1
|
Zhang F, Yang D. A Meta-Analysis: Anti-Inflammatory Medicinal Plants for Age-Related Menopause-Like Symptoms and Psychological Problems in Breast Cancer and Healthy Perimenopausal Women. BJOG 2025. [PMID: 40329882 DOI: 10.1111/1471-0528.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Medicinal plant supplements (MPS) have benefits in improving menopause-like symptoms (MLS). OBJECTIVES To investigate the effectiveness of MPS in reducing MLS in healthy women and those with breast cancer (BC). SEARCH STRATEGY PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang database and Chinese Scientific Journals Database were searched from the date of library construction until 30 January 2024. SELECTION CRITERIA Randomised controlled trials were selected that involved healthy perimenopausal women, BC patients treated with herbal medicines, and the effects of plant-based compounds on MLS. DATA COLLECTION AND ANALYSIS The review included 12 studies with 917 patients with BC and 15 studies with 2104 healthy perimenopausal women. The data were analysed using the Meta-mar tool. MAIN RESULTS MPS improved Kupperman's Index (KMI) and menopause rating scale (MRS) scores compared with the comparator. Patients with BC experienced a greater reduction in KMI and MRS because of treatment than healthy perimenopausal women. Patients with BC had a more significant reduction in KMI than women who received hormone therapy. In both healthy perimenopausal women and women with BC, MPS treatment resulted in significantly higher response rates and fewer psychological problems. Women with BC experienced a decrease in anxiety and insomnia by MPS. Network analysis showed that the response rate was the factor most associated with MPS use. CONCLUSIONS Anti-inflammatory MPS may assist women with BC or healthy perimenopausal women experience less MLS.
Collapse
Affiliation(s)
- Fan Zhang
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dianhui Yang
- Department of Acupuncture-Moxibustion, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Carvalho E, Canberk S, Schmitt F, Vale N. Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers (Basel) 2025; 17:1102. [PMID: 40227634 PMCID: PMC11987866 DOI: 10.3390/cancers17071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer remains one of the most prevalent diseases worldwide, primarily affecting women. Its heterogeneous nature poses a significant challenge in the development of effective and targeted treatments. Molecular characterization has enabled breast cancer to be classified into four main subtypes: luminal A, luminal B, HER2-positive, and triple-negative breast cancer, based on hormone receptor expression and HER2 status. A deeper understanding of these molecular markers and their associated signaling pathways, such as MAPK and PI3K/AKT, is essential for improving prognosis and optimizing treatment strategies. Currently, several therapeutic agents are utilized in neoadjuvant and adjuvant therapies, often in combination with surgical interventions. However, emerging evidence highlights the growing challenge of drug resistance, which significantly limits the efficacy of existing treatments. Addressing this issue may require innovative approaches, including combination therapies and precision medicine strategies, tailored to the molecular profile of each patient. Therefore, a comprehensive understanding of the pathophysiologic mechanisms driving breast cancer progression and resistance is crucial for the development of advanced targeted therapies with greater precision and efficacy. This review aims to explore recent advancements in molecular research related to breast cancer subtypes and provide a critical analysis of current therapeutic approaches within the framework of precision medicine.
Collapse
Affiliation(s)
- Eduarda Carvalho
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (E.C.); (S.C.); (F.S.)
| | - Sule Canberk
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (E.C.); (S.C.); (F.S.)
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fernando Schmitt
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (E.C.); (S.C.); (F.S.)
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (E.C.); (S.C.); (F.S.)
- RISE-Health, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
3
|
Jing F, Jiang L, Cao Y, Tian M, Qiu J, Zhang J, Tang L, Lu R, Hu Y. Plasma Proteomics and Metabolomics of Aromatase Inhibitors-Related Musculoskeletal Syndrome in Early Breast Cancer Patients. Metabolites 2025; 15:153. [PMID: 40137118 PMCID: PMC11943704 DOI: 10.3390/metabo15030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Aromatase inhibitors-related musculoskeletal syndrome (AIMSS) is a common side effect experienced by early breast cancer patients undergoing endocrine therapy. This condition can result in medication discontinuation and a diminished quality of life. The objective of this study was to characterize AIMSS, investigate its pathogenesis, and identify potential biomarkers at both the protein and metabolic levels. METHODS We collected peripheral blood samples from 60 women diagnosed with breast cancer undergoing aromatase inhibitor therapy, of whom 30 had AIMSS and 30 did not. The samples were analyzed using four-dimensional data-independent acquisition (DIA)-based proteomics and untargeted metabolomics, employing liquid chromatography-mass spectrometry (LC-MS) on the latest platform. RESULTS The mean age of participants was 49.2 (11.3) years in the AIMSS group and 50.1 (11.5) years in the non-AIMSS group. There were no statistically significant differences between the two groups in terms of age, BMI, education level, clinical stage, and treatment. In total, we identified 3473 proteins and 1247 metabolites in the samples. The chemokine signaling pathway (p = 0.015), cytokine-cytokine receptor interaction (p = 0.015), complement and coagulation cascades (p = 0.004), neuroactive ligand-receptor interaction (p = 0.004), and the estrogen signaling pathway (p = 0.004) were significant enriched in differentially expressed proteins (DEPs). GnRH secretion (p < 0.001), sphingolipid signaling pathways (p < 0.001), endocrine resistance (p < 0.001), the estrogen signaling pathway (p = 0.001), endocrine and other factor-regulated calcium reabsorption (p = 0.001), dopaminergic synapse (p = 0.003), regulation of lipolysis in adipocytes (p = 0.004), biosynthesis of cofactors (p = 0.004), thyroid hormone synthesis (p = 0.008), aldosterone synthesis and secretion (p = 0.001), taurine and hypotaurine metabolism (p = 0.011), ovarian steroidogenesis (p = 0.011), and the cAMP signaling pathway (p = 0.011) were significantly enriched in differentially expressed metabolites (DEMs). Complement C3 (p = 0.004), platelet factor 4 (p = 0.015), KRT10 (p = 0.004), KRT14 (p = 0.004), beta-estradiol (p = 0.019), testosterone (p = 0.023), sphingosine (p < 0.001), and 1-stearoyl-2-arachidonoyl-sn-glycerol (p = 0.039) could be the monitoring and therapeutic targets for AIMSS. CONCLUSIONS This study offered new insights into the mechanisms underlying musculoskeletal symptoms associated with aromatase inhibitors. It also highlighted potential biomarkers for predicting and addressing these symptoms in breast cancer patients, paving the way for improved intervention strategies.
Collapse
Affiliation(s)
- Feng Jing
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| | - Lingyun Jiang
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| | - Yuling Cao
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| | - Maoting Tian
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| | - Jiajia Qiu
- Department of Nursing Administration, Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Jing Zhang
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Lichen Tang
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Yan Hu
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| |
Collapse
|
4
|
Hoppe R, Winter S, Lo WY, Michailidou K, Bolla MK, Keeman R, Wang Q, Dennis J, Lush M, Kalari KR, Goetz MP, Wang L, Cairns J, Weinshilboum R, Shepherd L, Chen BE, Häberle L, Ruebner M, Beckmann MW, He W, Larson NL, Armasu SM, Schroth W, Chowbay B, Khor CC, Abubakar M, Antoniou AC, Brüning T, Castelao JE, Chang-Claude J, Nbcs Collaborators, Dörk T, Eccles DM, Figueroa JD, Gago-Dominguez M, García-Sáenz JA, Gündert M, Hack CC, Hamann U, Han S, Hooning MJ, Huebner H, Abctb Investigators, John EM, Ko YD, Kristensen VN, Linn S, Margolin S, Mavroudis D, Nevanlinna H, Neven P, Obi N, Park-Simon TW, Pylkäs K, Rashid MU, Romero A, Saloustros E, Sawyer EJ, Tapper WJ, Tomlinson I, Wendt C, Winqvist R, Dunning AM, Simard J, Hall P, Pharoah PDP, Schwab M, Couch FJ, Czene K, Fasching PA, Easton DF, Schmidt MK, Ingle JN, Brauch H. Lessons learned from a candidate gene study investigating aromatase inhibitor treatment outcome in breast cancer. NPJ Breast Cancer 2025; 11:18. [PMID: 39971965 PMCID: PMC11840073 DOI: 10.1038/s41523-025-00733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
The role of germline genetics in adjuvant aromatase inhibitor (AI) treatment efficacy in ER-positive breast cancer is poorly understood. We employed a two-stage candidate gene approach to examine associations between survival endpoints and common germline variants in 753 endocrine resistance-related genes. For a discovery cohort, we screened the Breast Cancer Association Consortium database (n ≥ 90,000 cases) and retrieved 2789 AI-treated patients. Cox model-based analysis revealed 125 variants associated with overall, distant relapse-free, and relapse-free survival (p-value ≤ 1E-04). In validation analysis using five independent cohorts (n = 8857), none of the six selected candidates representing major linkage blocks at CELA2B/CASP9, NR1I2/GSK3B, LRP1B, and MIR143HG (CARMN) were validated. We discuss potential reasons for the failed validation and replication of published findings, including study/treatment heterogeneity and other limitations inherent to genomic treatment outcome studies. For the future, we envision prospective longitudinal studies with sufficiently long follow-up and endpoints that reflect the dynamic nature of endocrine resistance.
Collapse
Grants
- U19 GM061388 NIGMS NIH HHS
- 01KW0114 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 110828 Deutsche Krebshilfe (German Cancer Aid)
- U10 CA077202 NCI NIH HHS
- 01KW9976/8 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- C1275/A15956 Cancer Research UK (CRUK)
- 2013PR044 Breast Cancer Campaign
- C12292/A11174 Cancer Research UK (CRUK)
- NMRC/CIRG/1423/2015 MOH | National Medical Research Council (NMRC)
- C5047/A15007 Cancer Research UK (CRUK)
- C1275/A11699 Cancer Research UK (CRUK)
- R01 CA192393 NCI NIH HHS
- R01 CA196648 NCI NIH HHS
- HEALTH-F2-2009-223175 EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health)
- BMBF 01ZP0502 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 2010PR62 Breast Cancer Campaign
- 01KW9977/0 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- R01 CA176785 NCI NIH HHS
- 01KH040 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- DFG Do761/15-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- C5047/A8384 Cancer Research UK (CRUK)
- PPRPGM-Nov20\100002 Cancer Research UK (CRUK)
- EXC 2180-390900677 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 110826 Deutsche Krebshilfe (German Cancer Aid)
- CCS 015469 Canadian Cancer Society Research Institute (Société Canadienne du Cancer)
- 01KW9975/5 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- 106332 Deutsche Krebshilfe (German Cancer Aid)
- C8197/A16565 Cancer Research UK (CRUK)
- C1287/A10710 Cancer Research UK (CRUK)
- C1287/A10118 Cancer Research UK (CRUK)
- R01 CA128978 NCI NIH HHS
- U19 CA148537 NCI NIH HHS
- C1275/A19187 Cancer Research UK (CRUK)
- R01 CA116167 NCI NIH HHS
- 70-2892-BR I Deutsche Krebshilfe (German Cancer Aid)
- P50 CA116201 NCI NIH HHS
- MOH-000377 MOH | National Medical Research Council (NMRC)
- C1287/A16563 Cancer Research UK (CRUK)
- C5047/A10692 Cancer Research UK (CRUK)
- U01 CA164920 NCI NIH HHS
- R35 CA253187 NCI NIH HHS
- 108419 Deutsche Krebshilfe (German Cancer Aid)
- U19 CA148112 NCI NIH HHS
- U19 CA148065 NCI NIH HHS
- SCHR 1323/2-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 108253 Deutsche Krebshilfe (German Cancer Aid)
- C1275/C22524 Cancer Research UK (CRUK)
- C1281/A12014 Cancer Research UK (CRUK)
- MOH-000984 MOH | National Medical Research Council (NMRC)
- Robert Bosch Stiftung (Robert Bosch Foundation)
- Acción Estratégica de Salud del Instituto, de Salud Carlos III, (FIS PI12/02125/Cofinanciado), Acción Estratégica de Salud del Instituto, de Salud Carlos III, (FEDER PI17/00918/Cofinanciado, FEDER), Acción Estratégica de Salud del Instituto, de Salud Carlos III, (FIS Intrasalud PI13/01136), Programa Grupos Emergentes, Cancer, Genetics Unit, Instituto de Investigacion, Biomedica Galicia Sur. Xerencia de, Xestion Integrada de Vigo-SERGAS,, Instituto de Salud Carlos III, (10CSA012E), Consellería de Industria Programa, Sectorial de Investigación Aplicada,, PEME I + D e I + D Suma del Plan, Gallego de Investigación, Desarrollo e, Innovación Tecnológica de la Consellería, de Industria de la Xunta de Galicia, (EC11-192)
- Dutch Cancer Society (DDHK 2004-3124) Dutch Cancer Society (DDHK 2009-4318)
- NCI/NIH, (U01CA164920)
- Finnish Cancer Foundation, the Academy of Finland, (250083), (122715), (251314)
- Genome Canada and the Canadian, Institutes of Health Research, (GPH-129344) Genome Québec, (PSRSIIRI-701)
- NIH, (R35CA253187), (R01CA192393), (R01CA116167), (R01CA176785) NIH Specialized Program of Research, Excellence (SPORE), (P50CA116201)
- University Hospital Erlangen, (UISGE-005/2018)
- Dutch Cancer Society, (NKI 2007-3839) Dutch Cancer Society, (NKI 2009 4363)
- NIH, (U19 GM61388) NIH, (P50CA116201) NIH, (U10CA77202) NIH, (R01CA196648)
Collapse
Affiliation(s)
- Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tübingen, Tübingen, Germany.
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Wing-Yee Lo
- Department of Clinical Pathology, Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queen's University, Kingston, Ontario, Canada
| | - Bingshu E Chen
- Canadian Cancer Trials Group, Queen's University, Kingston, Ontario, Canada
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole L Larson
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Centre for Clinician Scientist Development, Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology & Research (A*STAR), Singapore, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo Hospitalario Universitario de Santiago, SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nbcs Collaborators
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Research, Vestre Viken Hospital, Drammen, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital - Radiumhospitalet, Oslo, Norway
- Department of Oncology, Division of Surgery and Cancer and Transplantation Medicine, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Oslo Breast Cancer Research Consortium, Oslo University Hospital, Oslo, Norway
- Department of Community Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Manuela Gago-Dominguez
- Cancer Genetics and Epidemiology Group, Genomic Medicine Group, Fundación Pública Galega de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Melanie Gündert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carolin C Hack
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sileny Han
- Leuven Multidisciplinary Breast Center, Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Abctb Investigators
- Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sabine Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Patrick Neven
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, Medical Research Centre, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | | | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, Medical Research Centre, University of Oulu, Oulu, Finland
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Québec, Canada
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Bhagwat SV, Mur C, Vandekopple M, Zhao B, Shen W, Marugán C, Capen A, Kindler L, Stephens JR, Huber L, Castanares MA, Garcia-Tapia D, Cohen JD, Bastian J, Mattioni B, Yuen E, Baker TK, Rodriguez Cruz V, Fei D, Manro JR, Pulliam N, Dowless MS, Ortiz Ruiz MJ, Yu C, Puca L, Klippel A, Bacchion F, Ismail-Khan R, Rodrik-Outmezguine V, Peng SB, Lallena MJ, Gong X, de Dios A. Imlunestrant Is an Oral, Brain-Penetrant Selective Estrogen Receptor Degrader with Potent Antitumor Activity in ESR1 Wild-Type and Mutant Breast Cancer. Cancer Res 2025; 85:777-790. [PMID: 39652577 PMCID: PMC11831106 DOI: 10.1158/0008-5472.can-24-2608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 02/18/2025]
Abstract
Targeting of the estrogen receptor (ER) by antiestrogens is the standard of care for patients with ER+ HER2- advanced/metastatic breast cancer. Although antiestrogens that degrade ERα (fulvestrant) or block estrogen production (aromatase inhibitors) have improved patient outcomes, clinically important challenges remain related to drug administration, limited bioavailability, lack of brain exposure, and acquired resistance due to ESR1 mutations. These limitations indicate a need for more robust ER-targeted therapies. Here, we discovered and characterized imlunestrant, a next-generation potent, brain-penetrant oral selective ER degrader. Imlunestrant degraded ERα and decreased ERα-mediated gene expression both in vitro and in vivo. Cell proliferation and tumor growth in ESR1 wild-type (WT) and mutant models were significantly inhibited by imlunestrant. Combining imlunestrant with abemaciclib (CDK4/6 inhibitor), alpelisib (PI3K inhibitor), or everolimus (mTOR inhibitor) further enhanced tumor growth inhibition, regardless of ESR1 mutational status. In an ER+ breast cancer intracranial tumor model, imlunestrant prolonged survival compared with vehicle or alternative selective ER degrader therapies. Together, these findings support the potential of imlunestrant to degrade ERα and suppress the growth of ESR1-WT and mutant breast cancer, including brain metastatic tumors. Significance: Imlunestrant, a next-generation, brain-penetrant oral ERα degrader, displays potent activity in ESR1 wild-type and mutant breast cancer, enhances combination activity with standard-of-care agents, and inhibits growth of ER+ intracranial tumors.
Collapse
Affiliation(s)
| | | | | | - Baohui Zhao
- Eli Lilly and Company, Indianapolis, Indiana
| | - Weihua Shen
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | - Eunice Yuen
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | | | | | - Chunping Yu
- Lilly (China) Research and Development Co., Ltd., Shang Hai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Y, Ji Q, Cao N, Ge G, Li X, Liu X, Mi Y. CYP19A1 regulates chemoresistance in colorectal cancer through modulation of estrogen biosynthesis and mitochondrial function. Cancer Metab 2024; 12:33. [PMID: 39468645 PMCID: PMC11520061 DOI: 10.1186/s40170-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
Chemoresistance remains a major challenge in the effective treatment of colorectal cancer (CRC), contributing to poor patient outcomes. While the molecular mechanisms underlying chemoresistance are complex and multifaceted, emerging evidence suggests that altered mitochondrial function and hormone signaling play crucial roles. In this study, we investigated the role of CYP19A1, a key enzyme in estrogen biosynthesis, in regulating chemoresistance in CRC. Using a combination of in vitro functional assays, transcriptomic analysis, and clinical data mining, we demonstrate that CYP19A1 expression is significantly upregulated in CRC cells and patient-derived samples compared to normal controls. Mechanistically, we found that CYP19A1 regulates chemoresistance through modulation of mitochondrial function and complex I activity, which is mediated by CYP19A1-dependent estrogen biosynthesis. Notably, targeted inhibition of CYP19A1 and complex I using specific inhibitors effectively reversed the chemoresistance of CRC cells to chemotherapeutic drugs. Moreover, analysis of the TCGA CRC dataset revealed that high CYP19A1 expression correlates with poor overall survival in chemotherapy-treated patients. Taken together, our findings uncover a novel role for CYP19A1 in regulating chemoresistance in CRC through modulation of mitochondrial function and estrogen signaling, and highlight the potential of targeting the CYP19A1/estrogen/complex I axis as a therapeutic strategy to overcome chemoresistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Ji
- Department of Pharmacy, Sunshine Union Hospital, Weifang, Shandong, China
| | - Ning Cao
- Emergency General Surgery, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, China
| | - Guijie Ge
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomin Li
- Department of Anesthesiology II Endoscopy Center, Weifang People's Hospital, Weifang, Shandong, China
| | - Xiangdong Liu
- Medical Center of gastrointestinal Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Yanqi Mi
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
7
|
Cui M, Liu Y, Liu Y, Li T, Chen X, Da L. Oral nano-formulations for endocrine therapy of endometrioid adenocarcinomas. Biomed Pharmacother 2024; 179:117328. [PMID: 39243435 DOI: 10.1016/j.biopha.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Endometrial cancer is one of the three major malignant tumors of the reproductive system that threaten women's lives and health. The incidence of this disease is on the rise globally. Most cases of endometrial cancer comprise endometrioid adenocarcinomas, whose treatment is challenged by factors such as their high recurrence rate and the need to preserve fertility among young patients. Thus, oral endocrine therapy has become the main treatment modality. The main drugs used in oral endocrine therapy are progestins, selective estrogen receptor antagonists, and aromatase inhibitors. However, their clinical use is hindered by their low solubility and low oral utilization. The rapid development of nanotechnology allows the combination of these drugs with oral nano-formulations to create a good carrier. Such nanocarriers, including nanospheres, nanocapsules, and micelles can protect the drug against clearance and increase the site specificity of drug delivery. This paper reviews the pathogenesis of endometrioid endometrial cancer (EEC) and oral nano-formulations for endocrine therapy.
Collapse
Affiliation(s)
- Minghua Cui
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuehui Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yangyang Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tao Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xin Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Liu Da
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
8
|
Gao H, Wei L, Indulkar S, Nguyen TTL, Liu D, Ho MF, Zhang C, Li H, Weinshilboum RM, Ingle JN, Wang L. Androgen receptor-mediated pharmacogenomic expression quantitative trait loci: implications for breast cancer response to AR-targeting therapy. Breast Cancer Res 2024; 26:111. [PMID: 38965614 PMCID: PMC11225427 DOI: 10.1186/s13058-024-01861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Endocrine therapy is the most important treatment modality of breast cancer patients whose tumors express the estrogen receptor α (ERα). The androgen receptor (AR) is also expressed in the vast majority (80-90%) of ERα-positive tumors. AR-targeting drugs are not used in clinical practice, but have been evaluated in multiple trials and preclinical studies. METHODS We performed a genome-wide study to identify hormone/drug-induced single nucleotide polymorphism (SNP) genotype - dependent gene-expression, known as PGx-eQTL, mediated by either an AR agonist (dihydrotestosterone) or a partial antagonist (enzalutamide), utilizing a previously well characterized lymphoblastic cell line panel. The association of the identified SNPs-gene pairs with breast cancer phenotypes were then examined using three genome-wide association (GWAS) studies that we have published and other studies from the GWAS catalog. RESULTS We identified 13 DHT-mediated PGx-eQTL loci and 23 Enz-mediated PGx-eQTL loci that were associated with breast cancer outcomes post ER antagonist or aromatase inhibitors (AI) treatment, or with pharmacodynamic (PD) effects of AIs. An additional 30 loci were found to be associated with cancer risk and sex-hormone binding globulin levels. The top loci involved the genes IDH2 and TMEM9, the expression of which were suppressed by DHT in a PGx-eQTL SNP genotype-dependent manner. Both of these genes were overexpressed in breast cancer and were associated with a poorer prognosis. Therefore, suppression of these genes by AR agonists may benefit patients with minor allele genotypes for these SNPs. CONCLUSIONS We identified AR-related PGx-eQTL SNP-gene pairs that were associated with risks, outcomes and PD effects of endocrine therapy that may provide potential biomarkers for individualized treatment of breast cancer.
Collapse
Affiliation(s)
- Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Lixuan Wei
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Shreya Indulkar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Thanh Thanh L Nguyen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Duan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Ming-Fen Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Santen RJ, Karaguzel G, Livaoglu M, Yue W, Cline JM, Ratan A, Sasano H. Role of ERα and Aromatase in Juvenile Gigantomastia. J Clin Endocrinol Metab 2024; 109:1765-1772. [PMID: 38227777 DOI: 10.1210/clinem/dgae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
CONTEXT Approximately 150 patients with juvenile gigantomastia have been reported in the literature but the underlying biologic mechanisms remain unknown. OBJECTIVE To conduct extensive clinical, biochemical, immunochemical, and genetic studies in 3 patients with juvenile gigantomastia to determine causative biologic factors. METHODS We examined clinical effects of estrogen by blockading estrogen synthesis or its action. Breast tissue aromatase expression and activity were quantitated in 1 patient and 5 controls. Other biochemical markers, including estrogen receptor α (ERα), cyclin D1 and E, p-RB, p-MAPK, p-AKT, BCL-2, EGF-R, IGF-IR β, and p-EGFR were assayed by Western blot. Immunohistochemical analyses for aromatase, ERα and β, PgR, Ki67, sulfotransferase, estrone sulfatase, and 17βHD were performed in all 3 patients. The entire genomes of the mother, father, and patient in the 3 families were sequenced. RESULTS Blockade of estrogen synthesis or action in patients resulted in demonstrable clinical effects. Biochemical studies on fresh frozen tissue revealed no differences between patients and controls, presumably due to tissue dilution from the large proportion of stroma. However, immunohistochemical analysis of ductal breast cells in the 3 patients revealed a high percent of ERα (64.1% ± 7.8% vs reference women 9.6%, range 2.3-15%); aromatase score of 4 (76%-100% of cells positive vs 30.4% ± 5.6%); PgR (69.5% ± 15.2% vs 6.0%, range 2.7%-11.9%) and Ki67 (23.7% ± 0.54% vs 4.2%). Genetic studies were inconclusive although some intriguing variants were identified. CONCLUSION The data implicate an important biologic role for ERα to increase tissue sensitivity to estrogen and aromatase to enhance local tissue production as biologic factors involved in juvenile gigantomastia.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Gulay Karaguzel
- Department of Pediatric Endocrinology, Karadeniz Technical University, School of Medicine, 61080 Trabzon, Turkey
| | - Murat Livaoglu
- Department of Plastic Surgery, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Wei Yue
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - J Mark Cline
- Department of Pathology, Section of Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
10
|
Hora J, Rambhia N, Mani I. Drug repurposing for personalized medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:107-122. [PMID: 38942534 DOI: 10.1016/bs.pmbts.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Personalized medicine has emerged as a revolutionary approach to healthcare in the 21st century. By understanding a patient's unique genetic and biological characteristics, it aims to tailor treatments specifically to the individual. This approach takes into account factors such as an individual's lifestyle, genetic makeup, and environmental factors to provide targeted therapies that have the potential to be more effective and lower the risk of side reactions or ineffective treatments. It is a paradigm shift from the traditional "one size fits all" approach in medicine, where patients with similar symptoms or diagnoses receive the same standard treatments regardless of their differences. It leads to improved clinical outcomes and more efficient use of healthcare resources. Drug repurposing is a strategy that uses existing drugs for new indications and aims to take advantage of the known safety profiles, pharmacokinetics, and mechanisms of action of these drugs to accelerate the development process. Precision medicine may undergo a revolutionary change as a result, enabling the rapid development of novel treatment plans utilizing drugs that traditional methods would not otherwise link to. In this chapter, we have focused on a few strategies wherein drug repurposing has shown great success for precision medicine. The approach is particularly useful in oncology as there are many variations induced in the genetic material of cancer patients, so tailored treatment approaches go a long way. We have discussed the cases of breast cancer, glioblastoma and hepatocellular carcinoma. Other than that, we have also looked at drug repurposing approaches in anxiety disorders and COVID-19.
Collapse
Affiliation(s)
- Jahnvi Hora
- Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nishita Rambhia
- Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
11
|
Seo JI, Yu JS, Zhang Y, Yoo HH. Evaluating flavonoids as potential aromatase inhibitors for breast cancer treatment: In vitro studies and in silico predictions. Chem Biol Interact 2024; 392:110927. [PMID: 38403145 DOI: 10.1016/j.cbi.2024.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Aromatase inhibitors are commonly employed in the treatment of hormone-dependent breast cancers, and flavonoids have emerged as a promising alternative to existing drug classes with unfavorable side effects. In this study, we conducted in vitro investigations into CYP19A1 (aromatase) inhibitory potential of 14 flavonoids, including pinocembrin, sakuranetin, eriodictyol, liquiritigenin, naringenin, hesperetin, flavanone, baicalein, chrysin, nobiletin, luteolin, sinensetin, tricin, and primuletin. Flavonoids displaying inhibitory activity were further assessed using in silico tools, such as molecular docking to predict binding affinities, as well as SwissADME, admetSAR, and QED (Quantitative Estimate of Drug-likeness) for drug-likeness prediction. Flavonoids with IC50 values less than 10 μM, pinocembrin, eriodictyol, naringenin, liquirtigenin, sakuranetin, and chrysin, exhibited favorable physicochemical properties and ADME profiles, suggesting their potential for development as novel flavonoid-based aromatase inhibitors. This study would provide valuable insights for the development of flavonoid-based aromatase inhibitors for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jeong In Seo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Jun Sang Yu
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Yonghui Zhang
- Tongji Medical College Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
12
|
Wang R, Wang Y, Fang L, Xie Y, Yang S, Liu S, Fang Y, Zhang Y. Efficacy and safety of traditional Chinese medicine in the treatment of menopause-like syndrome for breast cancer survivors: a systematic review and meta-analysis. BMC Cancer 2024; 24:42. [PMID: 38191442 PMCID: PMC10773128 DOI: 10.1186/s12885-023-11789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND In recent years, breast cancer (BC) incidence and mortality have been the highest in females. Menopause-like syndrome (MLS), arising from hypoestrogenism caused by endocrine therapy, significantly affects the quality of life for females. Traditional Chinese Medicine (TCM) has advantages in ameliorating MLS, but the efficacy of TCM in patients with BC has not been systematically evaluated. METHODS A comprehensive search was performed on PubMed, Web of Science, Embase, Ovid, Cochrane Library, China National Knowledge Infrastructure, Wanfang database, Chinese Scientific Journals Database, and Clinical Trial Registry from inception to September 4, 2023. The Cochrane Risk of Bias assessment tool was used for the quality evaluation of the randomized controlled trials (RCTs). Review Manager 5.4 software was used for statistical analysis, and the Grading of Recommendations Assessment, Development, and Evaluation was used for quality evaluation of the synthesized evidence. RESULTS This review included 42 studies involving 3112 female patients with BC. The results showed that the TCM group was better at decreasing the Kupperman Menopausal Index (KMI) scores (standardized MD, SMD = - 1.84, 95% confidence interval, CI [- 2.21--1.46], Z = 9.63, P < 0.00001). Regarding the main symptoms of MLS, the TCM groups could significantly decrease the scores of hot flashes and night sweats (SMD = - 0.68, 95% CI [- 1.1--0.27], Z = 3.24, P = 0.001), paraesthesia (SMD = - 0.48, 95% CI [- 0.74--0.21], Z = 3.53, P = 0.0004), osteoarthralgia (SMD = - 0.41, 95% CI [- 0.6-0.21], Z = 4.09, P < 0.0001), anxiety (MD = - 0.85, 95% CI [- 1.13, - 0.58], Z = 6.08, P < 0.00001) and insomnia (MD = - 0.61, 95% CI [- 0.8, - 0.43], Z = 6.51, P < 0.00001). TCM can effectively improve the symptoms of MLS in patients with BC. Moreover, TCM could improve the objective response rate (ORR) by 50% (RR = 1.5, 95% CI [1.37-1.64], Z = 9.01, P < 0.00001). Follicle-stimulating hormone (FSH) and oestradiol (E2) had no significant difference compared with the control group (p = 0.81 and p = 0.87), and luteinizing hormone (LH) in the TCM group decreased significantly (MD = - 0.99, 95% CI [- 1.38, - 0.5], Z = 5.01, P < 0.00001). This means that the use of TCM does not negatively affect endocrine therapy and may even have a synergistic effect. The incidence of adverse events (AEs) was lower in the TCM groups than in the control groups. CONCLUSIONS The meta-analysis stated that TCM could better improve the MLS of patients, alleviate related symptoms, and did not increase adverse drug reactions in BC survivors. This review brings more attention to MLS, and the present findings shed light on the potential applications of TCM in the treatment of MLS in BC survivors.
Collapse
Affiliation(s)
- Runxi Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyuan Fang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Xie
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuhan Yang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Suying Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhang Fang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Crespo B, Caceres S, Silvan G, Illera MJ, Illera JC. The inhibition of steroid hormones determines the fate of IPC-366 tumor cells, highlighting the crucial role of androgen production in tumor processes. Res Vet Sci 2023; 161:1-14. [PMID: 37290206 DOI: 10.1016/j.rvsc.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Inflammatory mammary cancer (IMC) is a disease that affects female dogs. It is characterized by poor treatment options and no efficient targets. However, anti-androgenic and anti-estrogenic therapies could be effective because IMC has a great endocrine influence, affecting tumor progression. IPC-366 is a triple negative IMC cell line that has been postulated as a useful model to study this disease. Therefore, the aim of this study was to inhibit steroid hormones production at different points of the steroid pathway in order to determine its effect in cell viability and migration in vitro and tumor growth in vivo. For this purpose, Dutasteride (anti-5αReductase), Anastrozole (anti-aromatase) and ASP9521 (anti-17βHSD) and their combinations have been used. Results revealed that this cell line is positive to estrogen receptor β (ERβ) and androgen receptor (AR) and endocrine therapies reduce cell viability. Our results enforced the hypothesis that estrogens promote cell viability and migration in vitro due to the function of E1SO4 as an estrogen reservoir for E2 production that promotes the IMC cells proliferation. Also, an increase in androgen secretion was associated with a reduction in cell viability. Finally, in vivo assays showed large tumor reduction. Hormone assays determined that high estrogen levels and the reduction of androgen levels promote tumor growth in Balb/SCID IMC mice. In conclusion, estrogen levels reduction may be associated with a good prognosis. Also, activation of AR by increasing androgen production could result in effective therapy for IMC because their anti-proliferative effect.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - J C Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| |
Collapse
|
14
|
Hostallero DE, Wei L, Wang L, Cairns J, Emad A. Preclinical-to-clinical Anti-cancer Drug Response Prediction and Biomarker Identification Using TINDL. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:535-550. [PMID: 36775056 PMCID: PMC10787192 DOI: 10.1016/j.gpb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Prediction of the response of cancer patients to different treatments and identification of biomarkers of drug response are two major goals of individualized medicine. Here, we developed a deep learning framework called TINDL, completely trained on preclinical cancer cell lines (CCLs), to predict the response of cancer patients to different treatments. TINDL utilizes a tissue-informed normalization to account for the tissue type and cancer type of the tumors and to reduce the statistical discrepancies between CCLs and patient tumors. Moreover, by making the deep learning black box interpretable, this model identifies a small set of genes whose expression levels are predictive of drug response in the trained model, enabling identification of biomarkers of drug response. Using data from two large databases of CCLs and cancer tumors, we showed that this model can distinguish between sensitive and resistant tumors for 10 (out of 14) drugs, outperforming various other machine learning models. In addition, our small interfering RNA (siRNA) knockdown experiments on 10 genes identified by this model for one of the drugs (tamoxifen) confirmed that tamoxifen sensitivity is substantially influenced by all of these genes in MCF7 cells, and seven of these genes in T47D cells. Furthermore, genes implicated for multiple drugs pointed to shared mechanism of action among drugs and suggested several important signaling pathways. In summary, this study provides a powerful deep learning framework for prediction of drug response and identification of biomarkers of drug response in cancer. The code can be accessed at https://github.com/ddhostallero/tindl.
Collapse
Affiliation(s)
- David Earl Hostallero
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC H2S, Canada
| | - Lixuan Wei
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC H2S, Canada; The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A, Canada.
| |
Collapse
|
15
|
Larkin T, Kashif R, Elsayed AH, Greer B, Mangrola K, Raffiee R, Nguyen N, Shastri V, Horn B, Lamba JK. Polygenic Pharmacogenomic Markers as Predictors of Toxicity Phenotypes in the Treatment of Acute Lymphoblastic Leukemia: A Single-Center Study. JCO Precis Oncol 2023; 7:e2200580. [PMID: 36952646 PMCID: PMC10309546 DOI: 10.1200/po.22.00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/31/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a long course of therapy consisting of three primary phases with interval intensification blocks. Although these phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity risk score predictive of the most common toxicities observed during ALL treatment. METHODS This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a polygenic toxicity risk score of prognostic value. RESULTS We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multivariable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI (P = 2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic (P = .0005, 3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine (P = 4.77E-08, 3 SNPs: AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities (P = .053, 3 SNPs: CYP3A5-rs776746/ABCB1-rs4148737/CTPS1-rs12067645). CONCLUSION Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer therapy to maximize efficacy and minimize toxicity for each patient.
Collapse
Affiliation(s)
- Trisha Larkin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
- St Joseph's Children's Hospital/BayCare Medical Group, Tampa, FL
| | - Reema Kashif
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Abdelrahman H. Elsayed
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Beate Greer
- Pediatrics Division, UF Health Cancer Center, University of Florida, Gainesville, FL
| | - Karna Mangrola
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Roya Raffiee
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Nam Nguyen
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Vivek Shastri
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Biljana Horn
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| |
Collapse
|
16
|
Gupta KK, Sharma KK, Chandra H, Panwar H, Bhardwaj N, Altwaijry NA, Alsfouk AA, Dlamini Z, Afzal O, Altamimi ASA, Khan S, Mishra AP. The integrative bioinformatics approaches to predict the xanthohumol as anti-breast cancer molecule: Targeting cancer cells signaling PI3K and AKT kinase pathway. Front Oncol 2022; 12:950835. [PMID: 36591523 PMCID: PMC9798915 DOI: 10.3389/fonc.2022.950835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer in women, and vast research is being conducted throughout the world for the treatment of this malignancy by natural products using various computational approaches. Xanthohumol, a prenylated flavonoid, is known for its anticancer activity; however, the mechanism behind its action is still in the preliminary stage. METHODS The current study aimed to analyze the efficacy of xanthohumol compared to the currently available anticancer drugs targeting phosphoinositide-3-kinase (PI3K), serine/threonine kinase (AKT) receptors, and human epidermal growth factor receptor 2 (HER2) for breast cancer treatment through in silico analysis. RESULTS The result revealed that the target compound showed significant binding affinity to targets within the PI3K, AKT, and HER2 signaling pathways with a binding energy of -7.5, -7.9, and -7.9 kcal/mol, respectively. Further prediction studies were then made concerning this compound's absorption, distribution, metabolism, and excretion (ADME) as well as drug-likeness properties, resulting in its oral bioavailability with only a single violation of Lipinski's rule of five. CONCLUSIONS The finding revealed the ability of xanthohumol to bind with multiple cancer cell signaling molecules including PI3K, AKT kinase, and HER2. The current novel study opened the door to advancing research into the management and treatment of breast cancer.
Collapse
Affiliation(s)
- Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Kamal Kant Sharma
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Himalaya Panwar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Najla A. Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Saharanpur, Uttar Pradesh, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, King Saud University, Riyadh, Saudi Arabia
| | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
17
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Rodrigues R, Duarte D, Vale N. Drug Repurposing in Cancer Therapy: Influence of Patient’s Genetic Background in Breast Cancer Treatment. Int J Mol Sci 2022; 23:ijms23084280. [PMID: 35457144 PMCID: PMC9028365 DOI: 10.3390/ijms23084280] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is among the leading causes of death worldwide and it is estimated that in 2040 more than 29 million people will be diagnosed with some type of cancer. The most prevalent type of cancer in women, worldwide, is breast cancer, a type of cancer associated with a huge death rate. This high mortality is mainly a consequence of the development of drug resistance, which is one of the major challenges to overcome in breast cancer treatment. As a result, research has been focused on finding novel therapeutical weapons, specifically ones that allow for a personalized treatment, based on patients’ characteristics. Although the scientific community has been concerned about guaranteeing the quality of life of cancer patients, researchers are also aware of the increasing costs related to cancer treatment, and efforts have been made to find alternatives to the development of new drugs. The development of new drugs presents some disadvantages as it is a multistep process that is time- and money-consuming, involving clinical trials that commonly fail in the initial phases. A strategy to overcome these disadvantages is drug repurposing. In this review, we focused on describing potential repurposed drugs in the therapy of breast cancer, considering their pharmacogenomic profile, to assess the relationship between patients’ genetic variations and their response to a certain therapy. This review supports the need for the development of further fundamental studies in this area, in order to investigate and expand the knowledge of the currently used and novel potential drugs to treat breast cancer. Future clinical trials should focus on developing strategies to group cancer patients according to their clinical and biological similarities and to discover new potential targets, to enable cancer therapy to be more effective and personalized.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (D.D.)
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (D.D.)
- Faculty of Pharmacy of University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (D.D.)
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory RISE–Health Research Network, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
19
|
Cairns J, Ingle JN, Kalari KR, Goetz MP, Weinshilboum RM, Gao H, Li H, Bari MG, Wang L. Anastrozole Regulates Fatty Acid Synthase in Breast Cancer. Mol Cancer Ther 2022; 21:206-216. [PMID: 34667110 PMCID: PMC8742770 DOI: 10.1158/1535-7163.mct-21-0509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Our previous matched case-control study of postmenopausal women with resected early-stage breast cancer revealed that only anastrozole, but not exemestane or letrozole, showed a significant association between the 6-month estrogen concentrations and risk of breast cancer. Anastrozole, but not exemestane or letrozole, is a ligand for estrogen receptor α. The mechanisms of endocrine resistance are heterogenous and with the new mechanism of anastrozole, we have found that treatment of anastrozole maintains fatty acid synthase (FASN) protein level by limiting the ubiquitin-mediated FASN degradation, leading to increased breast cancer cell growth. Mechanistically, anastrozole decreases the guided entry of tail-anchored proteins factor 4 (GET4) expression, resulting in decreased BCL2-associated athanogene cochaperone 6 (BAG6) complex activity, which in turn, prevents RNF126-mediated degradation of FASN. Increased FASN protein level can induce a negative feedback loop mediated by the MAPK pathway. High levels of FASN are associated with poor outcome only in patients with anastrozole-treated breast cancer, but not in patients treated with exemestane or letrozole. Repressing FASN causes regression of breast cancer cell growth. The anastrozole-FASN signaling pathway is eminently targetable in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N. Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R. Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P. Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mehrab Ghanat Bari
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA,Corresponding author: Liewei Wang, Gonda 19-460, 200 1 Street SW, Rochester MN USA 55905. Phone: +1 507 284-5264; Fax: +1 507-284-4455;
| |
Collapse
|
20
|
Cairns J, Kalari KR, Ingle JN, Shepherd LE, Ellis MJ, Goss PE, Barman P, Carlson EE, Goodnature B, Goetz MP, Weinshilboum RM, Gao H, Wang L. Interaction Between SNP Genotype and Efficacy of Anastrozole and Exemestane in Early-Stage Breast Cancer. Clin Pharmacol Ther 2021; 110:1038-1049. [PMID: 34048027 PMCID: PMC8449801 DOI: 10.1002/cpt.2311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
Aromatase inhibitors (AIs) are the treatment of choice for hormone receptor-positive early breast cancer in postmenopausal women. None of the third-generation AIs are superior to the others in terms of efficacy. We attempted to identify genetic factors that could differentiate between the effectiveness of adjuvant anastrozole and exemestane by examining single-nucleotide polymorphism (SNP)-treatment interaction in 4,465 patients. A group of SNPs were found to be differentially associated between anastrozole and exemestane regarding outcomes. However, they showed no association with outcome in the combined analysis. We followed up common SNPs near LY75 and GPR160 that could differentiate anastrozole from exemestane efficacy. LY75 and GPR160 participate in epithelial-to-mesenchymal transition and growth pathways, in both cases with SNP-dependent variation in regulation. Collectively, these studies identified SNPs that differentiate the efficacy of anastrozole and exemestane and they suggest additional genetic biomarkers for possible use in selecting an AI for a given patient.
Collapse
Affiliation(s)
- Junmei Cairns
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Krishna R. Kalari
- Division of Biomedical Statistics and InformaticsDepartment of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - James N. Ingle
- Division of Medical OncologyDepartment of OncologyMayo ClinicRochesterMinnesotaUSA
| | | | - Matthew J. Ellis
- Department of MedicineBaylor University College of MedicineHoustonTexasUSA
| | - Paul E. Goss
- Massachusetts General Hospital Cancer CenterHarvard UniversityBostonMassachusettsUSA
| | - Poulami Barman
- Division of Biomedical Statistics and InformaticsDepartment of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Erin E. Carlson
- Division of Biomedical Statistics and InformaticsDepartment of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Barbara Goodnature
- Patient AdvocateMayo Clinic Breast Cancer Specialized Program of Research ExcellenceRochesterMinnesotaUSA
| | - Matthew P. Goetz
- Division of Medical OncologyDepartment of OncologyMayo ClinicRochesterMinnesotaUSA
| | - Richard M. Weinshilboum
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Huanyao Gao
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Liewei Wang
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
21
|
McInnes G, Yee SW, Pershad Y, Altman RB. Genomewide Association Studies in Pharmacogenomics. Clin Pharmacol Ther 2021; 110:637-648. [PMID: 34185318 PMCID: PMC8376796 DOI: 10.1002/cpt.2349] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
The increasing availability of genotype data linked with information about drug-response phenotypes has enabled genomewide association studies (GWAS) that uncover genetic determinants of drug response. GWAS have discovered associations between genetic variants and both drug efficacy and adverse drug reactions. Despite these successes, the design of GWAS in pharmacogenomics (PGx) faces unique challenges. In this review, we analyze the last decade of GWAS in PGx. We review trends in publications over time, including the drugs and drug classes studied and the clinical phenotypes used. Several data sharing consortia have contributed substantially to the PGx GWAS literature. We anticipate increased focus on biobanks and highlight phenotypes that would best enable future PGx discoveries.
Collapse
Affiliation(s)
- Gregory McInnes
- Biomedical Informatics Training Program, Stanford University, Stanford, California, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California, USA
| | - Yash Pershad
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Departments of Genetics, Medicine, Biomedical Data Science, Stanford, California, USA
| |
Collapse
|
22
|
Rong Y, Dong SS, Hu WX, Guo Y, Chen YX, Chen JB, Zhu DL, Chen H, Yang TL. DDRS: Detection of drug response SNPs specifically in patients receiving drug treatment. Comput Struct Biotechnol J 2021; 19:3650-3657. [PMID: 34257842 PMCID: PMC8254081 DOI: 10.1016/j.csbj.2021.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Detecting SNPs associated with drug efficacy or toxicity is helpful to facilitate personalized medicine. Previous studies usually find SNPs associated with clinical outcome only in patients received a specific treatment. However, without information from patients without drug treatment, it is possible that the detected SNPs are associated with patients' clinical outcome even without drug treatment. Here we aimed to detect drug response SNPs based on data from patients with and without drug treatment through combing the cox proportional-hazards model and pairwise Kaplan-Meier survival analysis. A pipeline named Detection of Drug Response SNPs (DDRS) was built and applied to TCGA breast cancer data including 363 patients with doxorubicin treatment and 321 patients without any drug treatment. We identified 548 doxorubicin associated SNPs. Drug response score derived from these SNPs were associated with drug-resistant level (indicated by IC50) of breast cancer cell lines. Enrichment analyses showed that these SNPs were enriched in active epigenetic regulation markers (e.g., H3K27ac). Compared with random genes, the cis-eQTL genes of these SNPs had a shorter protein-protein interaction distance to doxorubicin associated genes. In addition, linear discriminant analysis showed that the eQTL gene expression levels could be used to predict clinical outcome for patients with doxorubicin treatment (AUC = 0.738). Specifically, we identified rs2817101 as a drug response SNP for doxorubicin treatment. Higher expression level of its cis-eQTL gene GSTA1 is associated with poorer survival. This approach can also be applied to identify new drug associated SNPs in other cancers.
Collapse
Affiliation(s)
- Yu Rong
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Shan-Shan Dong
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Wei-Xin Hu
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Guo
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Yi-Xiao Chen
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Jia-Bin Chen
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Dong-Li Zhu
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Hao Chen
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Tie-Lin Yang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|