1
|
Chen Thomsen BL, Vinding MC, Meder D, Marner L, Løkkegaard A, Siebner HR. Functional motor network abnormalities associated with levodopa-induced dyskinesia in Parkinson's disease: A systematic review. Neuroimage Clin 2024; 44:103705. [PMID: 39577332 PMCID: PMC11616552 DOI: 10.1016/j.nicl.2024.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Parkinson's disease (PD) can be effectively treated with levodopa and dopamine agonists but leads to levodopa-induced dyskinesia (LID) in most patients in the long run. Various functional brain mapping techniques are used to explore alterations in motor networks associated with LID. This pre-registered review (PROSPERO: CRD42022320830) summarizes the motor network abnormalities reported in functional brain mapping studies of patients with LID. We included studies using functional MRI, EEG, PET, SPECT, or TMS and included at least 10 LID patients. For completeness, we included studies of 5-9 patients with LID in a table. Some of these were also incorporated into the review if other studies used the same method. Thirty studies met our pre-defined criteria. Patients with LID showed stronger motor-related activation and functional connectivity of motor and premotor cortical areas and the putamen after levodopa intake relative to PD patients without LID. Decreased activation was found in the right inferior frontal cortex. TMS studies showed increased cortical excitability and blunted cortical plasticity in patients with LID, while "inhibitory" repetitive TMS of prefrontal motor control areas and cerebellum produced transient anti-dyskinetic effects. Overall, sample sizes were small, the number of studies per mapping modality was limited, and most studies lacked independent replication. The alterations associated with LID encompass changes in functional activity, connectivity, cortical excitability, and plasticity in motor execution and motor control networks. A comprehensive understanding of how LID manifests at the motor network level will guide the future development of stimulation-based network therapies for LID.
Collapse
Affiliation(s)
- Birgitte Liang Chen Thomsen
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
| | - Mikkel C Vinding
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| |
Collapse
|
2
|
Lau K, Kotzur R, Richter F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy. Transl Neurodegener 2024; 13:37. [PMID: 39075566 PMCID: PMC11285262 DOI: 10.1186/s40035-024-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) alterations in Parkinson's disease (PD), the second most common neurodegenerative disorder with rapidly rising prevalence. Altered tight junction and transporter protein levels, accumulation of α-synuclein and increase in inflammatory processes lead to extravasation of blood molecules and vessel degeneration. This could result in a self-perpetuating pathophysiology of inflammation and BBB alteration, which contribute to neurodegeneration. Toxin exposure or α-synuclein over-expression in animal models has been shown to initiate similar pathologies, providing a platform to study underlying mechanisms and therapeutic interventions. Here we provide a comprehensive review of the current knowledge on BBB alterations in PD patients and how rodent models that replicate some of these changes can be used to study disease mechanisms. Specific challenges in assessing the BBB in patients and in healthy controls are discussed. Finally, a potential role of BBB alterations in disease pathogenesis and possible implications for therapy are explored. The interference of BBB alterations with current and novel therapeutic strategies requires more attention. Brain region-specific BBB alterations could also open up novel opportunities to target specifically vulnerable neuronal subpopulations.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Rebecca Kotzur
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
3
|
Barbero JA, Unadkat P, Choi YY, Eidelberg D. Functional Brain Networks to Evaluate Treatment Responses in Parkinson's Disease. Neurotherapeutics 2023; 20:1653-1668. [PMID: 37684533 PMCID: PMC10684458 DOI: 10.1007/s13311-023-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Network analysis of functional brain scans acquired with [18F]-fluorodeoxyglucose positron emission tomography (FDG PET, to map cerebral glucose metabolism), or resting-state functional magnetic resonance imaging (rs-fMRI, to map blood oxygen level-dependent brain activity) has increasingly been used to identify and validate reproducible circuit abnormalities associated with neurodegenerative disorders such as Parkinson's disease (PD). In addition to serving as imaging markers of the underlying disease process, these networks can be used singly or in combination as an adjunct to clinical diagnosis and as a screening tool for therapeutics trials. Disease networks can also be used to measure rates of progression in natural history studies and to assess treatment responses in individual subjects. Recent imaging studies in PD subjects scanned before and after treatment have revealed therapeutic effects beyond the modulation of established disease networks. Rather, other mechanisms of action may be at play, such as the induction of novel functional brain networks directly by treatment. To date, specific treatment-induced networks have been described in association with novel interventions for PD such as subthalamic adeno-associated virus glutamic acid decarboxylase (AAV2-GAD) gene therapy, as well as sham surgery or oral placebo under blinded conditions. Indeed, changes in the expression of these networks with treatment have been found to correlate consistently with clinical outcome. In aggregate, these attributes suggest a role for functional brain networks as biomarkers in future clinical trials.
Collapse
Affiliation(s)
- János A Barbero
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Prashin Unadkat
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA
| | - Yoon Young Choi
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Molecular Medicine and Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
4
|
Elabi OF, Espa E, Skovgård K, Fanni S, Cenci MA. Ropinirole Cotreatment Prevents Perivascular Glial Recruitment in a Rat Model of L-DOPA-Induced Dyskinesia. Cells 2023; 12:1859. [PMID: 37508522 PMCID: PMC10378233 DOI: 10.3390/cells12141859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine replacement therapy for Parkinson's disease is achieved using L-DOPA or dopamine D2/3 agonists, such as ropinirole. Here, we compare the effects of L-DOPA and ropinirole, alone or in combination, on patterns of glial and microvascular reactivity in the striatum. Rats with unilateral 6-hydroxydopamine lesions were treated with therapeutic-like doses of L-DOPA (6 mg/kg), an equipotent L-DOPA-ropinirole combination (L-DOPA 3 mg/kg plus ropinirole 0.5 mg/kg), or ropinirole alone. Immunohistochemistry was used to examine the reactivity of microglia (ionized calcium-binding adapter molecule 1, IBA-1) and astroglia (glial fibrillary acidic protein, GFAP), as well as blood vessel density (rat endothelial cell antigen 1, RECA-1) and albumin extravasation. L-DOPA monotreatment and L-DOPA-ropinirole cotreatment induced moderate-severe dyskinesia, whereas ropinirole alone had negligible dyskinetic effects. Despite similar dyskinesia severity, striking differences in perivascular microglia and astroglial reactivity were found between animals treated with L-DOPA vs. L-DOPA-ropinirole. The former exhibited a marked upregulation of perivascular IBA-1 cells (in part CD68-positive) and IBA-1-RECA-1 contact points, along with an increased microvessel density and strong perivascular GFAP expression. None of these markers were significantly upregulated in animals treated with L-DOPA-ropinirole or ropinirole alone. In summary, although ropinirole cotreatment does not prevent L-DOPA-induced dyskinesia, it protects from maladaptive gliovascular changes otherwise associated with this disorder, with potential long-term benefits to striatal tissue homeostasis.
Collapse
Affiliation(s)
- Osama F Elabi
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Katrine Skovgård
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Silvia Fanni
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Maria Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
5
|
Kim MS, Park DG, Gil YE, Shin IJ, Yoon JH. The effect of levodopa treatment on vascular endothelial function in Parkinson's disease. J Neurol 2023; 270:2964-2968. [PMID: 36790545 DOI: 10.1007/s00415-023-11622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE There has been increasing awareness that micro-vascular alteration or vascular inflammation has been associated with levodopa-induced dyskinesia in PD. Vascular endothelial function assessed by flow mediated dilation (FMD) is known to reflect early microvascular change. We compare the impact of levodopa or dopamine agonist treatment on the change of FMD in de novo PD patients. METHODS This retrospective study used a selected sample from registry. We identified de-novo PD patients who underwent FMD at baseline, and follow-up FMD after 1 year (± 2 month) of levodopa (n = 18) or dopamine agonist (n = 18) treatment. RESULTS FMD decreased after levodopa (8.60 ± 0.46 to 7.21 ± 0.4, p = 0.002) but there were no significant changes after DA treatment (8.33 ± 0.38 to 8.22 ± 0.33, p = 0.26). Homocysteine rose (11.52 ± 0.45 to 14.33 ± 0.68, p < 0.05) during levodopa treatment, but dopamine agonist had no effect (10.59 ± 0.38 to 11.38 ± 0.67, p = 0.184). Correlation analysis revealed that the changes in homocysteine level had non-significant correlation with FMD change (r = - 0.30, p = 0.06). FMD change was not associated with age (p = 0.47), disease duration (p = 0.81), baseline motor UPDRS (p = 0.43), motor UPDRS change (p = 0.64), levodopa equivalent dose change (p = 0.65). CONCLUSIONS We found that 1-year levodopa treatment may adversely affect vascular endothelial function in de novo PD. Further studies are needed to clarify the exact pathogenesis and clinical implication of levodopa-induced endothelial dysfunction in PD.
Collapse
Affiliation(s)
- Min Seung Kim
- Department of Neurology, Ajou University School of Medicine, 5 San, Woncheon-dong, Yongtong-gu, World Cup ro, Suwon-si, Kyunggi-do, 442-749, South Korea
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Don Gueu Park
- Department of Neurology, Ajou University School of Medicine, 5 San, Woncheon-dong, Yongtong-gu, World Cup ro, Suwon-si, Kyunggi-do, 442-749, South Korea
| | - Young Eun Gil
- Department of Neurology, Ajou University School of Medicine, 5 San, Woncheon-dong, Yongtong-gu, World Cup ro, Suwon-si, Kyunggi-do, 442-749, South Korea
| | - In Ja Shin
- Department of Neurology, Ajou University School of Medicine, 5 San, Woncheon-dong, Yongtong-gu, World Cup ro, Suwon-si, Kyunggi-do, 442-749, South Korea
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, 5 San, Woncheon-dong, Yongtong-gu, World Cup ro, Suwon-si, Kyunggi-do, 442-749, South Korea.
| |
Collapse
|
6
|
Perovnik M, Rus T, Schindlbeck KA, Eidelberg D. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol 2023; 19:73-90. [PMID: 36539533 DOI: 10.1038/s41582-022-00753-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Network analytical tools are increasingly being applied to brain imaging maps of resting metabolic activity (PET) or blood oxygenation-dependent signals (functional MRI) to characterize the abnormal neural circuitry that underlies brain diseases. This approach is particularly valuable for the study of neurodegenerative disorders, which are characterized by stereotyped spread of pathology along discrete neural pathways. Identification and validation of disease-specific brain networks facilitate the quantitative assessment of pathway changes over time and during the course of treatment. Network abnormalities can often be identified before symptom onset and can be used to track disease progression even in the preclinical period. Likewise, network activity can be modulated by treatment and might therefore be used as a marker of efficacy in clinical trials. Finally, early differential diagnosis can be achieved by simultaneously measuring the activity levels of multiple disease networks in an individual patient's scans. Although these techniques were originally developed for PET, over the past several years analogous methods have been introduced for functional MRI, a more accessible non-invasive imaging modality. This advance is expected to broaden the application of network tools to large and diverse patient populations.
Collapse
Affiliation(s)
- Matej Perovnik
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Rus
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
7
|
Zhang X, Chen W, Wu Y, Zeng W, Yuan Y, Cheng C, Yang X, Wang J, Yang X, Xu Y, Lei H, Cao X, Xu Y. Histological Correlates of Neuroanatomical Changes in a Rat Model of Levodopa-Induced Dyskinesia Based on Voxel-Based Morphometry. Front Aging Neurosci 2021; 13:759934. [PMID: 34776935 PMCID: PMC8581620 DOI: 10.3389/fnagi.2021.759934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Long-term therapy with levodopa (L-DOPA) in patients with Parkinson’s disease (PD) often triggers motor complications termed as L-DOPA-induced dyskinesia (LID). However, few studies have explored the pathogenesis of LID from the perspective of neuroanatomy. This study aimed to investigate macroscopic structural changes in a rat model of LID and the underlying histological mechanisms. First, we established the hemiparkinsonism rat model through stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle, followed by administration of saline (PD) or L-DOPA to induce LID. Magnetic resonance imaging (MRI) and behavioral evaluations were performed at different time points. Histological analysis was conducted to assess the correlations between MRI signal changes and cellular contributors. Voxel-based morphometry (VBM) analysis revealed progressive bilateral volume reduction in the cortical and subcortical areas in PD rats compared with the sham rats. These changes were partially reversed by chronic L-DOPA administration; moreover, there was a significant volume increase mainly in the dorsolateral striatum, substantia nigra, and piriform cortex of the lesioned side compared with that of PD rats. At the striatal cellular level, glial fibrillary acidic protein-positive (GFAP+) astrocytes were significantly increased in the lesioned dorsolateral striatum of PD rats compared with the intact side and the sham group. Prolonged L-DOPA treatment further increased GFAP levels. Neither 6-OHDA damage nor L-DOPA treatment influenced the striatal expression of vascular endothelial growth factor (VEGF). Additionally, there was a considerable increase in synapse-associated proteins (SYP, PSD95, and SAP97) in the lesioned striatum of LID rats relative to the PD rats. Golgi-Cox staining analysis of the dendritic spine morphology revealed an increased density of dendritic spines after chronic L-DOPA treatment. Taken together, our findings suggest that striatal volume changes in LID rats involve astrocyte activation, enrichment of synaptic ultrastructure and signaling proteins in the ipsilateral striatum. Meanwhile, the data highlight the enormous potential of structural MRI, especially VBM analysis, in determining the morphological phenotype of rodent models of LID.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Yuan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
9
|
Fujita K, Peng S, Ma Y, Tang CC, Hellman M, Feigin A, Eidelberg D, Dhawan V. Blood-brain barrier permeability in Parkinson's disease patients with and without dyskinesia. J Neurol 2021; 268:2246-2255. [PMID: 33502551 PMCID: PMC11197155 DOI: 10.1007/s00415-021-10411-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Recent studies on a rodent model of Parkinson's disease (PD) have raised the possibility of increased blood-brain barrier (BBB) permeability, demonstrated by histology, autoradiography, and positron emission tomography (PET). However, in human PD patients, in vivo evidence of increased BBB permeability is lacking. We examined the hypothesis that levodopa treatment increases BBB permeability in human subjects with PD, particularly in those with levodopa-induced dyskinesia (LID). METHODS We used rubidium-82 (82Rb) and PET to quantify BBB influx in vivo in 19 PD patients, including eight with LID, and 12 age- and sex-matched healthy subjects. All subjects underwent baseline 82Rb scans. Seventeen chronically levodopa-treated patients were additionally rescanned during intravenous levodopa infusion. Influx rate constant, K1, by compartmental modeling or net influx transport, Ki, by graphical approach could not be estimated reliably. However, Vd, the "apparent volume of distribution" based on the 82Rb concentration in brain tissue and blood, was estimated with good stability as a local measure of the volume of distribution. RESULTS Rubidium influx into brain tissue was undetectable in PD patients with or without LID, scanned on and off drug. No significant differences in regional Vd were observed for PD patients with or without LID relative to healthy subjects, except in left thalamus. Moreover, changes in Vd measured off- and on-levodopa infusion were also not significant for dyskinetic and non-dyskinetic subjects. CONCLUSION 82Rb PET did not reveal significant changes in BBB permeability in PD patients.
Collapse
Affiliation(s)
- Koji Fujita
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shichun Peng
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yilong Ma
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Matthew Hellman
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Andrew Feigin
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Vijay Dhawan
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
10
|
Bishop C. Neuroinflammation: Fanning the fire of l-dopa-induced dyskinesia. Mov Disord 2020; 34:1758-1760. [PMID: 31845761 DOI: 10.1002/mds.27900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christopher Bishop
- Binghamton University, Department of Psychology, Binghamton, New York, USA
| |
Collapse
|
11
|
Kuter KZ, Cenci MA, Carta AR. The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. PROGRESS IN BRAIN RESEARCH 2020; 252:131-168. [PMID: 32247363 DOI: 10.1016/bs.pbr.2020.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Originally believed to primarily affect neurons, Parkinson's disease (PD) has recently been recognized to also affect the functions and integrity of microglia and astroglia, two cell categories of fundamental importance to brain tissue homeostasis, defense, and repair. Both a loss of glial supportive-defensive functions and a toxic gain of glial functions are implicated in the neurodegenerative process. Moreover, the chronic treatment with L-DOPA may cause maladaptive glial plasticity favoring a development of therapy complications. This chapter focuses on the pathophysiology of PD from a glial point of view, presenting this rapidly growing field from the first discoveries made to the most recent developments. We report and compare histopathological and molecular findings from experimental models of PD and human studies. We moreover discuss the important role played by astrocytes in compensatory adaptations taking place during presymptomatic disease stages. We finally describe examples of potential therapeutic applications stemming from an increased understanding of the important roles of glia in PD.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy.
| |
Collapse
|
12
|
Network imaging biomarkers: insights and clinical applications in Parkinson's disease. Lancet Neurol 2019; 17:629-640. [PMID: 29914708 DOI: 10.1016/s1474-4422(18)30169-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/13/2018] [Accepted: 04/25/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease presents several practical challenges: it can be difficult to distinguish from atypical parkinsonian syndromes, clinical ratings can be insensitive as markers of disease progression, and its non-motor manifestations are not readily assessed in animal models. These challenges, along with others, are beginning to be addressed by innovative imaging methods to characterise Parkinson's disease-specific functional networks across the whole brain and measure their expression in each patient. These signatures can help improve differential diagnosis, guide selection of patients for clinical trials, and quantify treatment responses and placebo effects in individual patients. The primary Parkinson's disease-related metabolic pattern has been replicated in multiple patient populations and used as an outcome measure in clinical trials. It can also be used as a predictor of near-term phenoconversion in prodromal syndromes, such as rapid eye movement sleep behaviour disorder. Functional network imaging holds great promise for future clinical use in the management of neurodegenerative disorders.
Collapse
|
13
|
Madrazo I, Kopyov O, Ávila-Rodríguez MA, Ostrosky F, Carrasco H, Kopyov A, Avendaño-Estrada A, Jiménez F, Magallón E, Zamorano C, González G, Valenzuela T, Carrillo R, Palma F, Rivera R, Franco-Bourland RE, Guízar-Sahagún G. Transplantation of Human Neural Progenitor Cells (NPC) into Putamina of Parkinsonian Patients: A Case Series Study, Safety and Efficacy Four Years after Surgery. Cell Transplant 2018; 28:269-285. [PMID: 30574805 PMCID: PMC6425108 DOI: 10.1177/0963689718820271] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with Parkinson’s disease (PD) suffer from motor and mental disturbances due to degeneration of dopaminergic and non-dopaminergic neuronal systems. Although they provide temporary symptom relief, current treatments fail to control motor and non-motor alterations or to arrest disease progression. Aiming to explore safety and possible motor and neuropsychological benefits of a novel strategy to improve the PD condition, a case series study was designed for brain grafting of human neural progenitor cells (NPCs) to a group of eight patients with moderate PD. A NPC line, expressing Oct-4 and Sox-2, was manufactured and characterized. Using stereotactic surgery, NPC suspensions were bilaterally injected into patients’ dorsal putamina. Cyclosporine A was given for 10 days prior to surgery and continued for 1 month thereafter. Neurological, neuropsychological, and brain imaging evaluations were performed pre-operatively, 1, 2, and 4 years post-surgery. Seven of eight patients have completed 4-year follow-up. The procedure proved to be safe, with no immune responses against the transplant, and no adverse effects. One year after cell grafting, all but one of the seven patients completing the study showed various degrees of motor improvement, and five of them showed better response to medication. PET imaging showed a trend toward enhanced midbrain dopaminergic activity. By their 4-year evaluation, improvements somewhat decreased but remained better than at baseline. Neuropsychological changes were minor, if at all. The intervention appears to be safe. At 4 years post-transplantation we report that undifferentiated NPCs can be delivered safely by stereotaxis to both putamina of patients with PD without causing adverse effects. In 6/7 patients in OFF condition improvement in UPDRS III was observed. PET functional scans suggest enhanced putaminal dopaminergic neurotransmission that could correlate with improved motor function, and better response to L-DOPA. Patients’ neuropsychological scores were unaffected by grafting. Trial Registration: Fetal derived stem cells for Parkinson’s disease https://doi.org/10.1186/ISRCTN39104513Reg#ISRCTN39104513
Collapse
Affiliation(s)
- I Madrazo
- 1 Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - O Kopyov
- 2 Celavie Biosciences LLC, Oxnard, CA, USA
| | - M A Ávila-Rodríguez
- 3 Unidad Radiofarmacia-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - F Ostrosky
- 4 Facultad de Psicología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - H Carrasco
- 5 Hospital Central Militar, Mexico City, Mexico
| | - A Kopyov
- 2 Celavie Biosciences LLC, Oxnard, CA, USA
| | - A Avendaño-Estrada
- 3 Unidad Radiofarmacia-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - F Jiménez
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - E Magallón
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - C Zamorano
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - G González
- 4 Facultad de Psicología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - T Valenzuela
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - R Carrillo
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - F Palma
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - R Rivera
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - R E Franco-Bourland
- 8 Department of Biochemistry, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - G Guízar-Sahagún
- 9 Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
14
|
Cenci MA, Crossman AR. Animal models of l-dopa-induced dyskinesia in Parkinson's disease. Mov Disord 2018; 33:889-899. [PMID: 29488257 DOI: 10.1002/mds.27337] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
Understanding the biological mechanisms of l-dopa-induced motor complications is dependent on our ability to investigate these phenomena in animal models of Parkinson's disease. The most common motor complications consist in wearing-off fluctuations and abnormal involuntary movements appearing when plasma levels of l-dopa are high, commonly referred to as peak-dose l-dopa-induced dyskinesia. Parkinsonian models exhibiting these features have been well-characterized in both rodent and nonhuman primate species. The first animal models of peak-dose l-dopa-induced dyskinesia were produced in monkeys lesioned with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and treated chronically with l-dopa to elicit choreic movements and dystonic postures. Seminal studies were performed in these models using both metabolic mapping and electrophysiological techniques, providing fundamental pathophysiological insights that have stood the test of time. A decade later, it was shown possible to reproduce peak-dose l-dopa-induced dyskinesia in rats and mice rendered parkinsonian with nigrostriatal 6-hydroxydopamine lesions. When treated with l-dopa, these animals exhibit abnormal involuntary movements having both hyperkinetic and dystonic components. These models have enabled molecular- and cellular-level investigations into the mechanisms of l-dopa-induced dyskinesia. A flourishing literature using genetically engineered mice is now unraveling the role of specific genes and neural circuits in the development of l-dopa-induced motor complications. Both non-human primate and rodent models of peak-dose l-dopa-induced dyskinesia have excellent construct validity and provide valuable tools for discovering therapeutic targets and evaluating potential treatments. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, Lund, Sweden
| | | |
Collapse
|
15
|
Lerner RP, Francardo V, Fujita K, Bimpisidis Z, Jourdain VA, Tang CC, Dewey SL, Chaly T, Cenci MA, Eidelberg D. Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci Rep 2017; 7:16005. [PMID: 29167476 PMCID: PMC5700135 DOI: 10.1038/s41598-017-16228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/09/2017] [Indexed: 01/24/2023] Open
Abstract
Chronic levodopa treatment leads to the appearance of dyskinesia in the majority of Parkinson’s disease patients. Neurovascular dysregulation in putaminal and pallidal regions is thought to be an underlying feature of this complication of treatment. We used microPET to study unilaterally lesioned 6-hydroxydopamine rats that developed levodopa-induced abnormal involuntary movements (AIMs) after three weeks of drug treatment. Animals were scanned with [15O]-labeled water and [18F]-fluorodeoxyglucose, to map regional cerebral blood flow and glucose metabolism, and with [11C]-isoaminobutyric acid (AIB), to assess blood-brain-barrier (BBB) permeability, following separate injections of levodopa or saline. Multitracer scan data were acquired in each animal before initiating levodopa treatment, and again following the period of daily drug administration. Significant dissociation of vasomotor and metabolic levodopa responses was seen in the striatum/globus pallidus (GP) of the lesioned hemisphere. These changes were accompanied by nearby increases in [11C]-AIB uptake in the ipsilateral GP, which correlated with AIMs scores. Histopathological analysis revealed high levels of microvascular nestin immunoreactivity in the same region. The findings demonstrate that regional flow-metabolism dissociation and increased BBB permeability are simultaneously induced by levodopa within areas of active microvascular remodeling, and that such changes correlate with the severity of dyskinesia.
Collapse
Affiliation(s)
- Renata P Lerner
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Koji Fujita
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Zisis Bimpisidis
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vincent A Jourdain
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Stephen L Dewey
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Thomas Chaly
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|