1
|
Doudar NA, Khattab R, Qurany EA, Reyad HR, Mostafa N. Interleukin 1 receptor associated kinase 1 gene polymorphism association with risk of rheumatological diseases in Egyptian population. Mol Biol Rep 2025; 52:135. [PMID: 39826020 DOI: 10.1007/s11033-025-10223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population. PATIENTS AND METHODS The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA). Two healthy matched age and sex groups were included as controls. Genotypes of IRAK1 (rs1059703) SNP in patients and controls were determined using the TaqMan allelic discrimination method. RESULTS The frequency of AA homozygous genotype and allele A of IRAK1 (rs1059703) SNP is higher in adult SLE patients compared to adult healthy controls (p-value < 0.005). No similar association was detected regarding RA, JSLE, or JIA. However, JSLE patients carrying the A allele have a higher SLE International Collaborating Clinics (SLICC) damage index (SDI) SDI score and a higher stage of renal biopsy than those carrying the G allele (p-value < 0.005). CONCLUSIONS Carriers of the A allele and its homozygous genotype of rs1059703 SNP are more prone to develop SLE in adult life and to have a more severe form of the disease in children in Egypt. No significant association was detected between this SNP and RA or JIA.
Collapse
Affiliation(s)
- Noha A Doudar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Rasha Khattab
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman Abdou Qurany
- Pediatric Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hoda Ramadan Reyad
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Noha Mostafa
- Pediatric Rheumatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Wallace BI, Cooney L, Fox DA. New molecular targets in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 2024; 36:235-240. [PMID: 38165286 DOI: 10.1097/bor.0000000000001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW This review will discuss selected emerging molecular targets and associated potential therapeutic agents for rheumatoid arthritis (RA)-directed treatment. RECENT FINDINGS Agents in active development for RA treatment include those targeted to CD40 and CD40 ligand, programmed death protein 1 (PD-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Several other molecules with a strong theoretical role in RA pathogenesis and/or demonstrated efficacy in other autoimmune diseases are also being evaluated as potential drug targets in preclinical or translational studies in RA. These targets include interleukin 1 receptor associated kinases 1 and 4 (IRAK1, IRAK4), tyrosine kinase 2 (Tyk2), bradykinin receptor 1 (B1R), OX40 and OX40 ligand. SUMMARY Identification of molecular targets for RA treatment remains an active area of investigation, with multiple therapeutic agents in clinical and preclinical development.
Collapse
Affiliation(s)
- Beth I Wallace
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
- Center for Clinical Management Research, VA Ann Arbor Healthcare System
- Rheumatology Section, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Laura Cooney
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
| |
Collapse
|
3
|
Mardones C, Navarrete-Munoz C, Armijo ME, Salgado K, Rivas-Valdes F, Gonzalez-Pecchi V, Farkas C, Villagra A, Hepp MI. Role of HDAC6-STAT3 in immunomodulatory pathways in Colorectal cancer cells. Mol Immunol 2023; 164:98-111. [PMID: 37992541 DOI: 10.1016/j.molimm.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant neoplasms and the second leading cause of death from tumors worldwide. Therefore, there is a great need to study new therapeutical strategies, such as effective immunotherapies against these malignancies. Unfortunately, many CRC patients do not respond to current standard immunotherapies, making it necessary to search for adjuvant treatments. Histone deacetylase 6 (HDAC6) is involved in several processes, including immune response and tumor progression. Specifically, it has been observed that HDAC6 is required to activate the Signal Transducer and Activator of Transcription 3 (STAT3), a transcription factor involved in immunogenicity, by activating different genes in these pathways, such as PD-L1. Over-expression of immunosuppressive pathways in cancer cells deregulates T-cell activation. Therefore, we focused on the pharmacological inhibition of HDAC6 in CRC cells because of its potential as an adjuvant to avoid immunotolerance in immunotherapy. We investigated whether HDAC6 inhibitors (HDAC6is), such as Nexturastat A (NextA), affected STAT3 activation in CRC cells. First, we found that NextA is less cytotoxic than the non-selective HDACis panobinostat. Then, NextA modified STAT3 and decreased the mRNA and protein expression levels of PD-L1. Importantly, transcriptomic analysis showed that NextA treatment affected the expression of critical genes involved in immunomodulatory pathways in CRC malignancies. These results suggest that treatments with NextA reduce the functionality of STAT3 in CRC cells, impacting the expression of immunomodulatory genes involved in the inflammatory and immune responses. Therefore, targeting HDAC6 may represent an interesting adjuvant strategy in combination with immunotherapy.
Collapse
Affiliation(s)
- C Mardones
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - C Navarrete-Munoz
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - M E Armijo
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - K Salgado
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - F Rivas-Valdes
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - V Gonzalez-Pecchi
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - C Farkas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - A Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States
| | - M I Hepp
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile.
| |
Collapse
|