1
|
Parvez RK, Csipán RL, Liu J, Gevorgyan A, Rutledge EA, Guo J, Kim DK, McMahon AP. Developmental and Cell Fate Analyses Support a Postnatal Origin for the Cortical Collecting System in the Mouse Kidney. J Am Soc Nephrol 2025; 36:812-824. [PMID: 39665296 DOI: 10.1681/asn.0000000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Key Points
An adult-like corticomedullary organization underlying kidney function is established 10 days after birth in the mouse kidney.Genetic lineage tracing demonstrates the cortical collecting duct network is generated from progenitors after birth.Mature cell types of the nephron progenitor–derived connecting tubule and ureteric progenitor–derived collecting epithelium are established by P15.
Background
Structure and function in the mammalian kidney are organized along a radial axis highlighted by the corticomedullary organization and regional patterning of the collecting system. The arborized collecting epithelium arises through controlled growth, branching, and commitment of Wnt11+ ureteric progenitor cells within cortically localized branch tips until postnatal day 3.
Methods
We applied in situ hybridization and immunofluorescence to key markers of collecting duct cell types to examine their distribution in the embryonic and postnatal mouse kidneys. To address the contribution of ureteric progenitor cells at a given time to cell diversity and spatial organization in the adult mouse kidney, we performed genetic lineage tracing of Wnt11
+
cells in the embryonic and early postnatal mouse kidney.
Results
Cell fate analyses showed much of the cortical collecting duct network was established postnatally. Furthermore, epithelial reorganization, regional differentiation, and functional maturation of key cell types to an adult-like collecting epithelium was not complete until around 2 weeks after birth in both ureteric progenitor cell–derived collecting system and structurally homologous nephron progenitor cell–derived connecting tubule.
Conclusions
These studies underline the importance of the relatively understudied early postnatal period to the development of a functional mammalian kidney.
Collapse
Affiliation(s)
- Riana K Parvez
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Réka L Csipán
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Jing Liu
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ara Gevorgyan
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Elisabeth A Rutledge
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
- Amgen, Inc., Thousand Oaks, California
| | - Jinjin Guo
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Doh Kyung Kim
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Andrew P McMahon
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
- Division of Biology and Biological Engineering, California Institute for Technology, Pasadena, California
| |
Collapse
|
2
|
Rizo JA, Ahmad V, Pru JM, Winuthayanon S, Challa S, Kim TH, Jeong JW, Spencer TE, Kelleher AM. Uterine organoids reveal insights into epithelial specification and plasticity in development and disease. Proc Natl Acad Sci U S A 2025; 122:e2422694122. [PMID: 39883834 PMCID: PMC11804710 DOI: 10.1073/pnas.2422694122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025] Open
Abstract
Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation. Our findings demonstrate that uterine epithelium undergoes marked age-dependent changes, transitioning from a highly plastic state capable of forming both monolayered and multilayered structures to a more restricted fate as development progresses. Interestingly, parallels emerge between the developmental plasticity of neonatal uterine epithelium and pathological conditions such as endometrial cancer, where similar regulatory mechanisms may reactivate, driving abnormal epithelial differentiation and tumorigenesis. These results not only deepen our understanding of early uterine development but also offer a valuable model for studying the progression of reproductive diseases and cancers.
Collapse
Affiliation(s)
- Jason A. Rizo
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Vakil Ahmad
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Jacob M. Pru
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Sarayut Winuthayanon
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL60637
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL60637
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Andrew M. Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| |
Collapse
|
3
|
Wrynn T, Min S, Horeth E, Osinski J, Sinha S, Romano RA. ΔNp63 regulates Sfrp1 expression to direct salivary gland branching morphogenesis. PLoS One 2024; 19:e0301082. [PMID: 38722977 PMCID: PMC11081224 DOI: 10.1371/journal.pone.0301082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 05/13/2024] Open
Abstract
Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.
Collapse
Affiliation(s)
- Theresa Wrynn
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sangwon Min
- Department of Stem Cell and Regenerative Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Erich Horeth
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jason Osinski
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
4
|
Wu ST, Feng Y, Song R, Qi Y, Li L, Lu D, Wang Y, Wu W, Morgan A, Wang X, Xia Y, Liu R, Alexander SI, Wong J, Zhang Y, Zheng X. Foxp1 Is Required for Renal Intercalated Cell Differentiation and Acid-Base Regulation. J Am Soc Nephrol 2024; 35:533-548. [PMID: 38332484 PMCID: PMC11149051 DOI: 10.1681/asn.0000000000000319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
Key Points Foxp1 is a key transcriptional factor for the differentiation of intercalated cells in collecting ducts. Dmrt2 and Hmx2 act downstream of Foxp1 to control the differentiation of type A and type B intercalated cells, respectively. Foxp1 and Dmrt2 are essential for body acid–base balance regulation. Background Kidney collecting ducts comprise principal cells and intercalated cells, with intercalated cells playing a crucial role in kidney acid–base regulation through H+ and HCO3− secretion. Despite its significance, the molecular mechanisms controlling intercalated cell development remain incompletely understood. Methods To investigate the specific role of Foxp1 in kidney tubular system, we specifically deleted Foxp1 expression in kidney distal nephrons and collecting ducts. We examined the effects of Foxp1 on intercalated cell differentiation and urine acidification. RNA sequencing and Chip-seq were used to identify Foxp1 target genes. To dissect the genetic network that regulates intercalated cell differentiation, Dmrt2 -deficient mice were generated to determine the role of Dmrt2 in intercalated cell differentiation. Foxp1 -deficient mice were crossed with Notch2 -deficient mice to dissect the relation between Foxp1 and Notch signaling. Results Foxp1 was selectively expressed in intercalated cells in collecting ducts. The absence of Foxp1 in kidney tubules led to the abolishment of intercalated cell differentiation in the collecting ducts, resulting in distal renal tubular acidosis. Foxp1 regulates the expression of Dmrt2 and Hmx2 , two genes encoding transcription factors specifically expressed in type A and type B intercalated cell cells, respectively. Further genetic analysis revealed that Dmrt2 was essential for type A intercalated cell differentiation, and Foxp1 was necessary downstream of Notch for the regulation of intercalated cell differentiation. Conclusions Foxp1 is required for the renal intercalated cell differentiation and participated in acid–base regulation. Foxp1 regulated downstream transcriptional factors, Dmrt2 and Hmx2, which were involved in the specification of distinct subsets of intercalated cells.
Collapse
Affiliation(s)
- Shi-Ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Yu Feng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute and the Faulty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yanmiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Lin Li
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Dongbo Lu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Yixuan Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Wenrun Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Angela Morgan
- Murdoch Children's Research Institute, The Royal Children's Hospital and Department of Audiology and Speech Pathology and Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute and School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen I. Alexander
- Department of Pediatric Nephrology, The Children's Hospital at Westmead and Centre for Kidney Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Justin Wong
- Epigenetics and RNA Biology Program Centenary Institute and the Faulty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Abstract
The kidney is a highly complex organ in the human body. Although creating an in vitro model of the human kidney is challenging, tremendous advances have been made in recent years. Kidney organoids are in vitro kidney models that are generated from stem cells in three-dimensional (3D) cultures. They exhibit remarkable degree of similarities with the native tissue in terms of cell type, morphology, and function. The establishment of 3D kidney organoids facilitates a mechanistic study of cell communications, and these organoids can be used for drug screening, disease modeling, and regenerative medicine applications. This review discusses the cellular complexity during in vitro kidney generation. We intend to highlight recent progress in kidney organoids and the applications of these relatively new technologies.
Collapse
|
6
|
Tortelote GG, Colón-Leyva M, Saifudeen Z. Metabolic programming of nephron progenitor cell fate. Pediatr Nephrol 2021; 36:2155-2164. [PMID: 33089379 PMCID: PMC10734399 DOI: 10.1007/s00467-020-04752-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]
Abstract
Metabolic pathways are one of the first responses at the cellular level to maternal/fetal interface stressors. Studies have revealed the previously unrecognized contributions of intermediary metabolism to developmental programs. Here, we provide an overview of cellular metabolic pathways and the cues that modulate metabolic states. We discuss the developmental and physiological implications of metabolic reprogramming and the key role of metabolites in epigenetic and epiproteomic modifications during embryonic development and with respect to kidney development and nephrogenesis.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue SL37, Room 5534, New Orleans, LA, 70112, USA
| | - Mariel Colón-Leyva
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue SL37, Room 5534, New Orleans, LA, 70112, USA
| | - Zubaida Saifudeen
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue SL37, Room 5534, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Peired AJ, Lazzeri E, Guzzi F, Anders HJ, Romagnani P. From kidney injury to kidney cancer. Kidney Int 2021; 100:55-66. [PMID: 33794229 DOI: 10.1016/j.kint.2021.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Epidemiologic studies document strong associations between acute or chronic kidney injury and kidney tumors. However, whether these associations are linked by causation, and in which direction, is unclear. Accumulating data from basic and clinical research now shed light on this issue and prompt us to propose a new pathophysiological concept with immanent implications in the management of patients with kidney disease and patients with kidney tumors. As a central paradigm, this review proposes the mechanisms of kidney damage and repair that are active during acute kidney injury but also during persistent injuries in chronic kidney disease as triggers of DNA damage, promoting the expansion of (pre-)malignant cell clones. As renal progenitors have been identified by different studies as the cell of origin for several benign and malignant kidney tumors, we discuss how the different types of kidney tumors relate to renal progenitors at specific sites of injury and to germline or somatic mutations in distinct signaling pathways. We explain how known risk factors for kidney cancer rather represent risk factors for kidney injury as an upstream cause of cancer. Finally, we propose a new role for nephrologists in kidney cancer (i.e., the primary and secondary prevention and treatment of kidney injury to reduce incidence, prevalence, and recurrence of kidney cancer).
Collapse
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Francesco Guzzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Ludwig Maximilian University Klinikum, Munich, Germany
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy; Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy.
| |
Collapse
|
8
|
Abstract
AbstractAcute kidney injury (AKI) is a common clinical symptom, which is mainly manifested by elevated serum creatinine and blood urea nitrogen levels. When AKI is not repaired in time, the patient is prone to develop chronic kidney disease (CKD). The kidney is composed of more than 30 different cells, and its structure is complex. It is extremely challenging to understand the lineage relationships and cell fate of these cells in the process of kidney injury and regeneration. Since the 20th century, lineage tracing technology has provided an important mean for studying organ development, tissue damage repair, and the differentiation and fate of single cells. However, traditional lineage tracing methods rely on sacrificing animals to make tissue slices and then take snapshots with conventional imaging tools to obtain interesting information. This method cannot achieve dynamic and continuous monitoring of cell actions on living animals. As a kind of intravital microscopy (IVM), two-photon microscopy (TPM) has successfully solved the above problems. Because TPM has the ability to penetrate deep tissues and can achieve imaging at the single cell level, lineage tracing technology with TPM is gradually becoming popular. In this review, we provided the key technical elements of lineage tracing, and how to use intravital imaging technology to visualize and quantify the fate of renal cells.
Collapse
|
9
|
Li H, Hohenstein P, Kuure S. Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor. Genes (Basel) 2021; 12:genes12020318. [PMID: 33672414 PMCID: PMC7926385 DOI: 10.3390/genes12020318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The adult mammalian kidney is a poorly regenerating organ that lacks the stem cells that could replenish functional homeostasis similarly to, e.g., skin or the hematopoietic system. Unlike a mature kidney, the embryonic kidney hosts at least three types of lineage-specific stem cells that give rise to (a) a ureter and collecting duct system, (b) nephrons, and (c) mesangial cells together with connective tissue of the stroma. Extensive interest has been raised towards these embryonic progenitor cells, which are normally lost before birth in humans but remain part of the undifferentiated nephrogenic rests in the pediatric renal cancer Wilms tumor. Here, we discuss the current understanding of kidney-specific embryonic progenitor regulation in the innate environment of the developing kidney and the types of disruptions in their balanced regulation that lead to the formation of Wilms tumor.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-2941-59395
| |
Collapse
|
10
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
11
|
Hilliard SA, Li Y, Dixon A, El-Dahr SS. Mdm4 controls ureteric bud branching via regulation of p53 activity. Mech Dev 2020; 163:103616. [PMID: 32464196 DOI: 10.1016/j.mod.2020.103616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
The antagonism between Mdm2 and its close homolog Mdm4 (also known as MdmX) and p53 is vital for embryogenesis and organogenesis. Previously, we demonstrated that targeted disruption of Mdm2 in the Hoxb7+ ureteric bud (Ub) lineage, which gives rise to the renal collecting system, causes renal hypodysplasia culminating in perinatal lethality. In this study, we examine the unique role of Mdm4 in establishing the collecting duct system of the murine kidney. Hoxb7Cre driven loss of Mdm4 in the Ub lineage (UbMdm4-/-) disrupts branching morphogenesis and triggers UB cell apoptosis. UbMdm4-/- kidneys exhibit abnormally dilated Ub tips while the medulla is hypoplastic. These structural alterations result in secondary depletion of nephron progenitors and nascent nephrons. As a result, newborn UbMdm4-/- mice have hypo-dysplastic kidneys. Transcriptional profiling revealed downregulation of the Ret-tyrosine kinase pathway components, Gdnf, Wnt11, Sox8, Etv4 and Cxcr4 in the UbMdm4-/- mice relative to controls. Moreover, the expression levels of the canonical Wnt signaling members Axin2 and Wnt9b are downregulated. Mdm4 deletion upregulated p53 activity and p53-target gene expression including Cdkn1a (p21), Gdf15, Ccng1, PERP, and Fas. Germline loss of p53 in UbMdm4-/- mice largely rescues kidney development and terminal differentiation of the collecting duct. We conclude that Mdm4 plays a unique and vital role in Ub branching morphogenesis and collecting system development.
Collapse
Affiliation(s)
- Sylvia A Hilliard
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Yuwen Li
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Angelina Dixon
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Samir S El-Dahr
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America.
| |
Collapse
|
12
|
Khoshdel Rad N, Aghdami N, Moghadasali R. Cellular and Molecular Mechanisms of Kidney Development: From the Embryo to the Kidney Organoid. Front Cell Dev Biol 2020; 8:183. [PMID: 32266264 PMCID: PMC7105577 DOI: 10.3389/fcell.2020.00183] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
Development of the metanephric kidney is strongly dependent on complex signaling pathways and cell-cell communication between at least four major progenitor cell populations (ureteric bud, nephron, stromal, and endothelial progenitors) in the nephrogenic zone. In recent years, the improvement of human-PSC-derived kidney organoids has opened new avenues of research on kidney development, physiology, and diseases. Moreover, the kidney organoids provide a three-dimensional (3D) in vitro model for the study of cell-cell and cell-matrix interactions in the developing kidney. In vitro re-creation of a higher-order and vascularized kidney with all of its complexity is a challenging issue; however, some progress has been made in the past decade. This review focuses on major signaling pathways and transcription factors that have been identified which coordinate cell fate determination required for kidney development. We discuss how an extensive knowledge of these complex biological mechanisms translated into the dish, thus allowed the establishment of 3D human-PSC-derived kidney organoids.
Collapse
Affiliation(s)
- Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Huang B, Liu Z, Vonk A, Zeng Z, Li Z. Epigenetic regulation of kidney progenitor cells. Stem Cells Transl Med 2020; 9:655-660. [PMID: 32163228 PMCID: PMC7214665 DOI: 10.1002/sctm.19-0289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/26/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
The reciprocal interactions among the different embryonic kidney progenitor populations lay the basis for proper kidney organogenesis. During kidney development, three types of progenitor cells, including nephron progenitor cells, ureteric bud progenitor cells, and interstitial progenitor cells, generate the three major kidney structures—the nephrons, the collecting duct network, and the stroma, respectively. Epigenetic mechanisms are well recognized for playing important roles in organism development, in fine‐tuned control of physiological activities, and in responses to environment stimuli. Recently, evidence supporting the importance of epigenetic mechanisms underlying kidney organogenesis has emerged. In this perspective, we summarize the research progress and discuss the potential contribution of novel stem cell, organoid, and next‐generation sequencing tools in advancing this field in the future.
Collapse
Affiliation(s)
- Biao Huang
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zhenqing Liu
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, California, USA
| | - Ariel Vonk
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zipeng Zeng
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zhongwei Li
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Gyarmati G, Kadoya H, Moon JY, Burford JL, Ahmadi N, Gill IS, Hong YK, Dér B, Peti-Peterdi J. Advances in Renal Cell Imaging. Semin Nephrol 2019; 38:52-62. [PMID: 29291762 DOI: 10.1016/j.semnephrol.2017.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A great variety of cell imaging technologies are used routinely every day for the investigation of kidney cell types in applications ranging from basic science research to drug development and pharmacology, clinical nephrology, and pathology. Quantitative visualization of the identity, density, and fate of both resident and nonresident cells in the kidney, and imaging-based analysis of their altered function, (patho)biology, metabolism, and signaling in disease conditions, can help to better define pathomechanism-based disease subgroups, identify critical cells and structures that play a role in the pathogenesis, critically needed biomarkers of disease progression, and cell and molecular pathways as targets for novel therapies. Overall, renal cell imaging has great potential for improving the precision of diagnostic and treatment paradigms for individual acute kidney injury or chronic kidney disease patients or patient populations. This review highlights and provides examples for some of the recently developed renal cell optical imaging approaches, mainly intravital multiphoton fluorescence microscopy, and the new knowledge they provide for our better understanding of renal pathologies.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Hiroyuki Kadoya
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Ju-Young Moon
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Korea
| | - James L Burford
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nariman Ahmadi
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Inderbir S Gill
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Young-Kwon Hong
- Department of Surgery and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Bálint Dér
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
15
|
Butterworth MB. The tale of two (distal nephron) cell types. Am J Physiol Renal Physiol 2018; 314:F930-F931. [PMID: 29363323 DOI: 10.1152/ajprenal.00044.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Assmus AM, Mansley MK, Mullins LJ, Peter A, Mullins JJ. mCCD cl1 cells show plasticity consistent with the ability to transition between principal and intercalated cells. Am J Physiol Renal Physiol 2017; 314:F820-F831. [PMID: 29357433 DOI: 10.1152/ajprenal.00354.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cortical collecting duct of the mammalian kidney plays a critical role in the regulation of body volume, sodium pH, and osmolarity and is composed of two distinct cells types, principal cells and intercalated cells. Each cell type is detectable in the kidney by the localization of specific transport proteins such as aquaporin 2 (Aqp2) and epithelial sodium channel (ENaC) in principal cells and V-ATPase B1 and connexin 30 (Cx30) in intercalated cells. mCCDcl1 cells have been widely used as a mouse principal cell line on the basis of their physiological characteristics. In this study, the mCCDcl1 parental cell line and three sublines cloned from isolated single cells (Ed1, Ed2, and Ed3) were grown on filters to assess their transepithelial resistance, transepithelial voltage, equivalent short circuit current and expression of the cell-specific markers Aqp2, ENaC, V-ATPaseB1, and Cx30. The parental mCCDcl1 cell line presented amiloride-sensitive electrogenic sodium transport indicative of principal cell function; however, immunocytochemistry and RT-PCR showed that some cells expressed the intercalated cell-specific markers V-ATPase B1 and Cx30, including a subset of cells also positive for Aqp2 and ENaC. The three subclonal lines contained cells that were positive for both intercalated and principal cell-specific markers. The vertical transmission of both principal and intercalated cell characteristics via single cell cloning reveals the plasticity of mCCDcl1 cells and a direct lineage relationship between these two physiologically important cell types and is consistent with mCCDcl1 cells being precursor cells.
Collapse
Affiliation(s)
- A M Assmus
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| | - M K Mansley
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| | - L J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| | - A Peter
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| | - J J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
17
|
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephrogenic zone. Mol Cell Pediatr 2017; 4:12. [PMID: 29218481 PMCID: PMC5721096 DOI: 10.1186/s40348-017-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Numerous investigations are dealing with anlage of the mammalian kidney and primary development of nephrons. However, only few information is available about the last steps in kidney development leading at birth to a downregulation of morphogen activity in the nephrogenic zone and to a loss of stem cell niches aligned beyond the organ capsule. Surprisingly, these natural changes in the developmental program display similarities to processes occurring in the kidneys of preterm and low-birth-weight babies. Although those babies are born at a time with a principally intact nephrogenic zone and active niches, a high proportion of them suffers on impairment of nephrogenesis resulting in oligonephropathy, formation of atypical glomeruli, and immaturity of parenchyma. The setting points out that up to date not identified noxae in the nephrogenic zone hamper primary steps of parenchyma development. In this situation, a possible therapeutic aim is to prolong nephrogenesis by medications. However, actual data provide information that administration of drugs is problematic due to an unexpectedly complex microanatomy of the nephrogenic zone, in niches so far not considered textured extracellular matrix and peculiar contacts between mesenchymal cell projections and epithelial stem cells via tunneling nanotubes. Thus, it remains to be figured out whether disturbance of morphogen signaling altered synthesis of extracellular matrix, disturbed cell-to-cell contacts, or modified interstitial fluid impair nephrogenic activity. Due to most unanswered questions, search for eligible drugs prolonging nephrogenesis and their reliable administration is a special challenge for the future.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|