1
|
Roozbahani GA, Horestani MH, Schindler K, Kallenbach J, Baniahmad A. Induction of cellular senescence by androgen receptor agonist or antagonist is mediated via two novel common DYRK1A-DREAM and cyclin G2 signaling pathways in castration-resistant prostate cancer. J Adv Res 2025:S2090-1232(25)00312-1. [PMID: 40368177 DOI: 10.1016/j.jare.2025.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is a deadly disease that in addition to being resistant to androgen deprivation often exhibits also resistant to androgen receptor (AR)-antagonists. Supraphysiological androgen levels (SAL) are used in the bipolar androgen therapy in clinical phase trials to inhibit CRPC. METHODS Co-immunoprecipitation, immunofluorescence, growth and cell senescence assays, mouse xenografted CRPC, AR target gene analyses of organs, analyses of RNA-seq, ChIP-seq and patient-derived xenografts, qRT-PCR, 3D tumor spheroids, knockdown experiments. RESULTS Both AR-antagonists and -agonist at SAL induce cellular senescence despite acting oppositely on AR transcriptional activity. Here, we identified two common growth inhibitory pathways induced by SAL and AR-antagonists. Using the novel AR-antagonist compound 28 (C28), that inhibits also those AR mutants mediating therapy resistance, represses growth including CRPC tumor spheroids and mouse xenografted tumors. Mechanistically, C28 reduces phosphorylation of AR at serine 81 and HSP27 required for AR transcriptional activity and enhances AR-p130 interaction. Notably, increased p130 levels were also detected by SAL treatment leading to activation of DREAM complex signaling and induction of cellular senescence indicating that both AR-agonist and -antagonist use the same pathway for growth repression. Inhibition of DYRK1A, a key kinase to activate DREAM complex, blocks C28- and SAL-induced cellular senescence. Both C28 and SAL also induces the atypical cyclin G2 (CCNG2), which also mediates cellular senescence. Induction of CCNG2 is confirmed in CRPC tumor spheroids and xenograft tumors of treated mice. The second-generation AR-antagonist Darolutamide (Dar) also activates DREAM complex and CCNG2. CONCLUSION Taken together, these findings suggests the identification of two common pathways induced by AR-antagonists and SAL, used in bipolar androgen therapy, to mediate growth inhibition and induction of cellular senescence in CRPC.
Collapse
Affiliation(s)
| | | | - Katrin Schindler
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Labaf M, Han W, Zhang S, Liu M, Patten ND, Li M, Patalano S, Macoska JA, Balk SP, Han D, Zarringhalam K, Cai C. Heterogeneous Responses to High-Dose Testosterone in Castration-Resistant Prostate Cancer Tumors with Mixed Rb-Proficient and Rb-Deficient Cells. Mol Cancer Ther 2025; 24:772-783. [PMID: 40116305 PMCID: PMC12046331 DOI: 10.1158/1535-7163.mct-24-0716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Androgen deprivation therapy remains a cornerstone in managing prostate cancer. However, its recurrence often leads to the more aggressive castration-resistant prostate cancer (CRPC). Although second-line androgen receptor signaling inhibition treatments such as enzalutamide and abiraterone are available, their effectiveness against CRPC is only transient. High-dose testosterone (Hi-T) has recently emerged as a promising treatment for CRPC, primarily through the suppression of E2F and MYC signaling. However, the roles of Rb family proteins in influencing this therapeutic response remain debated. In this study, we utilized a CRPC patient-derived xenograft model that includes both Rb pathway-proficient and -deficient cell populations based on the positive or negative expression of RB family genes. Single-cell RNA sequencing analysis revealed that Rb-proficient cells displayed a robust response to Hi-T, whereas Rb-deficient cells exhibited significant resistance. Notably, our analysis indicated increased enrichment of the hypoxia signature in the Rb-deficient cell population. Further studies in RB1-silenced CRPC cell lines showed that treatment with a hypoxia-inducible factor-1α inhibitor can restore the sensitivity of Rb-deficient cells to high-dose dihydrotestosterone treatment. In conclusion, our research provides new molecular insights into CRPC tumor cell responses to Hi-T and proposes a new strategy to resensitize Rb-deficient CRPC cells to Hi-T treatment.
Collapse
Affiliation(s)
- Maryam Labaf
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
- Human Biology Division, Fred Hutchinson Cancer Center, Washington
| | - Songqi Zhang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Nolan D. Patten
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Jill A. Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Kourosh Zarringhalam
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
3
|
Kallenbach J, Rasa M, Heidari Horestani M, Atri Roozbahani G, Schindler K, Baniahmad A. The oncogenic lncRNA MIR503HG suppresses cellular senescence counteracting supraphysiological androgen treatment in prostate cancer. J Exp Clin Cancer Res 2024; 43:321. [PMID: 39676172 DOI: 10.1186/s13046-024-03233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND The androgen receptor (AR), a ligand-dependent transcription factor, plays a key role in regulating prostate cancer (PCa) growth. The novel bipolar androgen therapy (BAT) uses supraphysiological androgen levels (SAL) that suppresses growth of PCa cells and induces cellular senescence functioning as a tumor suppressive mechanism. The role of long non-coding RNAs (lncRNAs) in the regulation of SAL-mediated senescence remains unclear. This study focuses on the SAL-repressed lncRNA MIR503HG, examining its involvement in androgen-controlled cellular senescence in PCa. METHODS Transcriptome and ChIP-Seq analyses of PCa cells treated with SAL were conducted to identify SAL-downregulated lncRNAs. Expression levels of MIR503HG were analyzed in 691 PCa patient tumor samples, mouse xenograft tumors and treated patient-derived xenografts. Knockdown and overexpression experiments were performed to assess the role of MIR503HG in cellular senescence and proliferation using senescence-associated β-Gal assays, qRT-PCRs, and Western blotting. The activity of MIR503HG was confirmed in PCa tumor spheroids. RESULTS A large patient cohort analysis shows that MIR503HG is overexpressed in metastatic PCa and is associated with reduced patient survival, indicating its potential oncogenic role. Notably, SAL treatment suppresses MIR503HG expression across four different PCa cell lines and patient-derived xenografts but interestingly not in the senescence-resistant LNCaP Abl EnzaR cells. Functional assays reveal that MIR503HG promotes PCa cell proliferation and inhibits SAL-mediated cellular senescence, partly through miR-424-5p. Mechanistic analyses and rescue experiments indicate that MIR503HG regulates the AKT-p70S6K and the p15INK4b-pRb pathway. Reduced expression of MIR503HG by SAL or knockdown resulted in decreased BRCA2 levels suggesting a role in DNA repair mechanisms and potential implications for PARP inhibitor sensitivity by SAL used in BAT clinical trial. CONCLUSIONS The lncRNA MIR503HG acts as an oncogenic regulator in PCa by repressing cellular senescence. SAL-induced suppression of MIR503HG enhances the tumor-suppressive effects of AR signaling, suggesting that MIR503HG could serve as a biomarker for BAT responsiveness and as a target for combination therapies with PARP inhibitors.
Collapse
Affiliation(s)
- Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, Jena, 07740, Germany
| | - Mahdi Rasa
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Immunology, University Hospital, Kiel, Schleswig-Holstein, Germany
| | | | - Golnaz Atri Roozbahani
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, Jena, 07740, Germany
| | - Katrin Schindler
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, Jena, 07740, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, Jena, 07740, Germany.
| |
Collapse
|
4
|
Chen X, Augello MA, Liu D, Lin K, Hakansson A, Sjöström M, Khani F, Deonarine LD, Liu Y, Travascio-Green J, Wu J, Chan UI, Owiredu J, Loda M, Feng FY, Robinson BD, Davicioni E, Sboner A, Barbieri CE. Canonical androgen response element motifs are tumor suppressive regulatory elements in the prostate. Nat Commun 2024; 15:10675. [PMID: 39672812 PMCID: PMC11645413 DOI: 10.1038/s41467-024-53734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/18/2024] [Indexed: 12/15/2024] Open
Abstract
The androgen receptor (AR) is central in prostate tissue identity and differentiation, and controls normal growth-suppressive, prostate-specific gene expression. It also drives prostate tumorigenesis when hijacked for oncogenic transcription. The execution of growth-suppressive AR transcriptional programs in prostate cancer (PCa) and the potential for reactivation remain unclear. Here, we use a genome-wide approach to modulate canonical androgen response element (ARE) motifs-the classic DNA binding elements for AR-to delineate distinct AR transcriptional programs. We find that activating these AREs promotes differentiation and growth-suppressive transcription, potentially leading to AR+ PCa cell death, while ARE repression is tolerated by PCa cells but deleterious to normal prostate cells. Gene signatures driven by ARE activity correlate with improved prognosis and luminal phenotypes in PCa patients. Canonical AREs maintain a normal, lineage-specific transcriptional program that can be reengaged in PCa cells, offering therapeutic potential and clinical relevance.
Collapse
Affiliation(s)
- Xuanrong Chen
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Augello
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deli Liu
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Lin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Martin Sjöström
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lesa D Deonarine
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yang Liu
- Veracyte, Inc., South San Francisco, CA, USA
| | | | - Jiansheng Wu
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Un In Chan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jude Owiredu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Biochemistry, Cellular, Developmental and Molecular Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Massimo Loda
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
- Departments of Urology and Medicine, University of California, San Francisco, CA, USA
| | - Brian D Robinson
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Andrea Sboner
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Barbieri
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Miyahira AK, Kamran SC, Jamaspishvili T, Marshall CH, Maxwell KN, Parolia A, Zorko NA, Pienta KJ, Soule HR. Disrupting prostate cancer research: Challenge accepted; report from the 2023 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2024; 84:993-1015. [PMID: 38682886 DOI: 10.1002/pros.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Catherine H Marshall
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Abhijit Parolia
- Department of Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zorko
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
6
|
Augello MA, Chen X, Liu D, Lin K, Hakansson A, Sjöström M, Khani F, Deonarine LD, Liu Y, Travascio-Green J, Wu J, Loda M, Feng FY, Robinson BD, Davicioni E, Sboner A, Barbieri CE. Canonical AREs are tumor suppressive regulatory elements in the prostate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581466. [PMID: 38464162 PMCID: PMC10925218 DOI: 10.1101/2024.02.23.581466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The androgen receptor (AR) is the central determinant of prostate tissue identity and differentiation, controlling normal, growth-suppressive prostate-specific gene expression 1 . It is also a key driver of prostate tumorigenesis, becoming "hijacked" to drive oncogenic transcription 2-5 . However, the regulatory elements determining the execution of the growth suppressive AR transcriptional program, and whether this can be reactivated in prostate cancer (PCa) cells remains unclear. Canonical androgen response element (ARE) motifs are the classic DNA binding element for AR 6 . Here, we used a genome-wide strategy to modulate regulatory elements containing AREs to define distinct AR transcriptional programs. We find that activation of these AREs is specifically associated with differentiation and growth suppressive transcription, and this can be reactivated to cause death in AR + PCa cells. In contrast, repression of AREs is well tolerated by PCa cells, but deleterious to normal prostate cells. Finally, gene expression signatures driven by ARE activity are associated with improved prognosis and luminal phenotypes in human PCa patients. This study demonstrates that canonical AREs are responsible for a normal, growth-suppressive, lineage-specific transcriptional program, that this can be reengaged in PCa cells for potential therapeutic benefit, and genes controlled by this mechanism are clinically relevant in human PCa patients.
Collapse
|
7
|
Nyquist MD, Coleman IM, Lucas JM, Li D, Hanratty B, Meade H, Mostaghel EA, Plymate SR, Corey E, Haffner MC, Nelson PS. Supraphysiological Androgens Promote the Tumor Suppressive Activity of the Androgen Receptor through cMYC Repression and Recruitment of the DREAM Complex. Cancer Res 2023; 83:2938-2951. [PMID: 37352376 PMCID: PMC10472100 DOI: 10.1158/0008-5472.can-22-2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/24/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The androgen receptor (AR) pathway regulates key cell survival programs in prostate epithelium. The AR represents a near-universal driver and therapeutic vulnerability in metastatic prostate cancer, and targeting AR has a remarkable therapeutic index. Though most approaches directed toward AR focus on inhibiting AR signaling, laboratory and now clinical data have shown that high dose, supraphysiological androgen treatment (SPA) results in growth repression and improved outcomes in subsets of patients with prostate cancer. A better understanding of the mechanisms contributing to SPA response and resistance could help guide patient selection and combination therapies to improve efficacy. To characterize SPA signaling, we integrated metrics of gene expression changes induced by SPA together with cistrome data and protein-interactomes. These analyses indicated that the dimerization partner, RB-like, E2F, and multivulval class B (DREAM) complex mediates growth repression and downregulation of E2F targets in response to SPA. Notably, prostate cancers with complete genomic loss of RB1 responded to SPA treatment, whereas loss of DREAM complex components such as RBL1/2 promoted resistance. Overexpression of MYC resulted in complete resistance to SPA and attenuated the SPA/AR-mediated repression of E2F target genes. These findings support a model of SPA-mediated growth repression that relies on the negative regulation of MYC by AR leading to repression of E2F1 signaling via the DREAM complex. The integrity of MYC signaling and DREAM complex assembly may consequently serve as determinants of SPA responses and as pathways mediating SPA resistance. SIGNIFICANCE Determining the molecular pathways by which supraphysiological androgens promote growth arrest and treatment responses in prostate cancer provides opportunities for biomarker-selected clinical trials and the development of strategies to augment responses.
Collapse
Affiliation(s)
- Michael D. Nyquist
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ilsa M. Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jared M. Lucas
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Dapei Li
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Brian Hanratty
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hannah Meade
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Elahe A. Mostaghel
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Stephen R. Plymate
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Lawrence MG, Taylor RA, Cuffe GB, Ang LS, Clark AK, Goode DL, Porter LH, Le Magnen C, Navone NM, Schalken JA, Wang Y, van Weerden WM, Corey E, Isaacs JT, Nelson PS, Risbridger GP. The future of patient-derived xenografts in prostate cancer research. Nat Rev Urol 2023; 20:371-384. [PMID: 36650259 PMCID: PMC10789487 DOI: 10.1038/s41585-022-00706-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Patient-derived xenografts (PDXs) are generated by engrafting human tumours into mice. Serially transplantable PDXs are used to study tumour biology and test therapeutics, linking the laboratory to the clinic. Although few prostate cancer PDXs are available in large repositories, over 330 prostate cancer PDXs have been established, spanning broad clinical stages, genotypes and phenotypes. Nevertheless, more PDXs are needed to reflect patient diversity, and to study new treatments and emerging mechanisms of resistance. We can maximize the use of PDXs by exchanging models and datasets, and by depositing PDXs into biorepositories, but we must address the impediments to accessing PDXs, such as institutional, ethical and legal agreements. Through collaboration, researchers will gain greater access to PDXs representing diverse features of prostate cancer.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia.
| | - Renea A Taylor
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Georgia B Cuffe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Lisa S Ang
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia.
| |
Collapse
|
9
|
Congregado Ruiz B, Rivero Belenchón I, Lendínez Cano G, Medina López RA. Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy. Biomedicines 2023; 11:biomedicines11041105. [PMID: 37189723 DOI: 10.3390/biomedicines11041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of "hinge" treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis.
Collapse
Affiliation(s)
- Belén Congregado Ruiz
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inés Rivero Belenchón
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Lendínez Cano
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
10
|
Alegre-Martí A, Jiménez-Panizo A, Martínez-Tébar A, Poulard C, Peralta-Moreno MN, Abella M, Antón R, Chiñas M, Eckhard U, Piulats JM, Rojas AM, Fernández-Recio J, Rubio-Martínez J, Le Romancer M, Aytes Á, Fuentes-Prior P, Estébanez-Perpiñá E. A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance. SCIENCE ADVANCES 2023; 9:eade2175. [PMID: 36921044 PMCID: PMC10017050 DOI: 10.1126/sciadv.ade2175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine.
Collapse
Affiliation(s)
- Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Alba Jiménez-Panizo
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Adrián Martínez-Tébar
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Coralie Poulard
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1502, University of Lyon, 69000 Lyon, France
| | - M. Núria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, Faculty of Chemistry and Institut de Recerca en Química Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Montserrat Abella
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Rosa Antón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Marcos Chiñas
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Cuernavaca, 61740 Morelos, Mexico
| | - Ulrich Eckhard
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Josep M. Piulats
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Ana M. Rojas
- Computational Biology and Bioinformatics, Andalusian Center for Developmental Biology (CABD-CSIC), 41013 Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), CSIC-UR-Gobierno de La Rioja, 26007 Logroño, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, Faculty of Chemistry and Institut de Recerca en Química Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Muriel Le Romancer
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1502, University of Lyon, 69000 Lyon, France
| | - Álvaro Aytes
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell) and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
11
|
Miyahira AK, Hawley JE, Adelaiye-Ogala R, Calais J, Nappi L, Parikh R, Seibert TM, Wasmuth EV, Wei XX, Pienta KJ, Soule HR. Exploring new frontiers in prostate cancer research: Report from the 2022 Coffey-Holden prostate cancer academy meeting. Prostate 2023; 83:207-226. [PMID: 36443902 DOI: 10.1002/pros.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION The 2022 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Exploring New Frontiers in Prostate Cancer Research," was held from June 23 to 26, 2022, at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA. METHODS The CHPCA Meeting is an annual discussion-oriented scientific conference organized by the Prostate Cancer Foundation, that focuses on emerging and next-step topics deemed critical for making the next major advances in prostate cancer research and clinical care. The 2022 CHPCA Meeting included 35 talks over 10 sessions and was attended by 73 academic investigators. RESULTS Major topic areas discussed at the meeting included: prostate cancer diversity and disparities, the impact of social determinants on research and patient outcomes, leveraging real-world and retrospective data, development of artificial intelligence biomarkers, androgen receptor (AR) signaling biology and new strategies for targeting AR, features of homologous recombination deficient prostate cancer, and future directions in immunotherapy and nuclear theranostics. DISCUSSION This article summarizes the scientific presentations from the 2022 CHPCA Meeting, with the goal that dissemination of this knowledge will contribute to furthering global prostate cancer research efforts.
Collapse
Affiliation(s)
| | - Jessica E Hawley
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Remi Adelaiye-Ogala
- Department of Medicine, Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, California, USA
| | - Lucia Nappi
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, British Columbia, Canada
| | - Ravi Parikh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
12
|
Peinetti N, Bilusic M, Burnstein KL. Is androgen receptor activity in metastatic prostate cancer a good biomarker for bipolar androgen therapy? J Clin Invest 2022; 132:e165357. [PMID: 36453547 PMCID: PMC9711867 DOI: 10.1172/jci165357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Androgen deprivation therapy (ADT) is the longstanding treatment for advanced prostate cancer (PC) because androgen receptor (AR) is the key therapeutic vulnerability for this disease. Bipolar androgen therapy (BAT) - the rapid cycling of supraphysiologic androgen (SPA) and low serum testosterone levels - is an alternative concept, but not all patients respond and acquired resistance can occur. In this issue of the JCI, Sena et al. developed a gene signature indicative of high AR activity to predict patient response to BAT, including a decline in both serum prostate-specific antigen (PSA) and tumor volume. Preclinical models showed that AR-mediated suppression of MYC, known to drive PC, was associated with decreased cell growth following SPA treatment. Because BAT eventually leads to resistance, the authors tested cycling between SPA and AR antagonism in a patient-derived xenograft and observed a delay in tumor growth. These findings represent a major step toward the informed use of BAT for advanced PC.
Collapse
Affiliation(s)
- Nahuel Peinetti
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Marijo Bilusic
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
- Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kerry L. Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami, Florida, USA
| |
Collapse
|
13
|
Eickhoff N, Bergman AM, Zwart W. Homing in on a Moving Target: Androgen Receptor Cistromic Plasticity in Prostate Cancer. Endocrinology 2022; 163:6705578. [PMID: 36125208 DOI: 10.1210/endocr/bqac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is the critical driver in prostate cancer and exerts its function mainly through transcriptional control. Recent advances in clinical studies and cell line models have illustrated that AR chromatin binding features are not static; rather they are highly variable yet reproducibly altered between clinical stages. Extensive genomic analyses of AR chromatin binding features in different disease stages have revealed a high degree of plasticity of AR chromatin interactions in clinical samples. Mechanistically, AR chromatin binding patterns are associated with specific somatic mutations on AR and other permutations, including mutations of AR-interacting proteins. Here we summarize the most recent studies on how the AR cistrome is dynamically altered in prostate cancer models and patient samples, and what implications this has for the identification of therapeutic targets to avoid the emergence of treatment resistance.
Collapse
Affiliation(s)
- Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
14
|
Shen M, Demers LK, Bailey SD, Labbé DP. To bind or not to bind: Cistromic reprogramming in prostate cancer. Front Oncol 2022; 12:963007. [PMID: 36212399 PMCID: PMC9539323 DOI: 10.3389/fonc.2022.963007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
The term “cistrome” refers to the genome-wide location of regulatory elements associated with transcription factor binding-sites. The cistrome of key regulatory factors in prostate cancer etiology are substantially reprogrammed and altered during prostatic transformation and disease progression. For instance, the cistrome of the androgen receptor (AR), a ligand-inducible transcription factor central in normal prostate epithelium biology, is directly impacted and substantially reprogrammed during malignant transformation. Accumulating evidence demonstrates that additional transcription factors that are frequently mutated, or aberrantly expressed in prostate cancer, such as the pioneer transcription factors Forkhead Box A1 (FOXA1), the homeobox protein HOXB13, and the GATA binding protein 2 (GATA2), and the ETS-related gene (ERG), and the MYC proto-oncogene, contribute to the reprogramming of the AR cistrome. In addition, recent findings have highlighted key roles for the SWI/SNF complex and the chromatin-modifying helicase CHD1 in remodeling the epigenome and altering the AR cistrome during disease progression. In this review, we will cover the role of cistromic reprogramming in prostate cancer initiation and progression. Specifically, we will discuss the impact of key prostate cancer regulators, as well as the role of epigenetic and chromatin regulators in relation to the AR cistrome and the transformation of normal prostate epithelium. Given the importance of chromatin-transcription factor dynamics in normal cellular differentiation and cancer, an in-depth assessment of the factors involved in producing these altered cistromes is of great relevance and provides insight into new therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Michelle Shen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Léa-Kristine Demers
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Swneke D. Bailey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- *Correspondence: David P. Labbé,
| |
Collapse
|