1
|
Gibson WT, Lengyell TC, Korecki AJ, Janssen SM, Adair BA, Gamu D, Lorincz MC, Simpson EM. Minimally Humanized Ezh2 Exon-18 Mouse Cell Lines Validate Preclinical CRISPR/Cas9 Approach to Treat Weaver Syndrome. Hum Gene Ther 2025; 36:618-627. [PMID: 39964768 DOI: 10.1089/hum.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Weaver syndrome is a rare neurodevelopmental disorder that encompasses macrocephaly, tall stature, obesity, brain anomalies, intellectual disability, and increased susceptibility to cancer. This dominant monogenic disorder is caused by germline variants in enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a key epigenetic writer. Unfortunately, there are no effective treatments for Weaver syndrome. However, preclinical results support the potential for therapeutic gains, despite the prenatal onset. Thus, for the first time, we tested whether CRISPR/Cas9 gene-editing strategies may be able to "correct" a Weaver syndrome variant at the DNA level. We initiated these preclinical studies by humanizing the region surrounding the most-common recurring patient-variant location in mouse embryonic stem cells (ESCs). Humanization ensures that DNA-binding strategies will be directly translatable to human cells and patients. We then introduced into ESCs the humanized region, but now carrying the Weaver syndrome EZH2 variant c.2035C>T p.Arg684Cys, and characterized the enzymatic properties of this missense variant. Our data showed a significant and dramatic reduction in EZH2-enzymatic activity, supporting previous cell-free studies of this variant as well as in vitro and in vivo mouse work by other teams. Intriguingly, this most-common variant does not create a complete loss-of-function, but rather is a hypomorphic allele. Together with prior reports describing hypomorphic effects of missense EZH2 variants, these results demonstrate that the etiology of Weaver syndrome does not require complete loss of EZH2 enzymatic activity. Toward therapy, we tested four CRISPR gene-editing strategies. We demonstrated that Streptococcus pyogenes Cas9 (SpCas9) showed the highest variant correction (70.5%), but unfortunately also the highest alteration of the nonvariant allele (21.1-26.2%), an important consideration for gene-editing treatment of a dominant syndrome. However, Staphylococcus aureus Cas9 (SaCas9) gave a variant correction (52.5%) that was not significantly different than SpCas9, and encouragingly the lowest alteration of the nonvariant allele (2.0%). Thus, the therapeutic strategy using the small SaCas9 enzyme, a size that allows flexibility in therapeutic delivery, was the most optimal for targeting the Weaver syndrome EZH2 variant c.2035C>T p.Arg684Cys.
Collapse
Affiliation(s)
- William T Gibson
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
| | - Tess C Lengyell
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Sanne M Janssen
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Life Sciences Institute, Vancouver, Canada
| | - Bethany A Adair
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Daniel Gamu
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Matthew C Lorincz
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, The University of British Columbia, Vancouver, Canada
- Life Sciences Institute, Vancouver, Canada
| | - Elizabeth M Simpson
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Just J, Ridder LOR, Johannsen EB, Jensen JMB, Petersen MS, Christensen HV, Kjærgaard K, Redder J, Chang S, Stochholm K, Skakkebæk A, Gravholt CH. Elevated levels of neutrophils with a pro-inflammatory profile in Turner syndrome across karyotypes. NPJ Genom Med 2025; 10:9. [PMID: 39915521 PMCID: PMC11803089 DOI: 10.1038/s41525-025-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Turner syndrome (TS) presents with multiple karyotypes, including 45,X monosomy and variants such as isochromosomes and mosaicism, and is characterized by several co-morbidities, including metabolic conditions and autoimmunity. Here, we investigated the genomic landscapes across a range of karyotypes. We show that TS have a common autosomal methylome and transcriptome, despite distinct karyotypic variations. All TS individuals lacked the X chromosome p-arm, and XIST expression from the q-arm did not affect the autosomal transcriptome or methylome, highlighting the critical role of the missing p-arm with its pseudoautosomal region 1. Furthermore, we show increased levels of neutrophils and increased neutrophil activation. The increase in neutrophils was linked to TS clinical traits and to increased expression of the X-Y homologous gene TBL1X, suggesting a genetic basis, which may lead to neutrophil-driven inflammatory stress in TS. Identifying TS individuals with increased neutrophil activation could potentially mitigate the progression towards more severe metabolic issues.
Collapse
Affiliation(s)
- Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Lukas Ochsner Reynaud Ridder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark.
| | - Emma Bruun Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Magnus Bernth Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Kenneth Kjærgaard
- Department of Data and Data Utilization, Central Denmark Region, Denmark
| | - Jacob Redder
- Department of Data and Data Utilization, Central Denmark Region, Denmark
| | - Simon Chang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Kirstine Stochholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
3
|
Lian WS, Wu RW, Lin YH, Chen YS, Jahr H, Wang FS. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel) 2024; 13:470. [PMID: 38671918 PMCID: PMC11047415 DOI: 10.3390/antiox13040470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|