutropenia. Br J Haematol 2020; 192:9-10. [PMID: 33207009 DOI: 10.1111/bjh.17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David H McDermott
- Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|