1
|
Pagani F, Orzan F, Lago S, De Bacco F, Prelli M, Cominelli M, Somenza E, Gryzik M, Balzarini P, Ceresa D, Marubbi D, Isella C, Crisafulli G, Poli M, Malatesta P, Galli R, Ronca R, Zippo A, Boccaccio C, Poliani PL. Concurrent RB1 and P53 pathway disruption predisposes to the development of a primitive neuronal component in high-grade gliomas depending on MYC-driven EBF3 transcription. Acta Neuropathol 2025; 149:8. [PMID: 39821672 DOI: 10.1007/s00401-025-02845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype. However, a clear hypothesis on the mechanisms responsible for this phenotypic skewing is still lacking. We assumed that the biphasic nature of these entities represents a unique model to investigate the relationships between genetic alterations and their phenotypic manifestations. In this study we show that in HGGs with PNC features both components are highly enriched in genetic alterations directly causing cell cycle deregulation (RB inactivation or CDK4 amplification) and p53 pathway inactivation (TP53 mutations or MDM2/4 amplification). However, the PNC component displays further upregulation of transcriptional pathways associated with proliferative activity, including overexpression of MYC target genes. Notably, the PNC phenotype relies on the expression of EBF3, an early neurogenic transcription factor, which is directly controlled by MYC transcription factors in accessible chromatin sites. Overall our findings indicate that the concomitant presence of genetic alterations, impinging on both cell cycle and p53 pathway control, strongly predisposes GBM to develop a concomitant poorly differentiated primitive phenotype depending on MYC-driven EBF3 transcription in a subset of glioma stem-like progenitor cells.
Collapse
Affiliation(s)
- Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Orzan
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060, Turin, Italy
- Department of Oncology, University of Turin Medical School, Candiolo, 10060, Turin, Italy
| | - Sara Lago
- Laboratory for Chromatin Biology and Epigenetics, CIBIO-Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Francesca De Bacco
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060, Turin, Italy
- Department of Oncology, University of Turin Medical School, Candiolo, 10060, Turin, Italy
| | - Marta Prelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060, Turin, Italy
- Department of Oncology, University of Turin Medical School, Candiolo, 10060, Turin, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elena Somenza
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Magdalena Gryzik
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Biochemistry Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Piera Balzarini
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Ceresa
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Marubbi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Claudio Isella
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060, Turin, Italy
- Department of Oncology, University of Turin Medical School, Candiolo, 10060, Turin, Italy
| | | | - Maura Poli
- Biochemistry Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Malatesta
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberto Ronca
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessio Zippo
- Laboratory for Chromatin Biology and Epigenetics, CIBIO-Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Carla Boccaccio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060, Turin, Italy
- Department of Oncology, University of Turin Medical School, Candiolo, 10060, Turin, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
- Pathology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
2
|
Naeem A, Knoer G, Avantaggiati ML, Rodriguez O, Albanese C. Provocative non-canonical roles of p53 and AKT signaling: A role for Thymosin β4 in medulloblastoma. Int Immunopharmacol 2023; 116:109785. [PMID: 36720193 DOI: 10.1016/j.intimp.2023.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
The PI3K/AKT and p53 pathways are key regulators of cancer cell survival and death, respectively. Contrary to their generally accepted roles, several lines of evidence, including ours in medulloblastoma, the most common childhood brain cancer, highlight non-canonical functions for both proteins and show a complex context-dependent dynamic behavior in determining cell fate. Interestingly, p53-mediated cell survival and AKT-mediated cell death can dominate in certain conditions, and these interchangeable physiological functions may potentially be manipulated for better clinical outcomes. This review article presents studies in which p53 and AKT behave contrary to their well-established functions. We discuss the factors and circumstances that may be involved in mediating these changes and the implications of these unique roles of p53 and AKT in devising therapeutic strategies. Lastly, based on our recent finding of Thymosin beta 4-mediated chemosensitivity via an AKT-p53 interaction in medulloblastoma cells, we also discuss the possible implications of Thymosin beta-4 in enhancing drug sensitivity in this deadly childhood disease.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Health Research Governance Department, Ministry of Public Health, Qatar.
| | - Grace Knoer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Radiology, Georgetown University Medical Center, Washington, DC 20057, USA; Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
3
|
Pagani F, Gryzik M, Somenza E, Cominelli M, Balzarini P, Schreiber A, Mattavelli D, Nicolai P, Doglietto F, Poliani PL. Targeting mTOR Pathway in PTEN Deleted Newly Isolated Chordoma Cell Line. J Pers Med 2023; 13:jpm13030425. [PMID: 36983607 PMCID: PMC10056194 DOI: 10.3390/jpm13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Chordomas are rare primary malignant tumours of notochordal origin usually arising along the axial skeleton with particular predilection of the skull base and sacrococcygeal region. Albeit usually slow-growing, chordomas can be aggressive mostly depending on their invasive behaviour and according to different histotypes and molecular alterations, including TBXT duplication and SMARCB1 homozygous deletion. Partial or complete PTEN deficiency has also been observed. PTEN is a negative regulator of the Akt/mTOR pathway and hyperactivation of Akt/mTOR in cells lacking PTEN expression contributes to cell proliferation and invasiveness. This pathway is targeted by mTOR inhibitors and the availability of in vitro models of chordoma cells will aid in further investigating this issue. However, isolation and maintenance of chordoma cell lines are challenging and PTEN-deleted chordoma cell lines are exceedingly rare. Hereby, we established and characterized a novel human PTEN-deleted chordoma cell line (CH3) from a primary skull base chordoma. Cells exhibited morphological and molecular features of the parent tumour, including PTEN loss and expression of Brachyury and EMA. Moreover, we investigated the activation of the mTOR pathway and cell response to mTOR inhibitors. CH3 cells were sensitive to Rapamycin treatment suggesting that mTOR inhibitors may represent a valuable option for patients suffering from PTEN-deleted chordomas.
Collapse
Affiliation(s)
- Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Magdalena Gryzik
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elena Somenza
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Piera Balzarini
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Schreiber
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padova—Azienda Ospedale-Università di Padova, 35128 Padova, Italy
| | - Francesco Doglietto
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University School of Medicine, 00168 Rome, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3998-(407); Fax: +39-030-3995-377
| |
Collapse
|
4
|
Chen S, Jiang J, Shen A, Miao Y, Cao Y, Zhang Y, Cong P, Gao P. Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology. Metabolites 2022; 12:918. [PMID: 36295820 PMCID: PMC9611130 DOI: 10.3390/metabo12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids (AAs) are indispensable building blocks of diverse bio-macromolecules as well as functional regulators for various metabolic processes. The fact that cancer cells live with a voracious appetite for specific AAs has been widely recognized. Glioma is one of the most lethal malignancies occurring in the central nervous system. The reprogrammed metabolism of AAs benefits glioma proliferation, signal transduction, epigenetic modification, and stress tolerance. Metabolic alteration of specific AAs also contributes to glioma immune escape and chemoresistance. For clinical consideration, fluctuations in the concentrations of AAs observed in specific body fluids provides opportunities to develop new diagnosis and prognosis markers. This review aimed at providing an extra dimension to understanding glioma pathology with respect to the rewired AA metabolism. A deep insight into the relevant fields will help to pave a new way for new therapeutic target identification and valuable biomarker development.
Collapse
Affiliation(s)
- Sirui Chen
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ao Shen
- HE University, Shenyang 110163, China
| | - Ying Miao
- E&M College, Shenyang Aerospace University, Shenyang 110136, China
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ying Zhang
- Internal Medicine Department, Dalian Public Health Clinical Center, Dalian 116033, China
| | - Peiyu Cong
- Neurosurgery Department, Affiliated Dalian Municipal Central Hospital of Dalian Medical University, Dalian 116022, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|