1
|
Maadurshni GB, Mahalakshmi B, Nagarajan M, Manivannan J. Human circulatory proteome interaction, oxidative stress-associated signalling and cardiovascular implications during titanium dioxide nanoparticle (TiO 2-NP) exposure. Mol Omics 2025. [PMID: 40202160 DOI: 10.1039/d4mo00205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The increasing exposure to nanoparticles raises a concern over their toxicity. Incidentally, reactive oxygen species (ROS) are produced as a result of the nanoparticle's physicochemical characteristics and interactions with intracellular elements, primarily enzymes, leading to oxidative stress. In this context, the extent of oxidative stress resulting from the toxicity of titanium dioxide nanoparticles (TiO2-NPs) on the cardiovascular system has not yet been thoroughly investigated. Initially, the gel/label-free proteomics (nLC-HRMS/MS) method was used to examine human serum protein interaction and corona composition. Furthermore, different oxidative stress assays (superoxide, total ROS, mitochondrial ROS, and lipid peroxidation) and cell stress assays (apoptosis, ER stress, mitochondrial dysfunction, autophagy, and hypertrophy) were performed in conjunction with endothelial (rat aortic cells) and cardiomyoblast (H9c2) cell cultures. In addition, expression studies (RT-qPCR and immunofluorescence), kinase signalling, and siRNA-mediated gene knockout (NOX2 and XO) studies were conducted. Alongside, in ovo effects on the heart's antioxidant enzymes (SOD and CAT) and metabolomic pathways (1H NMR) confirmed the involvement of oxidative stress in cardiotoxicity. The present results demonstrate a dose-dependent increase in cytotoxicity via the activation of caspase 3 and 9. The dose-dependent increase and its synergistic relationship with cardiovascular stress signalling (ET-1 and Ang-II) highlight the significant role of oxidative stress in nanoparticle toxicity. In summary, this study expands our understanding of the precise health risks associated with human exposure by establishing a connection between the role of the redox system and molecular stress pathways in TiO2-NPs-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Balamurali Mahalakshmi
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Manikandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
2
|
Bohovyk R, Kravtsova O, Levchenko V, Klemens CA, Palygin O, Staruschenko A. Effects of zinc in podocytes and cortical collecting duct in vitro and Dahl salt-sensitive rats in vivo. J Biol Chem 2024; 300:107781. [PMID: 39276935 PMCID: PMC11736004 DOI: 10.1016/j.jbc.2024.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Zinc is one of the essential divalent cations in the human body and a fundamental microelement involved in the regulation of many cellular and subcellular functions. Experimental studies reported that zinc deficiency is associated with renal damage and could increase blood pressure. It was proposed that zinc dietary supplementation plays a renoprotective role. Our study aimed to investigate the effects of zinc on intracellular signaling in renal cells and explore the correlation between dietary zinc and the progression of salt-induced hypertension. The impact of extracellular zinc concentrations on two different kidney epithelial cell types, podocytes and principal cells of the cortical collecting duct (CCD), was tested. In podocytes, a rise in extracellular zinc promotes TRPC6 channel-mediated calcium entry but not altered intracellular zinc levels. However, we observe the opposite effect in CCD cells with no alteration in calcium levels and steady-state elevation in intracellular zinc. Moreover, prolonged extracellular zinc exposure leads to cytotoxic insults in CCD cells but not in podocytes, characterized by increased cell death and disrupted cytoskeletal organization. Next, we tested if dietary zinc plays a role in the development of hypertension in Dahl salt-sensitive rats. Neither zinc-rich nor deficient diets impact the regular development of salt-sensitive hypertension. These results suggest specialized roles for zinc in renal function, implicating its involvement in proliferation and apoptosis in CCD cells and calcium signaling and cytoskeletal dynamics modulation in podocytes. Further research is required to elucidate the detailed mechanisms of zinc action and its implications in renal health and disease.
Collapse
Affiliation(s)
- Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| |
Collapse
|
3
|
Cherezova A, Sudarikova A, Vasileva V, Iurchenko R, Nikiforova A, Spires DR, Zamaro AS, Jones AC, Schibalski RS, Dong Z, Palygin O, Stadler K, Ilatovskaya DV. The effects of the atrial natriuretic peptide deficiency on renal cortical mitochondrial bioenergetics in the Dahl SS rat. FASEB J 2024; 38:e23891. [PMID: 39150822 PMCID: PMC11335316 DOI: 10.1096/fj.202400672rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/18/2024]
Abstract
Atrial Natriuretic Peptide (ANP) plays an important role in blood pressure regulation. Low levels of ANP correlate with the development of salt-sensitive hypertension (SS-HTN). Our previous studies indicated that ANP deficiency exacerbated renal function decline in SS-HTN. In the heart and fat tissue, ANP was reported to affect lipid peroxidation and mitochondrial bioenergetics but the effects of ANP on mitochondrial function in the kidney are unexplored. We hypothesized that ANP deficiency in SS-HTN causes renal bioenergetic shift, leading to disruption of mitochondrial network and oxidative stress. To address the hypothesis, we placed Dahl SS wild-type (SSWT) and ANP knockout (SSNPPA-/-) rats on 4% NaCl high salt (HS) diet to induce HTN or maintained them on 0.4% NaCl normal salt (NS) diet and assessed mitochondrial bioenergetics and dynamics using spectrofluorimetry, Seahorse assay, electron paramagnetic resonance (EPR) spectroscopy, Western blotting, electron microscopy, PCR and cytokine assays. We report that under high salt conditions, associated with hypertension and renal damage, the SSNPPA-/- rats exhibit a decrease in mitochondrial membrane potential and elevation in mitochondrial ROS levels compared to SSWT. The redox shift is also evident by the presence of more pronounced medullar lipid peroxidation in the SSNPPA-/- strain. We also revealed fragmented, more damaged mitochondria in the SSNPPA-/- rats, accompanied by increased turnover and biogenesis. Overall, our data indicate that ANP deficiency causes disruptions in mitochondrial bioenergetics and dynamics which likely contributes to aggravation of the renal damage and hypertension in the Dahl SS rat; the major pathological effects are evident in the groups subjected to a combined salt and ANP deficiency-induced mitochondrial stress.
Collapse
Affiliation(s)
- Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| | - Anastasia Sudarikova
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| | - Valeria Vasileva
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| | - Regina Iurchenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, 29425, USA
| | - Anna Nikiforova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, 29425, USA
| | - Denisha R. Spires
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| | - Aleksandra S. Zamaro
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| | - Adam C. Jones
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| | - Ryan S. Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, 30912, USA
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, 29425, USA
| | | | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, 30912, USA
| |
Collapse
|
4
|
Shelke V, Dagar N, Puri B, Gaikwad AB. Natriuretic peptide system in hypertension: Current understandings of its regulation, targeted therapies and future challenges. Eur J Pharmacol 2024; 976:176664. [PMID: 38795757 DOI: 10.1016/j.ejphar.2024.176664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The natriuretic peptide system (NPS) is the key driving force of the heart's endocrine function. Recent developments in NPS-targeted therapies have been found promising and effective against cardiovascular diseases, including hypertension. Notably, after discovering crosstalk between NPS and the renin-angiotensin-aldosterone system (RAAS), various combinations such as neprilysin/angiotensin II receptor type 1 AT1 receptor inhibitors and neprilysin/renin inhibitors have been preclinically and clinically tested against various cardiac complications. However, the therapeutic effects of such combinations on the pathophysiology of hypertension are poorly understood. Furthermore, the complicated phenomena underlying NPS regulation and function, particularly in hypertension, are still unexplored. Mounting evidence suggests that numerous regulatory mechanisms modulate the expression of NPS, which can be used as potential targets against hypertension and other cardiovascular diseases. Therefore, this review will specifically focus on epigenetic and other regulators of NPS, identifying prospective regulators that might serve as new therapeutic targets for hypertension. More importantly, it will shed light on recent developments in NPS-targeted therapies, such as M-atrial peptides, and their latest combinations with RAAS modulators, such as S086 and sacubitril-aliskiren. These insights will aid in the development of effective therapies to break the vicious cycle of high blood pressure during hypertension, ultimately addressing the expanding global heart failure pandemic.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Bhupendra Puri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
5
|
Wang J, Yang Y, Zheng M, Zhang L, Wulasihan M. Atrial natriuretic peptide T2238C gene polymorphism and the risk of cardiovascular diseases: A meta‑analysis. Biomed Rep 2024; 20:41. [PMID: 38357235 PMCID: PMC10865291 DOI: 10.3892/br.2024.1730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/08/2023] [Indexed: 02/16/2024] Open
Abstract
The present study aimed to investigate the association between atrial natriuretic peptide (ANP) T2238C (rs5065) gene polymorphism and the risk of cardiovascular disease. Relevant literature was obtained by searching databases. The odds ratios (ORs) of the ANP T2238C locus genotype distribution in the case group of cardiovascular diseases and the control group of a non-cardiovascular population were pooled using R software. Sensitivity analysis was used to verify the stability of the results. Egger's linear regression test was used to assess the publication bias of the included literature. Studies were classified according to quality assessment score of the Newcastle-Ottawa scale, year, region, sample size and underlying disease for subgroup analysis, and meta-regression analysis was performed. A total of 12 studies comprising 45,619 patients were included. ANP rs5065 mutant gene C allele was a significant risk factor for myocardial infarction relative to T allele (OR=2.55, 95% CI=1.47-4.43, P=0.0008), CC+CT genotype was a significant risk factor for cerebrovascular events relative to TT (OR=1.14, 95% CI=1.04-1.26, P=0.0048) and the mutant CC genotype was a potential risk factor for the composite cardio-cerebral vascular events (CVE) relative to CT+TT (OR=1.40, 95% CI=0.96-2.04, P=0.081). In studies fulfilling the Hardy-Weinberg equilibrium, the CC genotype was a significant risk factor for the composite CVE relative to TT (OR=2.39, 95% CI=1.40-4.10, P=0.0018) and the CC genotype was a significant risk factor for composite CVE relative to CT+TT (OR=2.41, 95% CI=1.41-4.13, P=0.0015). The P-value of the Egger's test for publication bias was 0.436, which was not statistically significant. The results of the sensitivity analysis were relatively stable. Subgroup analysis indicated that the publication year was a potential source of heterogeneity. Regression analysis was performed for the recessive model in the composite CVE and the results showed that the study region (Europe) was one of the sources of heterogeneity (P=0.016). In conclusion, ANP 2238T/C mutation may increase the risk of myocardial infarction, cerebrovascular events and composite CVE.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yuchun Yang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Meijuan Zheng
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Lei Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | | |
Collapse
|
6
|
Huang Y, Wang LL, Liu ZB, Chen C, Ren X, Luo AT, Ma JH, Antzelevitch C, Barajas-Martínez H, Hu D. Underlying mechanism of atrial fibrillation-associated Nppa-I137T mutation and cardiac effect of potential drug therapy. Heart Rhythm 2024; 21:184-196. [PMID: 37924963 DOI: 10.1016/j.hrthm.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND More than a hundred genetic loci have been associated with atrial fibrillation (AF). But the exact mechanism remains unclear and the treatment needs to be improved. OBJECTIVE This study aimed to investigate the mechanism and potential treatment of NPPA mutation-associated AF. METHODS Nppa knock-in (KI, p.I137T) rats were generated, and cardiac function was evaluated. Blood pressure was recorded using a tail-cuff system. The expression levels were measured using real-time polymerase chain reaction, enzyme-linked immunosorbent assay or Western blot analysis, and RNA-sequence analysis. Programmed electrical stimulation, patch clamp, and multielectrode array were used to record the electrophysical characteristics. RESULTS Mutant rats displayed downregulated expression of atrial natriuretic peptide but elevated blood pressure and enlarged left atrial end-diastolic diameter. Further, gene topology analysis suggested that the majority of differently expressed genes in Nppa KI rats were related to inflammation, electrical remodeling, and structural remodeling. The expression levels of C-C chemokine ligand 5 and galectin-3 involved in remodeling were higher, while there were declined levels of Nav1.5, Cav1.2, and connexin 40. AF was more easily induced in KI rats. Electrical remodeling included abbreviated action potentials, effective refractory period, increased late sodium current, and reduced calcium current, giving rise to conduction abnormalities. These electrophysiological changes could be reversed by the late sodium current blocker ranolazine and the Nav1.8 blocker A-803467. CONCLUSION Our findings suggest that structural remodeling related to inflammation and fibrosis and electrical remodeling involved in late sodium current underly the major effects of the Nppa (p.I137T) variant to induce AF, which can be attenuated by the late sodium current blocker and Nav1.8 blocker.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Ling-Ling Wang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Zhe-Bo Liu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Cheng Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - An-Tao Luo
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ji-Hua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hector Barajas-Martínez
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Spires DR, Schibalski RS, Domondon M, Clarke C, Perez S, Anwar F, Burns E, Saeed MI, Walton SD, Zamaro AS, Amoah T, Arkhipov SN, Christopher CJ, Campagna SR, Mattson DL, Pavlov TS, Ilatovskaya DV. Renal histaminergic system and acute effects of histamine receptor 2 blockade on renal damage in the Dahl salt-sensitive rat. Am J Physiol Renal Physiol 2023; 325:F105-F120. [PMID: 37227223 PMCID: PMC10511172 DOI: 10.1152/ajprenal.00269.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Histamine is involved in the regulation of immune response, vasodilation, neurotransmission, and gastric acid secretion. Although elevated histamine levels and increased expression of histamine metabolizing enzymes have been reported in renal disease, there is a gap in knowledge regarding the mechanisms of histamine-related pathways in the kidney. We report here that all four histamine receptors as well as enzymes responsible for the metabolism of histamine are expressed in human and rat kidney tissues. In this study, we hypothesized that the histaminergic system plays a role in salt-induced kidney damage in the Dahl salt-sensitive (DSS) rat, a model characterized with inflammation-driven renal lesions. To induce renal damage related to salt sensitivity, DSS rats were challenged with 21 days of a high-salt diet (4% NaCl); normal-salt diet (0.4% NaCl)-fed rats were used as a control. We observed lower histamine decarboxylase and higher histamine N-methyltransferase levels in high-salt diet-fed rats, indicative of a shift in histaminergic tone; metabolomics showed higher histamine and histidine levels in the kidneys of high-salt diet-fed rats, whereas plasma levels for both compounds were lower. Acute systemic inhibition of histamine receptor 2 in the DSS rat revealed that it lowered vasopressin receptor 2 in the kidney. In summary, we established here the existence of the local histaminergic system, revealed a shift in the renal histamine balance during salt-induced kidney damage, and provided evidence that blockage of histamine receptor 2 in the DSS rat affects water balance and urine concentrating mechanisms.NEW & NOTEWORTHY Histamine is a nitrogenous compound crucial for the inflammatory response. The knowledge regarding the renal effects of histamine is very limited. We showed that renal epithelia exhibit expression of the components of the histaminergic system. Furthermore, we revealed that there was a shift in the histaminergic tone in salt-sensitive rats when they were challenged with a high-salt diet. These data support the notion that histamine plays a role in renal epithelial physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Denisha R Spires
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Mark Domondon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Callie Clarke
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Samantha Perez
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Fabiha Anwar
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Emily Burns
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | | | - Samuel D Walton
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Aleksandra S Zamaro
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Thelma Amoah
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sergey N Arkhipov
- Hypertension and Vascular Research, Henry Ford Health, Detroit, Michigan, United States
| | | | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, Tennessee, United States
| | - David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Tengis S Pavlov
- Hypertension and Vascular Research, Henry Ford Health, Detroit, Michigan, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
8
|
Shen X, Chang P, Zhang X, Zhang J, Wang X, Quan Z, Wang P, Liu T, Niu Y, Zheng R, Chen B, Yu J. The landscape of N6-methyladenosine modification patterns and altered transcript profiles in the cardiac-specific deletion of natriuretic peptide receptor A. Mol Omics 2023; 19:105-125. [PMID: 36412146 DOI: 10.1039/d2mo00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The atrial natriuretic peptide (ANP) and the brain natriuretic peptide (BNP) are critical biological makers and regulators of cardiac functions. Our previous results show that NPRA (natriuretic peptide receptor A)-deficient mice have distinct metabolic patterns and expression profiles compared with the control. Still, the molecular mechanism that could account for this observation remains to be elucidated. Here, methylation alterations were detected by mazF-digestion, and differentially expressed genes of transcriptomes were detected by a Genome Oligo Microarray using the myocardium from NPRA-deficient (NPRA-/-) mice and wild-type (NPRA+/+) mice as the control. Comprehensive analysis of m6A methylation data gave an altered landscape of m6A modification patterns and altered transcript profiles in cardiac-specific NPRA-deficient mice. The m6A "reader" igf2bp3 showed a clear trend of increase, suggesting a function in altered methylation and expression in cardiac-specific NPRA-deficient mice. Intriguingly, differentially m6A-methylated genes were enriched in the metabolic process and insulin resistance pathway, suggesting a regulatory role in cardiac metabolism of m6A modification regulated by NPRA. Notably, it was confirmed that the pyruvate dehydrogenase kinase 4 (Pdk4) gene upregulated the gene expression and the hypermethylation level simultaneously, which may be the key factor for the cardiac metabolic imbalance and insulin resistance caused by natriuretic peptide signal resistance. Taken together, cardiac metabolism might be regulated by natriuretic peptide signaling, with decreased m6A methylation and a decrease of Pdk4.
Collapse
Affiliation(s)
- Xi Shen
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Pan Chang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xiaomeng Zhang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Jing Zhang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xihui Wang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Zhuo Quan
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Pengli Wang
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Tian Liu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Yan Niu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Rong Zheng
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Baoying Chen
- Imaging Diagnosis and Treatment Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China.
| | - Jun Yu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| |
Collapse
|
9
|
Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci 2022; 23:ijms232214415. [PMID: 36430893 PMCID: PMC9697447 DOI: 10.3390/ijms232214415] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP) are true hormones produced and released by cardiomyocytes, exerting several systemic effects. Together with C-type NP (CNP), mainly expressed by endothelial cells, they also exert several paracrine and autocrine activities on the heart itself, contributing to cardiovascular (CV) health. In addition to their natriuretic, vasorelaxant, metabolic and antiproliferative systemic properties, NPs prevent cardiac hypertrophy, fibrosis, arrhythmias and cardiomyopathies, counteracting the development and progression of heart failure (HF). Moreover, recent studies revealed that a protein structurally similar to NPs mainly produced by skeletal muscles and osteoblasts called musclin/osteocrin is able to interact with the NPs clearance receptor, attenuating cardiac dysfunction and myocardial fibrosis and promoting heart protection during pathological overload. This narrative review is focused on the direct activities of this molecule family on the heart, reporting both experimental and human studies that are clinically relevant for physicians.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: (R.S.); Tel.: +39-071-5964696
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| | - Paola Schiavi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| |
Collapse
|
10
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Cholecystokinin Octapeptide Promotes ANP Secretion through Activation of NOX4-PGC-1 α-PPAR α/PPAR γ Signaling in Isolated Beating Rat Atria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5905374. [PMID: 35770043 PMCID: PMC9236793 DOI: 10.1155/2022/5905374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Atrial natriuretic peptide (ANP), a canonical cardiac hormone, is mainly secreted from atrial myocytes and is involved in the regulation of body fluid, blood pressure homeostasis, and antioxidants. Cholecystokinin (CCK) is also found in cardiomyocytes as a novel cardiac hormone and induces multiple cardiovascular regulations. However, the direct role of CCK on the atrial mechanical dynamics and ANP secretion is unclear. The current study was to investigate the effect of CCK octapeptide (CCK-8) on the regulation of atrial dynamics and ANP secretion. Experiments were performed in isolated perfused beating rat atria. ANP was measured using radioimmunoassay. The levels of hydrogen peroxide (H2O2) and arachidonic acid (AA) were determined using ELISA Kits. The levels of relative proteins and mRNA were detected by Western blot and RT-qPCR. The results showed that sulfated CCK-8 (CCK-8s) rather than desulfated CCK-8 increased the levels of phosphorylated cytosolic phospholipase A2 and AA release through activation of CCK receptors. This led to the upregulation of NADPH oxidase 4 (NOX4) expression levels and H2O2 production and played a negative inotropic effect on atrial mechanical dynamics via activation of ATP-sensitive potassium channels and large-conductance calcium-activated potassium channels. In addition, CCK-8s-induced NOX4 subsequently upregulated peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) expression levels through activation of p38 mitogen-activated protein kinase as well as the serine/threonine kinase signaling, ultimately promoting the secretion of ANP via activation of PPARα and PPARγ. In the presence of the ANP receptor inhibitor, the CCK-8-induced increase of AA release, H2O2 production, and the upregulation of NOX4 and CAT expressions was augmented but the SOD expression induced by CCK-8s was repealed. These findings indicate that CCK-8s promotes the secretion of ANP through activation of NOX4-PGC-1α-PPARα/PPARγ signaling, in which ANP is involved in resistance for NOX4 expression and ROS production and regulation of SOD expression.
Collapse
|
12
|
Semenikhina M, Stefanenko M, Spires DR, Ilatovskaya DV, Palygin O. Nitric-Oxide-Mediated Signaling in Podocyte Pathophysiology. Biomolecules 2022; 12:biom12060745. [PMID: 35740870 PMCID: PMC9221338 DOI: 10.3390/biom12060745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a potent signaling molecule involved in many physiological and pathophysiological processes in the kidney. NO plays a complex role in glomerular ultrafiltration, vasodilation, and inflammation. Changes in NO bioavailability in pathophysiological conditions such as hypertension or diabetes may lead to podocyte damage, proteinuria, and rapid development of chronic kidney disease (CKD). Despite the extensive data highlighting essential functions of NO in health and pathology, related signaling in glomerular cells, particularly podocytes, is understudied. Several reports indicate that NO bioavailability in glomerular cells is decreased during the development of renal pathology, while restoring NO level can be beneficial for glomerular function. At the same time, the compromised activity of nitric oxide synthase (NOS) may provoke the formation of peroxynitrite and has been linked to autoimmune diseases such as systemic lupus erythematosus. It is known that the changes in the distribution of NO sources due to shifts in NOS subunits expression or modifications of NADPH oxidases activity may be linked to or promote the development of pathology. However, there is a lack of information about the detailed mechanisms describing the production and release of NO in the glomerular cells. The interaction of NO and other reactive oxygen species in podocytes and how NO-calcium crosstalk regulates glomerular cells’ function is still largely unknown. Here, we discuss recent reports describing signaling, synthesis, and known pathophysiological mechanisms mediated by the changes in NO homeostasis in the podocyte. The understanding and further investigation of these essential mechanisms in glomerular cells will facilitate the design of novel strategies to prevent or manage health conditions that cause glomerular and kidney damage.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
| | - Denisha R. Spires
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.R.S.); (D.V.I.)
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.R.S.); (D.V.I.)
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Correspondence:
| |
Collapse
|