1
|
Ballerini C, Amoriello R, Maghrebi O, Bellucci G, Addazio I, Betti M, Aprea MG, Masciulli C, Caporali A, Penati V, Ballerini C, De Meo E, Portaccio E, Salvetti M, Amato MP. Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Front Immunol 2025; 16:1557483. [PMID: 40242760 PMCID: PMC11999961 DOI: 10.3389/fimmu.2025.1557483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV) is a known risk factor for multiple sclerosis (MS), even though the underlying molecular mechanisms are unclear and engage multiple immune pathways. Furthermore, the ultimate role of EBV in MS pathogenesis is still elusive. In contrast, Cytomegalovirus (CMV) has been identified as a protective factor for MS. Objectives This study aims to identify MS-associated genes that overlap with EBV interactome and to examine their expression in immune and glial cell subtypes. Methods We used P-HIPSTer, GWAS, and the Human Protein Atlas (HPA) to derive data on the EBV interactome, MS-associated genes and single-cell gene expression in immune and glial cells. The geneOverlap and dplyr R packages identified overlapping genes. A similar analysis was done for CMV and Adenovirus as negative control. Metascape and GTEx analyzed biological pathways and brain-level gene expression; transcriptomic analysis was performed on glial cells and peripheral blood in MS and controls. All the analyses performed in this study were generated using publicly available data sets. Results We identified a "core" group of 21 genes shared across EBV interactome, MS genes, and immune and glial cells (p<0.001). Pathway analysis revealed expected associations, such as immune system activation, and unforeseen results, like the prolactin signaling pathway. BCL2 in astrocytes, MINK1 in microglia were significantly upregulated while AHI1 was downregulated in MS compared to controls. Conclusions Our findings offer novel insights into EBV and CMV interaction with immune and glial cells in MS, that may shed light on mechanisms involved in disease pathophysiology.
Collapse
Affiliation(s)
- Chiara Ballerini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Olfa Maghrebi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ilaria Addazio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Matteo Betti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Grazia Aprea
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Camilla Masciulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Arianna Caporali
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Valeria Penati
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ermelinda De Meo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Emilio Portaccio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuromed, IRCCS Istituto Neurologico Mediterraneo (INM), Pozzilli, Italy
| | - Maria Pia Amato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Shu J, Li G, Shu J, Feng H, He Y. CD40 Ligand Potentiates Immunogenecity of Mycoplasma pneumoniae Subunit Vaccine Candidate in a Murine Model. Curr Issues Mol Biol 2025; 47:37. [PMID: 39852152 PMCID: PMC11763752 DOI: 10.3390/cimb47010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Mycoplasma hyopneumoniae (Mhp) infection severely affects the daily weight gain and feed-to-meat ratio of pigs, while secondary infections with other pathogens can further lead to increased mortality, causing significant economic losses to the pig industry. CD40L is a molecular adjuvant that enhances the cellular and humoral immune responses to vaccines. In this study, the CD40L peptide was fused to the C-terminus of the chimeric P97R1P46P42 protein by genetic engineering using the pFastBac Dual vector. The recombinant chimeric protein P97R1P46P42 and its fusion P97R1P46P42-CD40L were expressed in Sf9 cells and purified. Mice were immunized with P97R1P46P42 or its fusion protein. Seppic ISA 201 emulsified protein, conventional Mhp vaccine and PBS control groups were included. Immunogenecity was assessed by specific IgG antibody response, splenic lymphocyte proliferation, and cytokine IL-4 and IFN-γ levels. We found that CD40L fusion significantly enhanced specific antibody response, lymphocyte proliferation and IL-4 level in the immunized mouse sera as compared to the P97R1P46P42 or conventional vaccine group. This study provides clear evidence that CD40L potentiates the humoral and cellular immune responses to the Mhp chimeric protein P97R1P46P42 in the mouse model. This CD40L-fused chimeric protein could be a MPS subunit vaccine candidate to be tested for its efficacy in pigs in response to challenges with pathogenic Mycoplasma hyopneumoniae strain(s).
Collapse
Affiliation(s)
- Jinqi Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.S.); (G.L.); (J.S.); (H.F.)
| | - Gaojian Li
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.S.); (G.L.); (J.S.); (H.F.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.S.); (G.L.); (J.S.); (H.F.)
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.S.); (G.L.); (J.S.); (H.F.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.S.); (G.L.); (J.S.); (H.F.)
- Research Center of Animal Vaccines and Diagnostic Reagents, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing 312090, China
| |
Collapse
|
3
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
França TT, Barreiros LA, Salgado RC, Napoleão SMDS, Gomes LN, Ferreira JFS, Prando C, Weber CW, Di Gesu RSW, Montenegro C, Aranda CS, Kuntze G, Staines-Boone AT, Venegas-Montoya E, Becerra JCA, Bezrodnik L, Di Giovanni D, Moreira I, Seminario GA, Raccio ACG, Dorna MDB, Rosário-Filho NA, Chong-Neto HJ, de Carvalho E, Grotta MB, Orellana JC, Dominguez MG, Porras O, Sasia L, Salvucci K, Garip E, Leite LFB, Forte WCN, Pinto-Mariz F, Goudouris E, Nuñez MEN, Schelotto M, Ruiz LB, Liberatore DI, Ochs HD, Cabral-Marques O, Condino-Neto A. CD40 Ligand Deficiency in Latin America: Clinical, Immunological, and Genetic Characteristics. J Clin Immunol 2022; 42:514-526. [PMID: 34982304 DOI: 10.1007/s10875-021-01182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CD40 ligand (CD40L) deficiency is a rare inborn error of immunity presenting with heterogeneous clinical manifestations. While a detailed characterization of patients affected by CD40L deficiency is essential to an accurate diagnosis and management, information about this disorder in Latin American patients is limited. We retrospectively analyzed data from 50 patients collected by the Latin American Society for Immunodeficiencies registry or provided by affiliated physicians to characterize the clinical, laboratory, and molecular features of Latin American patients with CD40L deficiency. The median age at disease onset and diagnosis was 7 months and 17 months, respectively, with a median diagnosis delay of 1 year. Forty-seven patients were genetically characterized revealing 6 novel mutations in the CD40LG gene. Pneumonia was the most common first symptom reported (66%). Initial immunoglobulin levels were variable among patients. Pneumonia (86%), upper respiratory tract infections (70%), neutropenia (70%), and gastrointestinal manifestations (60%) were the most prevalent clinical symptoms throughout life. Thirty-five infectious agents were reported, five of which were not previously described in CD40L deficient patients, representing the largest number of pathogens reported to date in a cohort of CD40L deficient patients. The characterization of the largest cohort of Latin American patients with CD40L deficiency adds novel insights to the recognition of this disorder, helping to fulfill unmet needs and gaps in the diagnosis and management of patients with CD40L deficiency.
Collapse
Affiliation(s)
- Tábata Takahashi França
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Lucila Akune Barreiros
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lillian Nunes Gomes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Prando
- Hospital Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | | | | | | | - Carolina Sanchez Aranda
- Serviço de Alergia e Imunologia, Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, Brazil.,Jeffrey Modell Center São Paulo, São Paulo, Brazil
| | | | - Aidé Tamara Staines-Boone
- Immunology Service, Hospital de Especialidades Unidad Médica de Alta Especialidad (UMAE, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | - Edna Venegas-Montoya
- Immunology Service, Hospital de Especialidades Unidad Médica de Alta Especialidad (UMAE, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | | | - Liliana Bezrodnik
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | - Daniela Di Giovanni
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | - Ileana Moreira
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | | | | | - Mayra de Barros Dorna
- Divisão de Alergia e Imunologia, Departamento de Pediatria, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Elisa de Carvalho
- Gastroenterology and Hepatology Clínic, Brasilia Childrens Hospital, Brasília, Brazil
| | | | - Julio Cesar Orellana
- Division Alergia e Imunologia Clinica, Hospital de Niños de La Santísima Trinidad, Córdoba, Argentina
| | | | - Oscar Porras
- Hospital Nacional de Niños Dr. Carlos Sáenz Herrera, San José, Costa Rica
| | - Laura Sasia
- Hospital Infantil Municipal de Córdoba, Córdoba, Argentina
| | | | - Emilio Garip
- Hospital Infantil Municipal de Córdoba, Córdoba, Argentina
| | - Luiz Fernando Bacarini Leite
- Department of Pediatrics, Immunodeficiency Sector, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | | | - Fernanda Pinto-Mariz
- Department of Pediatrics, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ekaterini Goudouris
- Department of Pediatrics, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - María Enriqueta Nuñez Nuñez
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara, México
| | | | - Laura Berrón Ruiz
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad del México, México
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. .,Jeffrey Modell Center São Paulo, São Paulo, Brazil.
| |
Collapse
|