1
|
Morice A, de La Seiglière A, Kany A, Khonsari RH, Bensidhoum M, Puig-Lombardi ME, Legeai Mallet L. FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia. Bone Res 2025; 13:12. [PMID: 39837840 PMCID: PMC11751307 DOI: 10.1038/s41413-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 01/30/2025] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch). Bone mineralization of the calluses was abnormally high in Crz mice and abnormally low in Hch mice. The latter model presented pseudarthrosis and impaired chondrocyte differentiation. Spatial transcriptomic analyses of the Hch callus revealed abnormally low expression of Col11, Col1a, Dmp1 genes in mature chondrocytes. We found that the expression of genes involved in autophagy and apoptosis (Smad1, Comp, Birc2) was significantly perturbed and that the Dusp3, Dusp9, and Socs3 genes controlling the mitogen-activated protein kinase pathway were overexpressed. Lastly, we found that treatment with a tyrosine kinase inhibitor (BGJ398, infigratinib) or a C-type natriuretic peptide (BMN111, vosoritide) fully rescued the defective endochondral bone repair observed in Hch mice. Taken as a whole, our findings show that FGFR3 is a critical orchestrator of bone repair and provide a rationale for the development of potential treatments for patients with FGFR3-osteochondrodysplasia.
Collapse
Affiliation(s)
- Anne Morice
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Amélie de La Seiglière
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Alexia Kany
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Roman H Khonsari
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | | | - Maria-Emilia Puig-Lombardi
- Bioinformatics Core Platform, Imagine Institute, INSERM UMR1163 and Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Université Paris Cité, Paris, France
| | - Laurence Legeai Mallet
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.
| |
Collapse
|
2
|
Nikanjam M, Wells K, Kato S, Adashek JJ, Block S, Kurzrock R. Reverse repurposing: Potential utility of cancer drugs in nonmalignant illnesses. MED 2024; 5:689-717. [PMID: 38749442 PMCID: PMC11246816 DOI: 10.1016/j.medj.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Growth and immune process dysregulation can result in both cancer and nonmalignant disease (hereditary or acquired, with and without predisposition to malignancy). Moreover, perhaps unexpectedly, many nonmalignant illnesses harbor genomic alterations indistinguishable from druggable oncogenic drivers. Therefore, targeted compounds used successfully to treat cancer may have therapeutic potential for nonmalignant conditions harboring the same target. MEK, PI3K/AKT/mTOR, fibroblast growth factor receptor (FGFR), and NRG1/ERBB pathway genes have all been implicated in both cancer and noncancerous conditions, and several cognate antagonists, as well as Bruton's tyrosine kinase inhibitors, JAK inhibitors, and CD20-directed antibodies, have established or theoretical therapeutic potential to bridge cancer and benign diseases. Intriguingly, pharmacologically tractable cancer drivers characterize a wide spectrum of disorders without malignant potential, including but not limited to Alzheimer's disease and a variety of other neurodegenerative conditions, rheumatoid arthritis, achondroplastic dwarfism, and endometriosis. Expanded repositioning of oncology agents in order to benefit benign but serious medical illnesses is warranted.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA.
| | - Kaitlyn Wells
- Department of Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Shanna Block
- Department of Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Division of Hematology-Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA; WIN Consortium, Chevilly-Larue, France.
| |
Collapse
|
3
|
Hashimoto U, Fujitani N, Uehara Y, Okamoto H, Saitou A, Ito F, Ariki S, Shiratsuchi A, Hasegawa Y, Takahashi M. N-glycan on N262 of FGFR3 regulates the intracellular localization and phosphorylation of the receptor. Biochim Biophys Acta Gen Subj 2024; 1868:130565. [PMID: 38244702 DOI: 10.1016/j.bbagen.2024.130565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
N-glycosylation and proper processing of N-glycans are required for the function of membrane proteins including cell surface receptors. Fibroblast growth factor receptor (FGFR) is involved in a wide variety of biological processes including embryonic development, osteogenesis, angiogenesis, and cell proliferation. Human FGFR3 contains six potential N-glycosylation sites, however, the roles of glycosylation have not been elucidated. The site-specific profiles of N-glycans of the FGFR3 extracellular domain expressed and secreted by CHO-K1 cells were examined, and glycan occupancies and structures of four sites were determined. The results indicated that most sites were fully occupied by glycans, and the dominant populations were the complex type. By examining single N-glycan deletion mutants of FGFR3, it was found that N262Q mutation significantly increased the population with oligomannose-type N-glycans, which was localized in the endoplasmic reticulum. Protein stability assay suggested that fraction with oligomannose-type N-glycans in the N262Q mutant is more stable than those in the wild type and other mutants. Furthermore, it was found that ligand-independent phosphorylation was significantly upregulated in N262Q mutants with complex type N-glycans. The findings suggest that N-glycans on N262 of FGFR3 affect the intracellular localization and phosphorylation status of the receptor.
Collapse
Affiliation(s)
- Ukichiro Hashimoto
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Fujitani
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuaki Uehara
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromi Okamoto
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Saitou
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumie Ito
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Chemistry, Center for Medical Education, Sapporo Medical University, Japan
| | - Akiko Shiratsuchi
- Department of Chemistry, Center for Medical Education, Sapporo Medical University, Japan
| | - Yoshihiro Hasegawa
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
4
|
Wells LM, Roberts HC, Luyten FP, Roberts SJ. Identifying Fibroblast Growth Factor Receptor 3 as a Mediator of Periosteal Osteochondral Differentiation through the Construction of microRNA-Based Interaction Networks. BIOLOGY 2023; 12:1381. [PMID: 37997980 PMCID: PMC10669632 DOI: 10.3390/biology12111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Human periosteum-derived progenitor cells (hPDCs) have the ability to differentiate towards both the chondrogenic and osteogenic lineages. This coordinated and complex osteochondrogenic differentiation process permits endochondral ossification and is essential in bone development and repair. We have previously shown that humanised cultures of hPDCs enhance their osteochondrogenic potentials in vitro and in vivo; however, the underlying mechanisms are largely unknown. This study aimed to identify novel regulators of hPDC osteochondrogenic differentiation through the construction of miRNA-mRNA regulatory networks derived from hPDCs cultured in human serum or foetal bovine serum as an alternative in silico strategy to serum characterisation. Sixteen differentially expressed miRNAs (DEMis) were identified in the humanised culture. In silico analysis of the DEMis with TargetScan allowed for the identification of 1503 potential miRNA target genes. Upon comparison with a paired RNAseq dataset, a 4.5% overlap was observed (122 genes). A protein-protein interaction network created with STRING interestingly identified FGFR3 as a key network node, which was further predicted using multiple pathway analyses. Functional analysis revealed that hPDCs with the activating mutation FGFR3N540K displayed increased expressions of chondrogenic gene markers when cultured under chondrogenic conditions in vitro and displayed enhanced endochondral bone formation in vivo. A further histological analysis uncovered known downstream mediators involved in FGFR3 signalling and endochondral ossification to be upregulated in hPDC FGFR3N540K-seeded implants. This combinational approach of miRNA-mRNA-protein network analysis with in vitro and in vivo characterisation has permitted the identification of FGFR3 as a novel mediator of hPDC biology. Furthermore, this miRNA-based workflow may also allow for the identification of drug targets, which may be of relevance in instances of delayed fracture repair.
Collapse
Affiliation(s)
- Leah M. Wells
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK;
| | - Helen C. Roberts
- Department of Natural Sciences, Middlesex University, London NW4 4BT, UK;
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Centre (SBE), KU Leuven, 3000 Leuven, Belgium;
| | - Scott J. Roberts
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK;
| |
Collapse
|