1
|
Bergadà-Martínez A, de Los Reyes-Ramírez L, Martínez-Torres S, Ciaran-Alfano L, Martínez-Gallego I, Maldonado R, Rodríguez-Moreno A, Ozaita A. Sub-chronic administration of AM6545 enhances cognitive performance and induces hippocampal synaptic plasticity changes in naïve mice. Br J Pharmacol 2025. [PMID: 40102206 DOI: 10.1111/bph.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND AND PURPOSE There is evidence of crosstalk between the brain and peripheral tissues. However, how the periphery contributes to brain function is not well understood. The cannabinoid CB1 receptor is classically pictured to have a relevant role in cognitive function. We previously demonstrated a novel mechanism where acute administration of the CB1 receptor antagonist AM6545, largely restricted to the periphery, prolonged memory persistence in mice. Here, we have assessed the effects of repeated exposure to AM6545 on cognitive improvements. EXPERIMENTAL APPROACH We evaluated, in young adult male and female mice, the behavioural consequences of sub-chronic treatment with AM6545. An unbiased transcriptomic analysis, as well as electrophysiological and biochemical studies, was carried out to elucidate the central cellular and molecular consequences of such action at peripheral receptors. KEY RESULTS Sub-chronic AM6545 enhanced memory in low and high arousal conditions in male and female mice. Executive function was facilitated after repeated AM6545 administration in male mice. Transcriptional analysis of hippocampal synaptoneurosomes from treated mice revealed a preliminary, sex-dependent, modulation of synaptic transcripts by AM6545. Notably, AM6545 occluded long-term potentiation in CA3-CA1 synapses while enhancing input-output relation in male mice. This was accompanied by an increase in hippocampal expression of Bdnf and Ngf. CONCLUSION AND IMPLICATIONS Our results showed that repeated administration of AM6545 contributed to the modulation of memory persistence, executive function and hippocampal synaptic plasticity in mice, further indicating that peripheral CB1 receptors could act as a target for a novel class of nootropic compounds.
Collapse
Affiliation(s)
- Araceli Bergadà-Martínez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lucía de Los Reyes-Ramírez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Group in Biology of Cognition, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sara Martínez-Torres
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura Ciaran-Alfano
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Group in Biology of Cognition, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Programme in Neurosciences, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Group in Biology of Cognition, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Programme in Neurosciences, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
2
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
3
|
Yu M, Shen M, Chen D, Li Y, Zhou Q, Deng C, Zhou X, Zhang Q, He Q, Wang H, Cong M, Shi H, Gu X, Zhou S, Ding F. Chitosan/PLGA-based tissue engineered nerve grafts with SKP-SC-EVs enhance sciatic nerve regeneration in dogs through miR-30b-5p-mediated regulation of axon growth. Bioact Mater 2024; 40:378-395. [PMID: 38978801 PMCID: PMC11228890 DOI: 10.1016/j.bioactmat.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats. This study aimed at expanding the application of SKP-SC-EVs in nerve grafting by creating a chitosan/PLGA-based, SKP-SC-EVs-containing tissue engineered nerve graft (TENG) to bridge a 40-mm long sciatic nerve defect in dogs. SKP-SC-EVs contained in TENGs significantly accelerated the recovery of hind limb motor and electrophysiological functions, supported the outgrowth and myelination of regenerated axons, and alleviated the denervation-induced atrophy of target muscles in dogs. To clarify the underlying molecular mechanism, we observed that SKP-SC-EVs were rich in a variety of miRNAs linked to the axon growth of neurons, and miR-30b-5p was the most important among others. We further noted that miR-30b-5p contained within SKP-SC-EVs exerted nerve regeneration-promoting effects by targeting the Sin3a/HDAC complex and activating the phosphorylation of ERK, STAT3 or CREB. Our findings suggested that SKP-SC-EVs-incorporating TENGs represent a novel type of bioactive material with potential application for peripheral nerve repair in the clinic.
Collapse
Affiliation(s)
- Miaomei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
4
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Wang L, Park L, Wu W, King D, Vega-Medina A, Raven F, Martinez J, Ensing A, McDonald K, Yang Z, Jiang S, Aton SJ. Sleep-dependent engram reactivation during hippocampal memory consolidation associated with subregion-specific biosynthetic changes. iScience 2024; 27:109408. [PMID: 38523798 PMCID: PMC10957462 DOI: 10.1016/j.isci.2024.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Post-learning sleep is essential for hippocampal memory processing, including contextual fear memory consolidation. We labeled context-encoding engram neurons in the hippocampal dentate gyrus (DG) and assessed reactivation of these neurons after fear learning. Post-learning sleep deprivation (SD) selectively disrupted reactivation of inferior blade DG engram neurons, linked to SD-induced suppression of neuronal activity in the inferior, but not superior DG blade. Subregion-specific spatial profiling of transcripts revealed that transcriptomic responses to SD differed greatly between hippocampal CA1, CA3, and DG inferior blade, superior blade, and hilus. Activity-driven transcripts, and those associated with cytoskeletal remodeling, were selectively suppressed in the inferior blade. Critically, learning-driven transcriptomic changes differed dramatically between the DG blades and were absent from all other regions. Together, these data suggest that the DG is critical for sleep-dependent memory consolidation, and that the effects of sleep loss on the hippocampus are highly subregion-specific.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lauren Park
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weisheng Wu
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana King
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessy Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Ensing
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine McDonald
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Diaz MD, Kandell RM, Wu JR, Chen A, Christman KL, Kwon EJ. Infusible Extracellular Matrix Biomaterial Promotes Vascular Integrity and Modulates the Inflammatory Response in Acute Traumatic Brain Injury. Adv Healthc Mater 2023; 12:e2300782. [PMID: 37390094 PMCID: PMC10592293 DOI: 10.1002/adhm.202300782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Traumatic brain injury (TBI) affects millions of people each year and, in many cases, results in long-term disabilities. Once a TBI has occurred, there is a significant breakdown of the blood-brain barrier resulting in increased vascular permeability and progression of the injury. In this study, the use of an infusible extracellular matrix-derived biomaterial (iECM) for its ability to reduce vascular permeability and modulate gene expression in the injured brain is investigated. First, the pharmacokinetics of iECM administration in a mouse model of TBI is characterized, and the robust accumulation of iECM at the site of injury is demonstrated. Next, it is shown that iECM administration after injury can reduce the extravasation of molecules into the brain, and in vitro, iECM increases trans-endothelial electrical resistance across a monolayer of TNFα-stimulated endothelial cells. In gene expression analysis of brain tissue, iECM induces changes that are indicative of downregulation of the proinflammatory response 1-day post-injury/treatment and neuroprotection at 5 days post-injury/treatment. Therefore, iECM shows potential as a treatment for TBI.
Collapse
Affiliation(s)
- Miranda D. Diaz
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Rebecca M. Kandell
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Jason R. Wu
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Alexander Chen
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Karen L. Christman
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Ester J. Kwon
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| |
Collapse
|
7
|
Jiang Y, Zhang T, Yang L, Du Z, Wang Q, Hou J, Liu Y, Song Q, Zhao J, Wu Y. Downregulation of FTO in the hippocampus is associated with mental disorders induced by fear stress during pregnancy. Behav Brain Res 2023; 453:114598. [PMID: 37506852 DOI: 10.1016/j.bbr.2023.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Mental disorders (MD), such as anxiety, depression, and cognitive impairment, are very common during pregnancy and predispose to adverse pregnancy outcomes; however, the underlying mechanisms are still under intense investigation. Although the most common RNA modification in epigenetics, N6-methyladenosine (m6A) has been widely studied, its role in MD has not been investigated. Here, we observed that fat mass and obesity-associated protein (FTO) are downregulated in the hippocampus of pregnant rats with MD induced by fear stress and demonstrated that FTO participates in and regulates MD induced by fear stress. In addition, we identified four genes with anomalous modifications and expression (double aberrant genes) that were directly regulated by FTO, namely Angpt2, Fgf10, Rpl21, and Adcy7. Furthermore, we found that these genes might induce MD by regulating the PI3K/Akt and Rap1 signaling pathways. It appears that FTO-mediated m6A modification is a key regulatory mechanism in MD caused by fear stress during pregnancy.
Collapse
Affiliation(s)
- Yu Jiang
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Zhang
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Liping Yang
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Zhixin Du
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qiyang Wang
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junlin Hou
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Yuexuan Liu
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi Song
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiajia Zhao
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongye Wu
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Dai Y, Wang S, Yang M, Zhuo P, Ding Y, Li X, Cao Y, Guo X, Lin H, Tao J, Chen L, Liu W. Electroacupuncture protective effects after cerebral ischemia are mediated through miR-219a inhibition. Biol Res 2023; 56:36. [PMID: 37391839 DOI: 10.1186/s40659-023-00448-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Electroacupuncture (EA) is a complementary and alternative therapy which has shown protective effects on vascular cognitive impairment (VCI). However, the underlying mechanisms are not entirely understood. METHODS Rat models of VCI were established with cerebral ischemia using occlusion of the middle cerebral artery or bilateral common carotid artery. The brain structure and function imaging were measured through animal MRI. miRNA expression was detected by chip and qPCR. Synaptic functional plasticity was detected using electrophysiological techniques. RESULTS This study demonstrated the enhancement of Regional Homogeneity (ReHo) activity of blood oxygen level-dependent (BOLD) signal in the entorhinal cortical (EC) and hippocampus (HIP) in response to EA treatment. miR-219a was selected and confirmed to be elevated in HIP and EC in VCI but decreased after EA. N-methyl-D-aspartic acid receptor1 (NMDAR1) was identified as the target gene of miR-219a. miR-219a regulated NMDAR-mediated autaptic currents, spontaneous excitatory postsynaptic currents (sEPSC), and long-term potentiation (LTP) of the EC-HIP CA1 circuit influencing synaptic plasticity. EA was able to inhibit miR-219a, enhancing synaptic plasticity of the EC-HIP CA1 circuit and increasing expression of NMDAR1 while promoting the phosphorylation of downstream calcium/calmodulin-dependent protein kinase II (CaMKII), improving overall learning and memory in VCI rat models. CONCLUSION Inhibition of miR-219a ameliorates VCI by regulating NMDAR-mediated synaptic plasticity in animal models of cerebral ischemia.
Collapse
Affiliation(s)
- Yaling Dai
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sinuo Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Peiyuan Zhuo
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yanyi Ding
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xiaoling Li
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yajun Cao
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xiaoqin Guo
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Huawei Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jing Tao
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Lidian Chen
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
9
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
10
|
Requie LM, Gómez-Gonzalo M, Speggiorin M, Managò F, Melone M, Congiu M, Chiavegato A, Lia A, Zonta M, Losi G, Henriques VJ, Pugliese A, Pacinelli G, Marsicano G, Papaleo F, Muntoni AL, Conti F, Carmignoto G. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat Neurosci 2022; 25:1639-1650. [PMID: 36396976 DOI: 10.1038/s41593-022-01193-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA. We found that the burst firing in individual dopamine neurons induces a long-lasting potentiation of excitatory synapses on adjacent dopamine neurons that crucially depends on Ca2+ elevations in astrocytes, mediated by endocannabinoid CB1 and dopamine D2 receptors co-localized at the same astrocytic process, and activation of pre-synaptic metabotropic glutamate receptors. Consistent with these findings, selective in vivo activation of astrocytes increases the burst firing of dopamine neurons in the VTA and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron functional activity.
Collapse
Affiliation(s)
- Linda Maria Requie
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| | - Michele Speggiorin
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Mauro Congiu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, Università degli Studi di Cagliari, Cagliari, Italy.,Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Angela Chiavegato
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Annamaria Lia
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Micaela Zonta
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gabriele Losi
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.,Nanoscienze Institute, National Research Council (CNR), Modena, Italy
| | - Vanessa Jorge Henriques
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Arianna Pugliese
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Giovanni Marsicano
- University of Bordeaux and Interdisciplinary Institute for Neuroscience (CNRS), Bordeaux, France
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| |
Collapse
|
11
|
Li N, Wang H, Xin S, Min R, Zhang Y, Deng Y. Confinement induces oxidative damage and synaptic dysfunction in mice. Front Physiol 2022; 13:999574. [PMID: 36505063 PMCID: PMC9729776 DOI: 10.3389/fphys.2022.999574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
A confined environment is an enclosed area where entry or exit is highly restricted, which is a risk factor for a work crew's mental health. Previous studies have shown that a crew is more susceptible to developing anxiety or depression in a confined environment. However, the underlying mechanism by which negative emotion is induced by confinement is not fully understood. Hence, in this study, mice were retained in a tube to simulate short-term confinement. The mice exhibited depressive-like behavior. Additionally, the levels of H2O2 and malondialdehyde in the prefrontal cortex were significantly increased in the confinement group. Furthermore, a label-free quantitative proteomic strategy was applied to analyze the abundance of proteins in the prefrontal cortex of mice. A total of 71 proteins were considered differentially abundant proteins among 3,023 identified proteins. Two differentially abundant proteins, superoxide dismutase [Mn] and syntaxin-1A, were also validated by a parallel reaction monitoring assay. Strikingly, the differentially abundant proteins were highly enriched in the respiratory chain, oxidative phosphorylation, and the synaptic vesicle cycle, which might lead to oxidative damage and synaptic dysfunction. The results of this study provide valuable information to better understand the mechanisms of depressive-like behavior induced by confined environments.
Collapse
Affiliation(s)
- Nuomin Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Hao Wang
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Shuchen Xin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Rui Min
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yongqian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China,*Correspondence: Yongqian Zhang,
| | - Yulin Deng
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China,School of Life Science, Beijing Institute of Technology, Beijing, China,Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
12
|
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F. The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev 2022; 136:104596. [PMID: 35248676 DOI: 10.1016/j.neubiorev.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
13
|
Wu XQ, Su N, Fei Z, Fei F. Homer signaling pathways as effective therapeutic targets for ischemic and traumatic brain injuries and retinal lesions. Neural Regen Res 2021; 17:1454-1461. [PMID: 34916418 PMCID: PMC8771115 DOI: 10.4103/1673-5374.330588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic and traumatic insults to the central nervous system account for most serious acute and fatal brain injuries and are usually characterized by primary and secondary damage. Secondary damage presents the greatest challenge for medical staff; however, there are currently few effective therapeutic targets for secondary damage. Homer proteins are postsynaptic scaffolding proteins that have been implicated in ischemic and traumatic insults to the central nervous system. Homer signaling can exert either positive or negative effects during such insults, depending on the specific subtype of Homer protein. Homer 1b/c couples with other proteins to form postsynaptic densities, which form the basis of synaptic transmission, while Homer1a expression can be induced by harmful external factors. Homer 1c is used as a unique biomarker to reveal alterations in synaptic connectivity before and during the early stages of apoptosis in retinal ganglion cells, mediated or affected by extracellular or intracellular signaling or cytoskeletal processes. This review summarizes the structural features, related signaling pathways, and diverse roles of Homer proteins in physiological and pathological processes. Upregulating Homer1a or downregulating Homer1b/c may play a neuroprotective role in secondary brain injuries. Homer also plays an important role in the formation of photoreceptor synapses. These findings confirm the neuroprotective effects of Homer, and support the future design of therapeutic drug targets or gene therapies for ischemic and traumatic brain injuries and retinal disorders based on Homer proteins.
Collapse
Affiliation(s)
- Xiu-Quan Wu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
14
|
Yan W, Zhu H, Yu B, Ma X, Liang H, Zhao S, Deng K. Effects of two inhibitors of metabolic glutamate receptor 5 on expression of endogenous homer scaffold protein 1 in the auditory cortex of mice with tinnitus. Bioengineered 2021; 12:7156-7164. [PMID: 34546852 PMCID: PMC8806735 DOI: 10.1080/21655979.2021.1979354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 10/29/2022] Open
Abstract
Tinnitus is deemed as the result of abnormal neural activities in the brain, and Homer proteins are expressed in the brain that convey nociception. The expression of Homer in tinnitus has not been studied. We hypothesized that expression of Homer in the auditory cortex was altered after tinnitus treatment. Mice were injected with sodium salicylate to induce tinnitus. Expression of Homer was detected by quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry assays. We found that Homer1 expression was upregulated in the auditory cortex of mice with tinnitus, while expression of Homer2 or Homer3 exhibited no significant alteration. Effects of two inhibitors of metabolic glutamate receptor 5 (mGluR5), noncompetitive 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) and competitive α-methyl-4-carboxyphenylglycine (MCPG), on the tinnitus scores of the mice and on Homer1 expression were detected. MPEP significantly reduced tinnitus scores and suppressed Homer1 expression in a concentration dependent manner. MCPG had no significant effects on tinnitus scores or Homer1 expression. In conclusion, Homer1 expression was upregulated in the auditory cortex of mice after tinnitus, and was suppressed by noncompetitive mGluR5 inhibitor MPEP, but not competitive mGluR5 inhibitor MCPG.
Collapse
Affiliation(s)
- Weiwei Yan
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Hongfei Zhu
- Department of Anesthesiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Bianbian Yu
- Department of Otorhinolaryngology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Xin Ma
- Department of Otorhinolaryngology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Hang Liang
- Department of Anesthesiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Shuyan Zhao
- Department of Anesthesiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Kebin Deng
- Department of Otorhinolaryngology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
15
|
Noyes NC, Phan A, Davis RL. Memory suppressor genes: Modulating acquisition, consolidation, and forgetting. Neuron 2021; 109:3211-3227. [PMID: 34450024 PMCID: PMC8542634 DOI: 10.1016/j.neuron.2021.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
The brain has a remarkable but underappreciated capacity to limit memory formation and expression. The term "memory suppressor gene" was coined in 1998 as an attempt to explain emerging reports that some genes appeared to limit memory. At that time, only a handful of memory suppressor genes were known, and they were understood to work by limiting cAMP-dependent consolidation. In the intervening decades, almost 100 memory suppressor genes with diverse functions have been discovered that affect not only consolidation but also acquisition and forgetting. Here we highlight the surprising extent to which biological limits are placed on memory formation through reviewing the literature on memory suppressor genes. In this review, we present memory suppressors within the framework of their actions on different memory operations: acquisition, consolidation, and forgetting. This is followed by a discussion of the reasons why there may be a biological need to limit memory formation.
Collapse
Affiliation(s)
- Nathaniel C Noyes
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Anna Phan
- Department of Biological Sciences, University of Alberta, 11355 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
16
|
Mitra A, Raicu AM, Hickey SL, Pile LA, Arnosti DN. Soft repression: Subtle transcriptional regulation with global impact. Bioessays 2020; 43:e2000231. [PMID: 33215731 PMCID: PMC9068271 DOI: 10.1002/bies.202000231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Pleiotropically acting eukaryotic corepressors such as retinoblastoma and SIN3 have been found to physically interact with many widely expressed “housekeeping” genes. Evidence suggests that their roles at these loci are not to provide binary on/off switches, as is observed at many highly cell-type specific genes, but rather to serve as governors, directly modulating expression within certain bounds, while not shutting down gene expression. This sort of regulation is challenging to study, as the differential expression levels can be small. We hypothesize that depending on context, corepressors mediate “soft repression,” attenuating expression in a less dramatic but physiologically appropriate manner. Emerging data indicate that such regulation is a pervasive characteristic of most eukaryotic systems, and may reflect the mechanistic differences between repressor action at promoter and enhancer locations. Soft repression may represent an essential component of the cybernetic systems underlying metabolic adaptations, enabling modest but critical adjustments on a continual basis.
Collapse
Affiliation(s)
- Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie L Hickey
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|