1
|
Han Y, Xiao M, Zhao S, Wang H, Li R, Xu B. gp78-regulated KAP1 phosphorylation induces radioresistance in breast cancer by facilitating PPP1CC/PPP2CA ubiquitination. iScience 2024; 27:110847. [PMID: 39297166 PMCID: PMC11409047 DOI: 10.1016/j.isci.2024.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/15/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Adjuvant radiation therapy is a common treatment for breast cancer, yet its effectiveness is often limited by radioresistance in patients. Identifying novel targets to combat this radioresistance is imperative. Recent investigations show that gp78 is upregulated in drug-resistant breast cancer cells. Our study reveals that gp78 markedly increased the phosphorylation of KAP1 and promoted DNA damage repair caused by ionizing radiation. Mechanistically, gp78 degrades phosphatases (PPP1CC/PPP2CA) in a ubiquitination-dependent manner. PPP1CC and PPP2CA are crucial regulators of KAP1 phosphorylation in response to DNA damage. Therefore, gp78 leads to a notable elevation in the phosphorylation of KAP1 by degrading phosphatases, thereby promoting the DNA damage repair process and increasing the radioresistance of tumor cells. The identification of gp78 as a pivotal regulator in radioresistance suggests a promising avenue for intervention. Combining blockade strategies targeting gp78 holds a signification potential for reversing radioresistance and improving the efficacy of breast cancer radiotherapy.
Collapse
Affiliation(s)
- Yamei Han
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Shaorong Zhao
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Han Wang
- Center for Intelligent Oncology, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing 400030, China
| | - Rui Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Center for Intelligent Oncology, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing 400030, China
| |
Collapse
|
2
|
Zhang Y, Wang X, Chen G, Lu Y, Chen Q. Autocrine motility factor receptor promotes the malignancy of glioblastoma by regulating cell migration and invasion. Neurol Res 2024; 46:89-97. [PMID: 37703903 DOI: 10.1080/01616412.2023.2257463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE One of the important causes of death in cancer patients is malignant metastasis, invasion, and metastasis of tumor cells. Metastasis is also the most basic physiological characteristics and pathogenesis of various tumors. Previously published studies have suggested that autocrine motor factor receptor (AMFR) is the key regulator of tumor cell migration and invasion. Meanwhile, AMFR is highly expressed in esophageal tumors, gastrointestinal tumors, and bladder cancer, and it is also involved in its pathogenesis. However, the role of AMFR in glioblastoma has not been reported. METHODS In order to study the role of AMFR in the cell migration and invasion of glioblastoma, AMFR was silenced using siRNA and overexpressed using cDNA. Immunoblotting analysis and real-time quantitative polymerase chain reaction (PCR) were employed to assess the expression of AMFR. We conducted wound healing assay, cell migration assay, and tumorsphere formation assay to detect the invasion and metastatic ability of glioblastoma. RESULTS This study found that the level of AMFR expression was significantly correlated with the malignant degree of glioma tissue in clinic samples. AMFR silencing decreased cell migration and invasion of LN229. Overexpression of AMFR significantly increased cell migration and invasion of U251. CONCLUSION This study suggests that AMFR could be used as a therapeutic strategy for the clinical treatment of glioblastoma.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuping Wang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yajing Lu
- Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Tang W, Zhang F, Byun JS, Dorsey TH, Yfantis HG, Ajao A, Liu H, Pichardo MS, Pichardo CM, Harris AR, Yang XR, Figueroa JD, Sayed S, Makokha FW, Ambs S. Population-specific Mutation Patterns in Breast Tumors from African American, European American, and Kenyan Patients. CANCER RESEARCH COMMUNICATIONS 2023; 3:2244-2255. [PMID: 37902422 PMCID: PMC10629394 DOI: 10.1158/2767-9764.crc-23-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Women of African descent have the highest breast cancer mortality in the United States and are more likely than women from other population groups to develop an aggressive disease. It remains uncertain to what extent breast cancer in Africa is reminiscent of breast cancer in African American or European American patients. Here, we performed whole-exome sequencing of genomic DNA from 191 breast tumor and non-cancerous adjacent tissue pairs obtained from 97 African American, 69 European American, 2 Asian American, and 23 Kenyan patients. Our analysis of the sequencing data revealed an elevated tumor mutational burden in both Kenyan and African American patients, when compared with European American patients. TP53 mutations were most prevalent, particularly in African American patients, followed by PIK3CA mutations, which showed similar frequencies in European American, African American, and the Kenyan patients. Mutations targeting TBX3 were confined to European Americans and those targeting the FBXW7 tumor suppressor to African American patients whereas mutations in the ARID1A gene that are known to confer resistance to endocrine therapy were distinctively enriched among Kenyan patients. A Kyoto Encyclopedia of Genes and Genomes pathway analysis could link FBXW7 mutations to an increased mitochondrial oxidative phosphorylation capacity in tumors carrying these mutations. Finally, Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures in tumors correlated with the occurrence of driver mutations, immune cell profiles, and neighborhood deprivation with associations ranging from being mostly modest to occasionally robust. To conclude, we found mutational profiles that were different between these patient groups. The differences concentrated among genes with low mutation frequencies in breast cancer. SIGNIFICANCE The study describes differences in tumor mutational profiles between African American, European American, and Kenyan breast cancer patients. It also investigates how these profiles may relate to the tumor immune environment and the neighborhood environment in which the patients had residence. Finally, it describes an overrepresentation of ARID1A gene mutations in breast tumors of the Kenyan patients.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Flora Zhang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Colgate University, Hamilton, New York
| | - Jung S. Byun
- Division of Intramural Research, National Institute of Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Harris G. Yfantis
- Department of Pathology, University of Maryland Medical Center and Veterans Affairs, Maryland Care System, Baltimore, Maryland
| | - Anuoluwapo Ajao
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Margaret S. Pichardo
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Department of Surgery, Hospital of the University of Pennsylvania, Penn Medicine, Philadelphia, Pennsylvania
| | - Catherine M. Pichardo
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Division of Cancer Control and Population Sciences, NCI, NIH, Rockville, Maryland
| | - Alexandra R. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Rockville, Maryland
| | - Xiaohong R. Yang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Rockville, Maryland
| | - Jonine D. Figueroa
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Rockville, Maryland
| | | | | | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
4
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023; 24:312-333. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Mehrtash AB, Hochstrasser M. Ectopic RING activity at the ER membrane differentially impacts ERAD protein quality control pathways. J Biol Chem 2023; 299:102927. [PMID: 36682496 PMCID: PMC9950527 DOI: 10.1016/j.jbc.2023.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway that ensures misfolded proteins are removed from the ER and destroyed. In ERAD, membrane and luminal substrates are ubiquitylated by ER-resident RING-type E3 ubiquitin ligases, retrotranslocated into the cytosol, and degraded by the proteasome. Overexpression of ERAD factors is frequently used in yeast and mammalian cells to study this process. Here, we analyze the impact of ERAD E3 overexpression on substrate turnover in yeast, where there are three ERAD E3 complexes (Doa10, Hrd1, and Asi1-3). Elevated Doa10 or Hrd1 (but not Asi1) RING activity at the ER membrane resulting from protein overexpression inhibits the degradation of specific Doa10 substrates. The ERAD E2 ubiquitin-conjugating enzyme Ubc6 becomes limiting under these conditions, and UBC6 overexpression restores Ubc6-mediated ERAD. Using a subset of the dominant-negative mutants, which contain the Doa10 RING domain but lack the E2-binding region, we show that they induce degradation of membrane tail-anchored Ubc6 independently of endogenous Doa10 and the other ERAD E3 complexes. This remains true even if the cells lack the Dfm1 rhomboid pseudoprotease, which is also a proposed retrotranslocon. Hence, rogue RING activity at the ER membrane elicits a highly specific off-pathway defect in the Doa10 pathway, and the data point to an additional ERAD E3-independent retrotranslocation mechanism.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Mark Hochstrasser
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
6
|
Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS. Cell Mol Life Sci 2022; 79:565. [PMID: 36284011 PMCID: PMC9596570 DOI: 10.1007/s00018-022-04585-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 12/09/2022]
Abstract
Mitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to cancer progression. Maintaining a finely tuned, healthy mitochondrial population is essential for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria by autophagy, monitors and maintains mitochondrial health and integrity, eliminating damaged ROS-producing mitochondria. However, mechanisms underlying mitophagic control of mitochondrial homeostasis under basal conditions remain poorly understood. E3 ubiquitin ligase Gp78 is an endoplasmic reticulum membrane protein that induces mitochondrial fission and mitophagy of depolarized mitochondria. Here, we report that CRISPR/Cas9 knockout of Gp78 in HT-1080 fibrosarcoma cells increased mitochondrial volume, elevated ROS production and rendered cells resistant to carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitophagy. These effects were phenocopied by knockdown of the essential autophagy protein ATG5 in wild-type HT-1080 cells. Use of the mito-Keima mitophagy probe confirmed that Gp78 promoted both basal and damage-induced mitophagy. Application of a spot detection algorithm (SPECHT) to GFP-mRFP tandem fluorescent-tagged LC3 (tfLC3)-positive autophagosomes reported elevated autophagosomal maturation in wild-type HT-1080 cells relative to Gp78 knockout cells, predominantly in proximity to mitochondria. Mitophagy inhibition by either Gp78 knockout or ATG5 knockdown reduced mitochondrial potential and increased mitochondrial ROS. Live cell analysis of tfLC3 in HT-1080 cells showed the preferential association of autophagosomes with mitochondria of reduced potential. Xenograft tumors of HT-1080 knockout cells show increased labeling for mitochondria and the cell proliferation marker Ki67 and reduced labeling for the TUNEL cell death reporter. Basal Gp78-dependent mitophagic flux is, therefore, selectively associated with reduced potential mitochondria promoting maintenance of a healthy mitochondrial population, limiting ROS production and tumor cell proliferation.
Collapse
|
7
|
Xie M, Wang H, Peng J, Qing D, Zhang X, Guo D, Meng P, Luo Z, Wang X, Peng Q. Acacetin protects against depression-associated dry eye disease by regulating ubiquitination of NLRP3 through gp78 signal. Front Pharmacol 2022; 13:984475. [PMID: 36299901 PMCID: PMC9588975 DOI: 10.3389/fphar.2022.984475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial syndrome that commonly occurs with depression. However, therapies targeting depression-related dry eye disease are rare. In the current study, we studied the beneficial effect of a natural flavone, acacetin, in depression-associated dry eye disease by utilizing the chronic unpredictable mild stress (CUMS) depression model. Our data showed that acacetin improved the depressive behaviors in sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST); relieved the dry eye symptoms including corneal epithelial impairments, tear production decrease and goblet cell loss in CUMS mice. Acacetin also inhibited NOD-like receptor protein 3 (NLRP3) inflammasome expression levels and suppressed inflammatory responses via enhancing glycoprotein 78 (gp78)/Insulin induced gene-1 (Insig-1)-controlled NLRP3 ubiquitination in CUMS mice. Furthermore, knockdown of gp78 compromised acacetin-conferred protective efficacy in depression-related dry eye disease. In summary, our findings indicated that acacetin exerts beneficial effect in depression-associated dry eye disease, which is tightly related to gp78-mediated NLRP3 ubiquitination.
Collapse
Affiliation(s)
- Mingxia Xie
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hanqing Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dongqin Qing
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Zhang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dongwei Guo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pan Meng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihong Luo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaoye Wang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Xiaoye Wang, ; Qinghua Peng,
| | - Qinghua Peng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Xiaoye Wang, ; Qinghua Peng,
| |
Collapse
|