1
|
Kovacs T, Cs. Szabo B, Kothalawala RC, Szekelyhidi V, Nagy P, Varga Z, Panyi G, Zakany F. Inhibition of the H V1 voltage-gated proton channel compromises the viability of human polarized macrophages in a polarization- and ceramide-dependent manner. Front Immunol 2024; 15:1487578. [PMID: 39742270 PMCID: PMC11685079 DOI: 10.3389/fimmu.2024.1487578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
The human voltage-gated proton channel (HV1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit HV1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied HV1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound. ClGBI may exert this effect principally by blocking HV1 since the sensitivity of polarized macrophages correlates well with their HV1 expression levels; inhibitors of other macrophage ion channels that may be susceptible for off-target ClGBI effects cause no viability reductions; and Zn2+, another non-specific HV1 blocker, exerts similar effects. As a potential mechanism behind the ClGBI-induced cell death, we identify a complex pH dysregulation involving acidification of the cytoplasm and alkalinization of the lysosomes, which eventually result in membrane ceramide accumulation. Furthermore, ClGBI effects are alleviated by ARC39, a selective acid sphingomyelinase inhibitor supporting the unequivocal significance of ceramide accumulation in the process. Altogether, our results suggest that HV1 inhibition leads to cellular toxicity in polarized macrophages in a polarization-dependent manner, which occurs due to a pH dysregulation and concomitant ceramide overproduction mainly depending on the activity of acid sphingomyelinase. The reduced macrophage viability and plausible concomitant changes in homeostatic M1-M2 balance could contribute to both the therapeutic and potential side effects of HV1 inhibitors that show great promise in the treatment of neuroinflammation and malignant diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Yin Z, Wan B, Gong G, Yin J. ROS: Executioner of regulating cell death in spinal cord injury. Front Immunol 2024; 15:1330678. [PMID: 38322262 PMCID: PMC10844444 DOI: 10.3389/fimmu.2024.1330678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The damage to the central nervous system and dysfunction of the body caused by spinal cord injury (SCI) are extremely severe. The pathological process of SCI is accompanied by inflammation and injury to nerve cells. Current evidence suggests that oxidative stress, resulting from an increase in the production of reactive oxygen species (ROS) and an imbalance in its clearance, plays a significant role in the secondary damage during SCI. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulatory molecule for cellular redox. This review summarizes recent advancements in the regulation of ROS-Nrf2 signaling and focuses on the interaction between ROS and the regulation of different modes of neuronal cell death after SCI, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we highlight the pathways through which materials science, including exosomes, hydrogels, and nanomaterials, can alleviate SCI by modulating ROS production and clearance. This review provides valuable insights and directions for reducing neuronal cell death and alleviating SCI through the regulation of ROS and oxidative stress.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, the Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Jiangning Clinical Teaching Hospitals of Jiangsu Vocational College of Medicine, Nanjing, China
| |
Collapse
|
3
|
Peña-Pichicoi A, Fernández M, Navarro-Quezada N, Alvear-Arias JJ, Carrillo CA, Carmona EM, Garate J, Lopez-Rodriguez AM, Neely A, Hernández-Ochoa EO, González C. N-terminal region is responsible for mHv1 channel activity in MDSCs. Front Pharmacol 2023; 14:1265130. [PMID: 37915407 PMCID: PMC10616795 DOI: 10.3389/fphar.2023.1265130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance-voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.
Collapse
Affiliation(s)
- Antonio Peña-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Nieves Navarro-Quezada
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian A. Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Emerson M. Carmona
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jose Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | | | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
4
|
Manolios N, Papaemmanouil J, Adams DJ. The role of ion channels in T cell function and disease. Front Immunol 2023; 14:1238171. [PMID: 37705981 PMCID: PMC10497217 DOI: 10.3389/fimmu.2023.1238171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
T lymphocytes (T cells) are an important sub-group of cells in our immune system responsible for cell-mediated adaptive responses and maintaining immune homeostasis. Abnormalities in T cell function, lead the way to the persistence of infection, impaired immunosurveillance, lack of suppression of cancer growth, and autoimmune diseases. Ion channels play a critical role in the regulation of T cell signaling and cellular function and are often overlooked and understudied. Little is known about the ion "channelome" and the interaction of ion channels in immune cells. This review aims to summarize the published data on the impact of ion channels on T cell function and disease. The importance of ion channels in health and disease plus the fact they are easily accessible by virtue of being expressed on the surface of plasma membranes makes them excellent drug targets.
Collapse
Affiliation(s)
- Nicholas Manolios
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology, Westmead Hospital, Sydney, NSW, Australia
| | - John Papaemmanouil
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023; 13:1035. [PMID: 37509071 PMCID: PMC10377628 DOI: 10.3390/biom13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
With a single gene encoding HV1 channel, proton channel diversity is particularly low in mammals compared to other members of the superfamily of voltage-gated ion channels. Nonetheless, mammalian HV1 channels are expressed in many different tissues and cell types where they exert various functions. In the first part of this review, we regard novel aspects of the functional expression of HV1 channels in mammals by differentially comparing their involvement in (1) close conjunction with the NADPH oxidase complex responsible for the respiratory burst of phagocytes, and (2) in respiratory burst independent functions such as pH homeostasis or acid extrusion. In the second part, we dissect expression of HV channels within the eukaryotic tree of life, revealing the immense diversity of the channel in other phylae, such as mollusks or dinoflagellates, where several genes encoding HV channels can be found within a single species. In the last part, a comprehensive overview of the biophysical properties of a set of twenty different HV channels characterized electrophysiologically, from Mammalia to unicellular protists, is given.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, The Salzburg Location, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Szanto TG, Feher A, Korpos E, Gyöngyösi A, Kállai J, Mészáros B, Ovari K, Lányi Á, Panyi G, Varga Z. 5-Chloro-2-Guanidinobenzimidazole (ClGBI) Is a Non-Selective Inhibitor of the Human H V1 Channel. Pharmaceuticals (Basel) 2023; 16:ph16050656. [PMID: 37242439 DOI: 10.3390/ph16050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
5-chloro-2-guanidinobenzimidazole (ClGBI), a small-molecule guanidine derivative, is a known effective inhibitor of the voltage-gated proton (H+) channel (HV1, Kd ≈ 26 μM) and is widely used both in ion channel research and functional biological assays. However, a comprehensive study of its ion channel selectivity determined by electrophysiological methods has not been published yet. The lack of selectivity may lead to incorrect conclusions regarding the role of hHv1 in physiological or pathophysiological responses in vitro and in vivo. We have found that ClGBI inhibits the proliferation of lymphocytes, which absolutely requires the functioning of the KV1.3 channel. We, therefore, tested ClGBI directly on hKV1.3 using a whole-cell patch clamp and found an inhibitory effect similar in magnitude to that seen on hHV1 (Kd ≈ 72 μM). We then further investigated ClGBI selectivity on the hKV1.1, hKV1.4-IR, hKV1.5, hKV10.1, hKV11.1, hKCa3.1, hNaV1.4, and hNaV1.5 channels. Our results show that, besides HV1 and KV1.3, all other off-target channels were inhibited by ClGBI, with Kd values ranging from 12 to 894 μM. Based on our comprehensive data, ClGBI has to be considered a non-selective hHV1 inhibitor; thus, experiments aiming at elucidating the significance of these channels in physiological responses have to be carefully evaluated.
Collapse
Affiliation(s)
- Tibor G Szanto
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adam Feher
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eva Korpos
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adrienn Gyöngyösi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Kállai
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beáta Mészáros
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztian Ovari
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Cozzolino M, Gyöngyösi A, Korpos E, Gogolak P, Naseem MU, Kállai J, Lanyi A, Panyi G. The Voltage-Gated Hv1 H+ Channel Is Expressed in Tumor-Infiltrating Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:ijms24076216. [PMID: 37047188 PMCID: PMC10094655 DOI: 10.3390/ijms24076216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key determinants of the immunosuppressive microenvironment in tumors. As ion channels play key roles in the physiology/pathophysiology of immune cells, we aimed at studying the ion channel repertoire in tumor-derived polymorphonuclear (PMN-MDSC) and monocytic (Mo-MDSC) MDSCs. Subcutaneous tumors in mice were induced by the Lewis lung carcinoma cell line (LLC). The presence of PMN-MDSC (CD11b+/Ly6G+) and Mo-MDSCs (CD11b+/Ly6C+) in the tumor tissue was confirmed using immunofluorescence microscopy and cells were identified as CD11b+/Ly6G+ PMN-MDSCs and CD11b+/Ly6C+/F4/80−/MHCII− Mo-MDSCs using flow cytometry and sorting. The majority of the myeloid cells infiltrating the LLC tumors were PMN-MDSC (~60%) as compared to ~10% being Mo-MDSCs. We showed that PMN- and Mo-MDSCs express the Hv1 H+ channel both at the mRNA and at the protein level and that the biophysical and pharmacological properties of the whole-cell currents recapitulate the hallmarks of Hv1 currents: ~40 mV shift in the activation threshold of the current per unit change in the extracellular pH, high H+ selectivity, and sensitivity to the Hv1 inhibitor ClGBI. As MDSCs exert immunosuppression mainly by producing reactive oxygen species which is coupled to Hv1-mediated H+ currents, Hv1 might be an attractive target for inhibition of MDSCs in tumors.
Collapse
Affiliation(s)
- Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.C.); (E.K.); (M.U.N.)
| | - Adrienn Gyöngyösi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (P.G.); (J.K.); (A.L.)
| | - Eva Korpos
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.C.); (E.K.); (M.U.N.)
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Peter Gogolak
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (P.G.); (J.K.); (A.L.)
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.C.); (E.K.); (M.U.N.)
| | - Judit Kállai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (P.G.); (J.K.); (A.L.)
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (P.G.); (J.K.); (A.L.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.C.); (E.K.); (M.U.N.)
- Correspondence: ; Tel.: +36-52-352201
| |
Collapse
|
8
|
Alvear-Arias JJ, Pena-Pichicoi A, Carrillo C, Fernandez M, Gonzalez T, Garate JA, Gonzalez C. Role of voltage-gated proton channel (Hv1) in cancer biology. Front Pharmacol 2023; 14:1175702. [PMID: 37153807 PMCID: PMC10157179 DOI: 10.3389/fphar.2023.1175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
The acid-base characteristics of tumor cells and the other elements that compose the tumor microenvironment have been topics of scientific interest in oncological research. There is much evidence confirming that pH conditions are maintained by changes in the patterns of expression of certain proton transporters. In the past decade, the voltage-gated proton channel (Hv1) has been added to this list and is increasingly being recognized as a target with onco-therapeutic potential. The Hv1 channel is key to proton extrusion for maintaining a balanced cytosolic pH. This protein-channel is expressed in a myriad of tissues and cell lineages whose functions vary from producing bioluminescence in dinoflagellates to alkalizing spermatozoa cytoplasm for reproduction, and regulating the respiratory burst for immune system response. It is no wonder that in acidic environments such as the tumor microenvironment, an exacerbated expression and function of this channel has been reported. Indeed, multiple studies have revealed a strong relationship between pH balance, cancer development, and the overexpression of the Hv1 channel, being proposed as a marker for malignancy in cancer. In this review, we present data that supports the idea that the Hv1 channel plays a significant role in cancer by maintaining pH conditions that favor the development of malignancy features in solid tumor models. With the antecedents presented in this bibliographic report, we want to strengthen the idea that the Hv1 proton channel is an excellent therapeutic strategy to counter the development of solid tumors.
Collapse
Affiliation(s)
- Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Antonio Pena-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernandez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Tania Gonzalez
- National Center for Minimally Invasive Surgery, La Habana, Cuba
| | - Jose A. Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Carlos Gonzalez,
| |
Collapse
|