1
|
Dal Maso T, Sinisgalli C, Zilio G, Franzin E, Tessari I, Pardon E, Steyaert J, Ballet S, Greggio E, Versées W, Plotegher N. Developing nanobodies as allosteric molecular chaperones of glucocerebrosidase function. Nat Commun 2025; 16:4890. [PMID: 40425544 PMCID: PMC12117155 DOI: 10.1038/s41467-025-60134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The enzyme glucocerebrosidase (GCase) catalyses the hydrolysis of glucosylceramide to glucose and ceramide within lysosomes. Homozygous or compound heterozygous mutations in the GCase-encoding GBA1 gene cause the lysosomal storage disorder Gaucher disease, while heterozygous and homozygous mutations are the most frequent genetic risk factor for Parkinson's disease. These mutations commonly affect GCase stability, trafficking or activity. Here, we report the development and characterization of nanobodies (Nbs) targeting and acting as molecular chaperones for GCase. We identify several Nb families that bind with nanomolar affinity to GCase. Based on biochemical characterization, we group the Nbs in two classes: Nbs that improve the activity of the enzyme and Nbs that increase GCase stability in vitro. A selection of the most promising Nbs is shown to improve GCase function in cell models and positively impact the activity of the N370S mutant GCase. These results lay the foundation for the development of new therapeutic routes.
Collapse
Affiliation(s)
- Thomas Dal Maso
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Gianluca Zilio
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Franzin
- Department of Biology, University of Padova, Padova, Italy
| | | | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Wim Versées
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|