1
|
Hackett NR, Crystal RG. Four decades of adenovirus gene transfer vectors: History and current use. Mol Ther 2025:S1525-0016(25)00271-0. [PMID: 40181546 DOI: 10.1016/j.ymthe.2025.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Replication-deficient adenovirus-based gene therapy vectors were the first vectors demonstrated to mediate effective, robust in vivo gene transfer. The ease of genome engineering, large carrying capacity, and methods for large-scale vector production made adenoviral vectors a primary focus in the early days of gene therapy. Many vector modifications such as capsid engineering and regulated and cell-specific transgene expression were first demonstrated in adenovirus (Ad) vectors. However, early human studies proved disappointing, with safety and efficacy issues arising from anti-vector innate and acquired immune responses. While many gene therapy researchers moved to other vectors, others recognized that the immune response and limited duration of transgene expression were useful in the correct context. The striking example of this was the use of several effective adenovirus vectors engineered as COVID-19 vaccines estimated to have been administered to 2 billion people. In addition to vaccines, current applications of Ad vectors relate to anti-cancer therapies, tissue remodeling, and gene editing.
Collapse
Affiliation(s)
- Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
2
|
Floudas CS, Goswami M, Donahue RN, Strauss J, Pastor DM, Redman JM, Brownell I, Turkbey EB, Steinberg SM, Cordes LM, Marté JL, Khan MH, McMahon S, Lamping E, Manu M, Manukyan M, Brough DE, Lankford A, Jochems C, Schlom J, Gulley JL. PRGN-2009 and bintrafusp alfa for patients with advanced or metastatic human papillomavirus-associated cancer. Cancer Immunol Immunother 2025; 74:155. [PMID: 40116923 PMCID: PMC11928712 DOI: 10.1007/s00262-025-04009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND This first-in-human phase 1 study (NCT04432597) evaluated the safety and recommended phase 2 dose (RP2D) of PRGN-2009, a gorilla adenoviral-vector targeting oncoproteins E6, E7 (human papillomavirus (HPV)16/18) and E5 (HPV16), as monotherapy (Arm 1A) and combined with the bifunctional TGF-β "trap"/anti-PD-L1 fusion protein bintrafusp alfa (BA; Arm 1B), in patients with recurrent/metastatic HPV-associated cancer. METHODS Patients with ≥ 1 prior treatment (immunotherapy allowed) received PRGN-2009 (1 × 1011 particle units or 5 × 1011 particle units, subcutaneously) every 2 weeks for 3 doses, then every 4 weeks (Arm 1A), or PRGN-2009 (RP2D, schedule per Arm 1A) and BA (1200 mg, intravenously) every 2 weeks (Arm 1B). Primary endpoints were safety and RP2D of PRGN-2009; secondary objectives included overall response rate (ORR) and overall survival (OS). RESULTS Seventeen patients were treated. In Arm 1A (n = 6) there were no dose limiting toxicities or grade 3/4 treatment-related adverse events (TRAEs), 5 × 1011 PU was selected as RP2D, no responses were observed, and median OS (mOS) was 7.4 months (95% CI 2.9-26.8). In Arm 1B (n = 11), grade 3/4 TRAEs occurred in 27% of patients, ORR was 20% for all patients (22% in checkpoint-resistant patients), and mOS was 24.6 months (95% CI 9.6-not reached). Multifunctional HPV-specific T cells were increased or induced de novo in 80% of patients and not impacted by anti-vector antibodies. Higher serum IL-8 at baseline associated with shorter OS. CONCLUSIONS PRGN-2009 was well tolerated, and immune responses were observed to PRGN-2009. Encouraging anti-tumor activity and OS were noted in the combination with BA arm, consisting mainly of checkpoint-resistant patients. Trial Registration ClinicalTrials.gov Identifier: NCT04432597.
Collapse
Affiliation(s)
- Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Meghali Goswami
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julius Strauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Pastor
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason M Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evrim B Turkbey
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Cordes
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L Marté
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maheen H Khan
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheri McMahon
- Office of Research Nursing, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Lamping
- Office of Research Nursing, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michell Manu
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Manuk Manukyan
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Caroline Jochems
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Zhang Y, Qiu K, Ren J, Zhao Y, Cheng P. Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use. Signal Transduct Target Ther 2025; 10:44. [PMID: 39856040 PMCID: PMC11760352 DOI: 10.1038/s41392-024-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Shao Y, Shah PT, Su Q, Li S, Huang F, Wang J, Wang P, Wu C. Recombinant adenoviruses expressing HPV16/18 E7 upregulate the HDAC6 and DNMT3B genes in C33A cells. Front Cell Infect Microbiol 2024; 14:1459572. [PMID: 39411320 PMCID: PMC11473514 DOI: 10.3389/fcimb.2024.1459572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE High-risk human papillomavirus (HPV) is a carcinogenic virus associated with nearly all cases of cervical cancer, as well as an increasing number of anal and oral cancers. The two carcinogenic proteins of HPV, E6 and E7, can immortalize keratinocytes and are essential for HPV-related cellular transformation. Currently, the global regulatory effects of these oncogenic proteins on the host proteome are not fully understood, and further exploration of the functions and carcinogenic mechanisms of E6 and E7 proteins is needed. METHODS We used a previously established platform in our laboratory for constructing recombinant adenoviral plasmids expressing the HPV16 E7 gene to further construct recombinant virus particles expressing HPV16/18 E6, E7, and both E6 and E7 genes. These recombinant viruses were used to infect C33A cells to achieve sustained expression of the HPV16/18 E6/E7 genes. Subsequently, total RNA was extracted and RNA-Seq technology was employed for transcriptome sequencing to identify differentially expressed genes associated with HPV infection in cervical cancer. RESULTS RNA-Seq analysis revealed that overexpression of the HPV16/18 E6/E7 genes upregulated GP6, CD36, HDAC6, ESPL1, and DNMT3B among the differentially expressed genes (DEGs) associated with cervical cancer. Spearman correlation analysis revealed a statistically significant correlation between the HDAC6 and DNMT3B genes and key pathways, including DNA replication, tumor proliferation signature, G2M checkpoint, p53 pathways, and PI3K/AKT/mTOR signaling pathways. Further, qRT-PCR and Western blot analyses indicated that both HPV16/18 E7 can upregulate the expression of HDAC6 and DNMT3B, genes associated with HPV infection-related cervical cancer. CONCLUSION The successful expression of HPV16/18 E6/E7 in cells indicates that the recombinant viruses retain the replication and infection capabilities of Ad4. Furthermore, the recombinant viruses expressing HPV16/18 E7 can upregulate the HDAC6 and DNMT3B genes involved in cervical cancer pathways, thereby influencing the cell cycle. Additionally, HDAC6 and DNMT3B are emerging as important therapeutic targets for cancer. This study lays the foundation for further exploration of the oncogenic mechanisms of HPV E6/E7 and may provide new directions for the treatment of HPV-related cancers.
Collapse
Affiliation(s)
- Yunting Shao
- Faculty of Medicine, School of Basic Medical Sciences, Dalian University of Technology, Dalian, China
| | - Pir Tariq Shah
- Faculty of Medicine, School of Basic Medical Sciences, Dalian University of Technology, Dalian, China
| | - Qisheng Su
- Faculty of Medicine, School of Basic Medical Sciences, Dalian University of Technology, Dalian, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Wang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Dalian Medical University Mailing, Dalian, China
| | - Peng Wang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chengjun Wu
- Faculty of Medicine, School of Basic Medical Sciences, Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Gong X, Chi H, Xia Z, Yang G, Tian G. Advances in HPV-associated tumor management: Therapeutic strategies and emerging insights. J Med Virol 2023; 95:e28950. [PMID: 37465863 DOI: 10.1002/jmv.28950] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
With the rapid increase in the incidence of cervical cancer, anal cancer and other cancers, human papillomavirus (HPV) infection has become a growing concern. Persistent infection with high-risk HPV is a major cause of malignant tumors. In addition, microbiota and viruses such as human immunodeficiency virus, herpes simplex virus, and Epstein-Barr virus are closely associated with HPV infection. The limited effectiveness of existing treatments for HPV-associated tumors and the high rates of recurrence and metastasis in patients create an urgent need for novel and effective approaches. In recent years, HPV vaccine coverage has increased and can reduce the incidence of serious adverse events. Overall, this article provides a comprehensive overview of HPV biology, microbiome, and other viral interactions in cancer development, highlighting the need for a more comprehensive approach to cancer prevention and treatment. Current and emerging HPV-related cancer control and treatment strategies are also further explored.
Collapse
Affiliation(s)
- Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Park JC, Bertaux B, Park J, Park S. Current Status of Human Papillomavirus-Targeted Therapies Development in Head and Neck Cancer. JCO Precis Oncol 2023; 7:e2300098. [PMID: 37315264 DOI: 10.1200/po.23.00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
PURPOSE While the incidence of smoking-related head and neck squamous cell carcinoma (HNSCC) has been declining, that of human papillomavirus (HPV)-mediated HNSCC has rapidly increased in the past decades worldwide. Despite rapid advances in therapeutics for solid tumors with novel immunotherapy and targeted therapeutic agents, no breakthroughs have yet been made in the treatment of advanced HPV+ HNSCCs. This review aims to summarize the concepts and designs, early trial results, and future directions of various HPV-targeted experimental therapeutics for HPV+ HNSCC. MATERIALS AND METHODS Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, a systemic literature search of PubMed was conducted for HPV-targeted therapeutics using the following search terms: HPV, head and neck squamous cell carcinoma, and therapy. For clinical trial data, publications, major oncology conference abstracts, and the National Institutes of Health Clinical Trials Registry (ClinicalTrials.gov) information were reviewed. This review focused on the ones that are in the clinical stage and currently in active ongoing evaluation. The therapeutics not actively evaluated in HNSCC, in the preclinical stage, or terminated for further development were excluded. RESULTS Diverse approaches are being actively explored to target HPV+ HNSCC, including therapeutic vaccines of various modalities, HPV-specific immune cell-activating agents, and adaptive cellular therapeutics. All these novel agents use immune-based mechanisms and target constitutively expressed oncogenic HPV E6 and/or E7 viral proteins. Most therapeutics demonstrated excellent safety but single-agent activities are only modest. Many are being tested in combination with immune checkpoint inhibitors. CONCLUSION Our review summarized various novel HPV-targeted therapeutics that are in the clinical phase for HPV+ HNSCC. Early-phase trial data suggest the feasibility and promising efficacy. Further strategies, including selecting the optimal combination and understanding and overcoming resistant mechanisms, are warranted for successful development.
Collapse
Affiliation(s)
- Jong Chul Park
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Junseok Park
- Seoul National University College of Medicine, Seoul, South Korea
| | - Seongwoo Park
- Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Xie YJ, Liu WQ, Li D, Hou JC, Coghi PS, Fan XX. Overcoming Suppressive Tumor Microenvironment by Vaccines in Solid Tumor. Vaccines (Basel) 2023; 11:vaccines11020394. [PMID: 36851271 PMCID: PMC9964970 DOI: 10.3390/vaccines11020394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Conventional vaccines are widely used to boost human natural ability to defend against foreign invaders, such as bacteria and viruses. Recently, therapeutic cancer vaccines attracted the most attention for anti-cancer therapy. According to the main components, it can be divided into five types: cell, DNA, RNA, peptide, and virus-based vaccines. They mainly perform through two rationales: (1) it trains the host immune system to protect itself and effectively eradicate cancer cells; (2) these vaccines expose the immune system to molecules associated with cancer that enable the immune system to recognize and destroy cancer cells. In this review, we thoroughly summarized the potential strategies and technologies for developing cancer vaccines, which may provide critical achievements for overcoming the suppressive tumor microenvironment through vaccines in solid tumors.
Collapse
Affiliation(s)
- Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wen-Qian Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Dan Li
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing 101400, China
| | - Jin-Cai Hou
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing 101400, China
| | - Paolo Saul Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (P.S.C.); (X.-X.F.)
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (P.S.C.); (X.-X.F.)
| |
Collapse
|
9
|
Treating Head and Neck Cancer in the Age of Immunotherapy: A 2023 Update. Drugs 2023; 83:217-248. [PMID: 36645621 DOI: 10.1007/s40265-023-01835-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Most patients diagnosed with head and neck squamous cell carcinoma (HNSCC) will present with locally advanced disease, requiring multimodality therapy. While this approach has a curative intent, a significant subset of these patients will develop locoregional failure and/or distant metastases. The prognosis of these patients is poor, and therapeutic options other than palliative chemotherapy are urgently needed. Epidermal growth factor receptor (EGFR) overexpression is an important factor in the pathogenesis of HNSCC, and a decade ago, the EGFR targeting monoclonal antibody cetuximab was approved for the treatment of late-stage HNSCC in different settings. In 2016, the anti-programmed death-1 (PD-1) immune checkpoint inhibitors nivolumab and pembrolizumab were both approved for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy, and in 2019, pembrolizumab was approved for first-line treatment (either as monotherapy in PD-L1 expressing tumors, or in combination with chemotherapy). Currently, trials are ongoing to include immune checkpoint inhibition in the (neo)adjuvant treatment of HNSCC as well as in novel combinations with other drugs in the recurrent/metastatic setting to improve response rates and survival and help overcome resistance mechanisms to immune checkpoint blockade. This article provides a comprehensive review of the management of head and neck cancers in the current era of immunotherapy.
Collapse
|
10
|
Abstract
Cancer is one of the leading causes of death in the world, which is the second after heart diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for cancer treatment. The objective of this review is to discuss current advances in the applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be engineered in different ways so as to change the tumor microenvironment from cold tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for tumor suppressor gene (p53) and other proteins whose expression result in cell cycle arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are replication-defective recombinant human p53 adenoviral vectors that have been shown to be effective against several types of cancer. Gendicine was approved for treatment of squamous cell carcinoma of the head and neck by the Chinese Food and Drug Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective against some types of cancer. The Chiness FDA agency has also approved Oncorin for the treatment of head and neck cancer. Ads that were engineered to express immune-stimulatory cytokines and other immune-modulatory molecules such as TNF-α, IL-2, BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1-MVA and Ad-transduced Dendritic cells) that were tested as anticancer vaccines have been demonstrated to induce strong antitumor immune response. However, the use of adenoviral vectors in gene therapy is limited by several factors such as pre-existing immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative strategies must be continually developed so as to overcome the obstacles of using adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Sintayehu Tsegaye Tseha
- Lecturer of Biomedical Sciences, Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Saito S, Shibata H, Adkins D, Uppaluri R. Neoadjuvant Immunotherapy Strategies in HPV-Related Head-and-Neck Cancer. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022; 10:108-115. [PMID: 35990387 PMCID: PMC9385129 DOI: 10.1007/s40136-021-00389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Purpose of review Herein, we review current evidence and future directions of neoadjuvant immunotherapy in HPV-related head and neck squamous cell carcinoma (HNSCC) by describing published data and ongoing clinical trials. Recent findings Although HNSCCs have shown response to immune checkpoint inhibitors in recurrent/metastatic disease, a limited number of patients benefit from this treatment. There is an expanding interest in clarifying the clinical benefit of immunotherapy in earlier stage disease setting including at initial presentation. Neoadjuvant immunotherapy for HPV-related HNSCCs represents a rational approach, as these cancers bear strong viral antigens. Summary The majority of patients with HPV-related HNSCC have good prognosis and treatment de-intensification strategies are under evaluation to decrease toxicity and maintain efficacy. On the other hand, a subset of patients with HPV-related HNSCC have a poorer prognosis and additional treatment options are need to improve outcome. Multiple clinical trials are ongoing to evaluate whether neoadjuvant immunotherapy will achieve these goals.
Collapse
Affiliation(s)
- Shin Saito
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Department of Otolaryngology – Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Shibata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Douglas Adkins
- Alvin J. Siteman Cancer Center, Washington University School of Medicine; St. Louis, MO, USA,Department of Medicine/Division of Medical Oncology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Department of Surgery/Otolaryngology, Brigham and Women's Hospital, and Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
12
|
Turbeville HR, Toni TA, Allen C. Immune Landscape and Role of Immunotherapy in Treatment of HPV-Associated Head and Neck Squamous Cell Carcinoma (HNSCC). CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-021-00384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Fatemi SA, Seifi N, Rasekh S, Amiri S, Moezzi SMI, Bagheri A, Fathi S, Negahdaripour M. Immunotherapeutic approaches for HPV-caused cervical cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:51-90. [PMID: 35305725 DOI: 10.1016/bs.apcsb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cervical cancer, the fourth most frequent women cancer worldwide, is mostly (about 99%) associated with human papillomavirus (HPV). Despite availability of three effective prophylactic vaccines for more than one decade and some other preventive measures, it is still the fourth cause of cancer death among women globally. Thus, development of therapeutic vaccines seems essential, which has been vastly studied using different vaccine platforms. Even with very wide efforts during the past years, no therapeutic vaccine has been approved yet, which might be partly due to the complex events and interactions taken place in the tumor microenvironment. On the other hand, immunotherapy has opened its way into the management plans of some cancers. The recent approval of pembrolizumab for the treatment of metastatic/recurrent cervical cancer brings new hopes to the management of this disease, while some other immunotherapeutic approaches are also under investigation either alone or in combination with vaccines. Here, following a summary about HPV and its pathogenesis, cervical cancer therapeutic vaccines would be reviewed. Cell-based vaccines as well as immunomodulation and other modalities used along with vaccines would be also discussed.
Collapse
Affiliation(s)
- Seyed Amirreza Fatemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadia Seifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Cogels MM, Rouas R, Ghanem GE, Martinive P, Awada A, Van Gestel D, Krayem M. Humanized Mice as a Valuable Pre-Clinical Model for Cancer Immunotherapy Research. Front Oncol 2021; 11:784947. [PMID: 34869042 PMCID: PMC8636317 DOI: 10.3389/fonc.2021.784947] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023] Open
Abstract
Immunotherapy with checkpoint inhibitors opened new horizons in cancer treatment. Clinical trials for novel immunotherapies or unexplored combination regimens either need years of development or are simply impossible to perform like is the case in cancer patients with limited life expectancy. Thus, the need for preclinical models that rapidly and safely allow for a better understanding of underlying mechanisms, drug kinetics and toxicity leading to the selection of the best regimen to be translated into the clinic, is of high importance. Humanized mice that can bear both human immune system and human tumors, are increasingly used in recent preclinical immunotherapy studies and represent a remarkably unprecedented tool in this field. In this review, we describe, summarize, and discuss the recent advances of humanized mouse models used for cancer immunotherapy research and the challenges faced during their establishment. We also highlight the lack of preclinical studies using this model for radiotherapy-based research and argue that it can be a great asset to understand and answer many open questions around radiation therapy such as its presumed associated "abscopal effect".
Collapse
Affiliation(s)
- Morgane M. Cogels
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Redouane Rouas
- Laboratory of Cellular Therapy (UTCH), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Martinive
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
HPV16 E6 enhances the radiosensitivity in HPV-positive human head and neck squamous cell carcinoma by regulating the miR-27a-3p/SMG1 axis. Infect Agent Cancer 2021; 16:56. [PMID: 34389030 PMCID: PMC8361787 DOI: 10.1186/s13027-021-00397-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 01/13/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the 6th most common malignant cancer type worldwide. Radiosensitivity has been shown to be significantly increased in patients with human papillomavirus (HPV)-positive HNSCC compared with HPV-negative patients. However, the clinical significance of HPV and its regulatory mechanisms in HNSCC are largely unknown. The aim of our study was to explore the regulatory mechanism of miR-27a-3p in the radiosensitivity of HPV-positive HNSCC cells. Methods E6-overexpressing and E6-knockdown HNSCC cell lines were generated and the transfection efficiencies were evaluated by quantitative real-time PCR (RT-qPCR) and western blotting. The expression of miR-27a-3p and DiGeorge syndrome critical region 8 (DGCR8) was examined by RT-qPCR after transfection with E6 overexpressing plasmid or E6 siRNA. The effects of miR-27a-3p on the radiosensitivity of HNSCC cells were explored by a colony formation and TUNEL staining assays. Bioinformatic tools and luciferase reporter assays were used to identify that SMG1 is the direct target of miR-27a-3p. Furthermore, the effect of E6 overexpression on the regulation of the miR-27a-3p/SMG1 axis was investigated. Results In our study, we found overexpression of HPV E6 upregulated the expression of DGCR8 and miR-27a-3p in HNSCC cells. We next confirmed that DGCR8 positively regulated the expression of miR-27a-3p in HNSCC cells. The luciferase reporter gene results verified that miR-27a-3p targeted the 3’UTR of SMG1 mRNA. MiR-27a-3p mimics transfection resulted in a decrease in SMG1 expression and miR-27a-3p inhibitor transfection increased SMG1 expression. Apoptotic activity of HNSCC cells was significantly increased in miR-27a-3p mimics HNSCC cells compared with control HNSCC cells. After treatment with 4 Gy irradiation, UM-SCC47 cells transfected with miR-27a-3p inhibitor or SMG1 overexpressing plasmid formed more colonies than the corresponding control cells. Furthermore, the rescue experiments demonstrated that HPV16 E6 improved the radiosensitivity of HNSCC cells by targeting miR-27a-3p/SMG1. Conclusion Our study demonstrated that HPV16 E6 activated the DGCR8/miR-27a-3p/SMG1 axis to enhance the radiosensitivity. Our findings might provide a novel therapeutic target to improve the response of HNSCC to radiotherapy.
Collapse
|
16
|
Pharaon RR, Xing Y, Agulnik M, Villaflor VM. The Role of Immunotherapy to Overcome Resistance in Viral-Associated Head and Neck Cancer. Front Oncol 2021; 11:649963. [PMID: 34336649 PMCID: PMC8322686 DOI: 10.3389/fonc.2021.649963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
A subset of head and neck cancers arising in the oropharynx and the nasopharynx are associated with human papillomavirus or Epstein-Barr virus. Unfortunately, limited treatment options exist once patients develop recurrent or metastatic disease in these cancers. Interest has risen in utilizing novel strategies including combination immune checkpoint inhibitors, vaccines, and adoptive cellular therapy, to improve treatment response and outcomes. Several ongoing studies are investigating the potential to overcome resistance to standard of care chemoradiation therapy with monotherapy or combination immunotherapy strategies in these viral-associated head and neck cancers.
Collapse
Affiliation(s)
| | | | | | - Victoria M. Villaflor
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, United States
| |
Collapse
|