1
|
Zhang G, Moya A, Scherberich A, Martin I. Challenges of engineering a functional growth plate in vitro. Front Bioeng Biotechnol 2025; 13:1550713. [PMID: 40104770 PMCID: PMC11913844 DOI: 10.3389/fbioe.2025.1550713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Several cartilage and bone organoids have been developed in vitro and in vivo using adult mesenchymal stromal/stem cells (MSCs) or pluripotent stem cells (PSCs) to mimic different phases of endochondral ossification (ECO), as one of the main processes driving skeletal development and growth. While cellular and molecular features of growth plate-like structures have been observed through the generation and in vivo implantation of hypertrophic cartilage tissues, no functional analogue or model of the growth plate has yet been engineered. Herein, after a brief introduction about the growth plate architecture and function, we summarize the recent progress in dissecting the biology of the growth plate and indicate the knowledge gaps to better understand the mechanisms of its development and maintenance. We then discuss how this knowledge could be integrated with state-of-art bioengineering approaches to generate a functional in vitro growth plate model.
Collapse
Affiliation(s)
- Gangyu Zhang
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Adrien Moya
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| |
Collapse
|
2
|
Luft FC. Personal Genetic-Hypertension Odyssey From Phenotypes to Genotypes and Targets. Hypertension 2024; 81:2395-2406. [PMID: 39355912 DOI: 10.1161/hypertensionaha.124.21714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Hypertension requires increased systemic vascular resistance. Thus far, Mendelian hypertension-related genes are related to salt retention, an indirect regulatory effect. With the identification of mutated, overactive, PDE3A (phosphodiesterase 3A), we have uncovered a more direct vasoconstrictive mechanism. The autosomal-dominant syndrome features another specific phenotype, brachydactyly type E. Hypertension and the bony phenotype invariably occur together. We distinguished between these phenotypes by examining individual pedigrees. We implicated the gene encoding the parathyroid hormone-related peptide in the brachydactyly. We identified the hypertensive mechanisms as involving regulatory-region, gain-of-function, exon 4 rare pathogenic variants, in the cAMP-cGMP-catabolizing enzyme, PDE3A. We generated rodent models that recapitulate all human phenotypes. Comparisons not only allowed pathogenic insights into the human condition but also provided intervention models. Moreover, we identified rare pathogenic variants in exon 13 encoding the enzymatic pocket. These patients had identical phenotypes, also corroborated in a rodent model, which produced the same human phenotypes. These data could allow the differentiation between a target organ and blood pressure phenotype. The research allows visualization of enzymatic processes at the intracellular nanodomain level. The scope of this project has elucidated genetic mechanisms important to cartilage development, possibly cancer metastases, and findings relevant to cardiovascular regulation via systemic vascular resistance. For our team, the project was an educational/scientific adventure over a professional lifetime.
Collapse
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany
| |
Collapse
|
3
|
Delgado-Martos MJ, Quintana-Villamandos B, Delgado-Baeza E. Ramón y Cajal and the cartilaginous growth plate. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024:S1888-4415(24)00192-9. [PMID: 39608598 DOI: 10.1016/j.recot.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Santiago Ramón y Cajal (1852-1934), a distinguished histologist and Nobel Laureate in Physiology or Medicine in 1906, is considered the father of Neuroscience. However, his legacy also extended to the study of various tissues, including hyaline cartilage, an area in which he was a pioneer. Throughout his work Elements of Normal Histology and Micrographic Technique, Cajal developed fundamental concepts that, when reviewed in light of molecular biology, resonate with current ideas about cellular communication and macromolecular interactions. In particular, his observations on hyaline cartilage, such as stellate chondrocytes, were largely overlooked in the scientific literature until today. In this paper, four hypotheses based on his discoveries are proposed: the architecture of chondrocyte columns, the role of the perichondrium in endochondral ossification, cartilage nutrition, and the role of the Golgi apparatus in the resting zone. Nearly a century later, research on hyaline cartilage continues to confirm Cajal's pioneering ideas.
Collapse
Affiliation(s)
- M J Delgado-Martos
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Madrid, España; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, España; Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España.
| | - B Quintana-Villamandos
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, España; Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España; Departamento de Anestesia, Reanimación y Cuidados Críticos, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - E Delgado-Baeza
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, España; Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
4
|
Bian F, Hansen V, Feng HC, He J, Chen Y, Feng K, Ebrahimi B, Gray RS, Chai Y, Wu CL, Liu Z. The G protein-coupled receptor ADGRG6 maintains mouse growth plate homeostasis through IHH signaling. J Bone Miner Res 2024; 39:1644-1658. [PMID: 39236220 PMCID: PMC11523133 DOI: 10.1093/jbmr/zjae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The cartilage growth plate is essential for maintaining skeletal growth; however, the mechanisms governing postnatal growth plate homeostasis are still poorly understood. Using approaches of molecular mouse genetics and spatial transcriptomics applied to formalin-fixed, paraffin-embedded tissues, we show that ADGRG6/GPR126, a cartilage-enriched adhesion G protein-coupled receptor (GPCR), is essential for maintaining slow-cycling resting zone cells, appropriate chondrocyte proliferation and differentiation, and growth plate homeostasis in mice. Constitutive ablation of Adgrg6 in osteochondral progenitor cells with Col2a1Cre leads to a shortened resting zone, formation of cell clusters within the proliferative zone, and an elongated hypertrophic growth plate, marked by limited expression of parathyroid hormone-related protein (PTHrP) but increased Indian Hedgehog (IHH) signaling throughout the growth plate. Attenuation of smoothened-dependent hedgehog signaling restored the Adgrg6 deficiency-induced expansion of hypertrophic chondrocytes, confirming that IHH signaling can promote chondrocyte hypertrophy in a PTHrP-independent manner. In contrast, postnatal ablation of Adgrg6 in mature chondrocytes with AcanCreERT2, induced after the formation of the resting zone, does not affect PTHrP expression but causes an overall reduction of growth plate thickness marked by increased cell death specifically in the resting zone cells and a general reduction of chondrocyte proliferation and differentiation. Spatial transcriptomics reveals that ADGRG6 is essential for maintaining chondrocyte homeostasis by regulating osteogenic and catabolic genes in all the zones of the postnatal growth plates, potentially through positive regulation of SOX9 expression. Our findings elucidate the essential role of a cartilage-enriched adhesion GPCR in regulating cell proliferation and hypertrophic differentiation by regulation of PTHrP/IHH signaling, maintenance of slow-cycle resting zone chondrocytes, and safeguarding chondrocyte homeostasis in postnatal mouse growth plates.
Collapse
Affiliation(s)
- Fangzhou Bian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Victoria Hansen
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Hong Colleen Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Jingyu He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Yanshi Chen
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Biology, University of Rochester, Rochester, NY 14642, United States
| | - Kaining Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Brenda Ebrahimi
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Ryan S Gray
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Zhaoyang Liu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
5
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Matsushita Y, Liu J, Chu AKY, Ono W, Welch JD, Ono N. Endosteal stem cells at the bone-blood interface: A double-edged sword for rapid bone formation: Bone marrow endosteal stem cells provide a robust source of bone-making osteoblasts both in normal and abnormal bone formation. Bioessays 2024; 46:e2300173. [PMID: 38161246 PMCID: PMC11729589 DOI: 10.1002/bies.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Endosteal stem cells are a subclass of bone marrow skeletal stem cell populations that are particularly important for rapid bone formation occurring in growth and regeneration. These stem cells are strategically located near the bone surface in a specialized microenvironment of the endosteal niche. These stem cells are abundant in young stages but eventually depleted and replaced by other stem cell types residing in a non-endosteal perisinusoidal niche. Single-cell molecular profiling and in vivo cell lineage analyses play key roles in discovering endosteal stem cells. Importantly, endosteal stem cells can transform into bone tumor-making cells when deleterious mutations occur in tumor suppressor genes. The emerging hypothesis is that osteoblast-chondrocyte transitional identities confer a special subset of endosteal stromal cells with stem cell-like properties, which may make them susceptible for tumorigenic transformation. Endosteal stem cells are likely to represent an important therapeutic target of bone diseases caused by aberrant bone formation.
Collapse
Affiliation(s)
- Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jialin Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Angel Ka Yan Chu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Joshua D. Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
7
|
Trompet D, Kurenkova AD, Zhou B, Li L, Dregval O, Usanova AP, Chu TL, Are A, Nedorubov AA, Kasper M, Chagin AS. Stimulation of skeletal stem cells in the growth plate promotes linear bone growth. JCI Insight 2024; 9:e165226. [PMID: 38516888 PMCID: PMC11063944 DOI: 10.1172/jci.insight.165226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2024] [Indexed: 03/23/2024] Open
Abstract
Recently, skeletal stem cells were shown to be present in the epiphyseal growth plate (epiphyseal skeletal stem cells, epSSCs), but their function in connection with linear bone growth remains unknown. Here, we explore the possibility that modulating the number of epSSCs can correct differences in leg length. First, we examined regulation of the number and activity of epSSCs by Hedgehog (Hh) signaling. Both systemic activation of Hh pathway with Smoothened agonist (SAG) and genetic activation of Hh pathway by Patched1 (Ptch1) ablation in Pthrp-creER Ptch1fl/fl tdTomato mice promoted proliferation of epSSCs and clonal enlargement. Transient intra-articular administration of SAG also elevated the number of epSSCs. When SAG-containing beads were implanted into the femoral secondary ossification center of 1 leg of rats, this leg was significantly longer 1 month later than the contralateral leg implanted with vehicle-containing beads, an effect that was even more pronounced 2 and 6 months after implantation. We conclude that Hh signaling activates growth plate epSSCs, which effectively leads to increased longitudinal growth of bones. This opens therapeutic possibilities for the treatment of differences in leg length.
Collapse
Affiliation(s)
- Dana Trompet
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Baoyi Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lei Li
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ostap Dregval
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna P. Usanova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tsz Long Chu
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Are
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei A. Nedorubov
- Center for Preclinical Studies, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S. Chagin
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Zhang X, Deng C, Qi S. Periosteum Containing Implicit Stem Cells: A Progressive Source of Inspiration for Bone Tissue Regeneration. Int J Mol Sci 2024; 25:2162. [PMID: 38396834 PMCID: PMC10889827 DOI: 10.3390/ijms25042162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Chen Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| |
Collapse
|