1
|
Penter L, Cieri N, Maurer K, Kwok M, Lyu H, Lu WS, Oliveira G, Gohil SH, Leshchiner I, Lareau CA, Ludwig LS, Neuberg DS, Kim HT, Li S, Bullinger L, Ritz J, Getz G, Garcia JS, Soiffer RJ, Livak KJ, Wu CJ. Tracking Rare Single Donor and Recipient Immune and Leukemia Cells after Allogeneic Hematopoietic Cell Transplantation Using Mitochondrial DNA Mutations. Blood Cancer Discov 2024; 5:442-459. [PMID: 39236287 PMCID: PMC11528187 DOI: 10.1158/2643-3230.bcd-23-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/30/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
Combined tracking of clonal evolution and chimeric cell phenotypes could enable detection of the key cellular populations associated with response following therapy, including after allogeneic hematopoietic stem cell transplantation (HSCT). We demonstrate that mitochondrial DNA (mtDNA) mutations coevolve with somatic nuclear DNA mutations at relapse post-HSCT and provide a sensitive means to monitor these cellular populations. Furthermore, detection of mtDNA mutations via single-cell assay for transposase-accessible chromatin with select antigen profiling by sequencing (ASAP-seq) simultaneously determines not only donor and recipient cells but also their phenotype at frequencies of 0.1% to 1%. Finally, integration of mtDNA mutations, surface markers, and chromatin accessibility profiles enables the phenotypic resolution of leukemic populations from normal immune cells, thereby providing fresh insights into residual donor-derived engraftment and short-term clonal evolution following therapy for post-transplant leukemia relapse. As throughput evolves, we envision future development of single-cell sequencing-based post-transplant monitoring as a powerful approach for guiding clinical decision-making. Significance: mtDNA mutations enable single-cell tracking of leukemic clonal evolution and donor-recipient origin following allogeneic HSCT. This provides unprecedented insight into chimeric cellular phenotypes of early immune reconstitution, incipient relapse, and quality of donor engraftment with immediate translational potential for future clinical post-transplant monitoring and decision-making.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Nicoletta Cieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Marwan Kwok
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Haoxiang Lyu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wesley S. Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Satyen H. Gohil
- Department of Haematology, University College London Hospitals, London, United Kingdom
| | - Ignaty Leshchiner
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Caleb A. Lareau
- Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Leif S. Ludwig
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Haesook T. Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
3
|
Penter L, Liu Y, Wolff JO, Yang L, Taing L, Jhaveri A, Southard J, Patel M, Cullen NM, Pfaff KL, Cieri N, Oliveira G, Kim-Schulze S, Ranasinghe S, Leonard R, Robertson T, Morgan EA, Chen HX, Song MH, Thurin M, Li S, Rodig SJ, Cibulskis C, Gabriel S, Bachireddy P, Ritz J, Streicher H, Neuberg DS, Hodi FS, Davids MS, Gnjatic S, Livak KJ, Altreuter J, Michor F, Soiffer RJ, Garcia JS, Wu CJ. Mechanisms of response and resistance to combined decitabine and ipilimumab for advanced myeloid disease. Blood 2023; 141:1817-1830. [PMID: 36706355 PMCID: PMC10122106 DOI: 10.1182/blood.2022018246] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
The challenge of eradicating leukemia in patients with acute myelogenous leukemia (AML) after initial cytoreduction has motivated modern efforts to combine synergistic active modalities including immunotherapy. Recently, the ETCTN/CTEP 10026 study tested the combination of the DNA methyltransferase inhibitor decitabine together with the immune checkpoint inhibitor ipilimumab for AML/myelodysplastic syndrome (MDS) either after allogeneic hematopoietic stem cell transplantation (HSCT) or in the HSCT-naïve setting. Integrative transcriptome-based analysis of 304 961 individual marrow-infiltrating cells for 18 of 48 subjects treated on study revealed the strong association of response with a high baseline ratio of T to AML cells. Clinical responses were predominantly driven by decitabine-induced cytoreduction. Evidence of immune activation was only apparent after ipilimumab exposure, which altered CD4+ T-cell gene expression, in line with ongoing T-cell differentiation and increased frequency of marrow-infiltrating regulatory T cells. For post-HSCT samples, relapse could be attributed to insufficient clearing of malignant clones in progenitor cell populations. In contrast to AML/MDS bone marrow, the transcriptomes of leukemia cutis samples from patients with durable remission after ipilimumab monotherapy showed evidence of increased infiltration with antigen-experienced resident memory T cells and higher expression of CTLA-4 and FOXP3. Altogether, activity of combined decitabine and ipilimumab is impacted by cellular expression states within the microenvironmental niche of leukemic cells. The inadequate elimination of leukemic progenitors mandates urgent development of novel approaches for targeting these cell populations to generate long-lasting responses. This trial was registered at www.clinicaltrials.gov as #NCT02890329.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yang Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | - Lin Yang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Len Taing
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Aashna Jhaveri
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Jackson Southard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
| | - Manishkumar Patel
- Human Immune Monitoring Center at the Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole M. Cullen
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Nicoletta Cieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center at the Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Rebecca Leonard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Taylor Robertson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth A. Morgan
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Helen X. Chen
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Minkyung H. Song
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Magdalena Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Carrie Cibulskis
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Stacey Gabriel
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | | | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sacha Gnjatic
- Human Immune Monitoring Center at the Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
| | | | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
4
|
Tian Y, Bai F, Zhang D. New target DDR1: A "double-edged sword" in solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188829. [PMID: 36356724 DOI: 10.1016/j.bbcan.2022.188829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Globally, cancer is a major catastrophic disease that seriously threatens human health. Thus, there is an urgent need to find new strategies to treat cancer. Among them, identifying new targets is one of the best ways to treat cancer at present. Especially in recent years, scientists have discovered many new targets and made breakthroughs in the treatment of cancer, bringing new hope to cancer patients. As one of the novel targets for cancer treatment, DDR1 has attracted much attention due to its unique role in cancer. Hence, here, we focus on a new target, DDR1, which may be a "double-edged sword" of human solid tumors. In this review, we provide a comprehensive overview of how DDR1 acts as a "double-edged sword" in cancer. First, we briefly introduce the structure and normal physiological function of DDR1; Second, we delineate the DDR1 expression pattern in single cells; Next, we sorte out the relationship between DDR1 and cancer, including the abnormal expression of DDR1 in cancer, the mechanism of DDR1 and cancer occurrence, and the value of DDR1 on cancer prognosis. In addition, we introduced the current status of global drug and antibody research and development targeting DDR1 and its future design prospects; Finally, we summarize and look forward to designing more DDR1-targeting drugs in the future to make further progress in the treatment of solid tumors.
Collapse
Affiliation(s)
- Yonggang Tian
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
5
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
6
|
Penter L, Gohil SH, Wu CJ. Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics. Front Immunol 2022; 12:788891. [PMID: 35046946 PMCID: PMC8761982 DOI: 10.3389/fimmu.2021.788891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Blood malignancies provide unique opportunities for longitudinal tracking of disease evolution following therapeutic bottlenecks and for the monitoring of changes in anti-tumor immunity. The expanding development of multi-modal single-cell sequencing technologies affords newer platforms to elucidate the mechanisms underlying these processes at unprecedented resolution. Furthermore, the identification of molecular events that can serve as in-vivo barcodes now facilitate the tracking of the trajectories of malignant and of immune cell populations over time within primary human samples, as these permit unambiguous identification of the clonal lineage of cell populations within heterogeneous phenotypes. Here, we provide an overview of the potential for chromosomal copy number changes, somatic nuclear and mitochondrial DNA mutations, single nucleotide polymorphisms, and T and B cell receptor sequences to serve as personal natural barcodes and review technical implementations in single-cell analysis workflows. Applications of these methodologies include the study of acquired therapeutic resistance and the dissection of donor- and host cellular interactions in the context of allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Satyen H. Gohil
- Department of Academic Haematology, University College London Cancer Institute, London, United Kingdom
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Coevolving JAK2V617F+relapsed AML and donor T cells with PD-1 blockade after stem cell transplantation: an index case. Blood Adv 2021; 5:4701-4709. [PMID: 34432868 PMCID: PMC8759138 DOI: 10.1182/bloodadvances.2021004335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/09/2021] [Indexed: 01/22/2023] Open
Abstract
Index case of nivolumab response associated with altered circulating T-cell composition and heterogeneous PD-L1 expression on AML blasts. Single-cell approaches provide complementary insight into cellular mechanisms of response and resistance to transplant/checkpoint blockade.
Relapse of myeloproliferative neoplasms (MPNs) after allogeneic hematopoietic stem cell transplantation (HSCT) is associated with poor outcomes, as therapeutic approaches to reinstate effective graft-versus-leukemia (GVL) responses remain suboptimal. Immune escape through overexpression of PD-L1 in JAK2V617F-mutated MPN provides a rationale for therapeutic PD-1 blockade, and indeed, clinical activity of nivolumab in relapsed MPN post-HSCT has been observed. Elucidation of the features of response following PD-1 blockade in such patients could inform novel therapeutic concepts that enhance GVL. Here, we report an integrated high-dimensional analysis using single-cell RNA sequencing, T-cell receptor sequencing, cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), and assay for transposase-accessible chromatin using sequencing (scATAC-seq), together with mass cytometry, in peripheral blood mononuclear cells collected at 6 timepoints before, during, and after transient response to PD-1 blockade from an index case of relapsed MPN following HSCT. Before nivolumab infusion, acute myeloid leukemia (AML) blasts demonstrated high expression of chemokines, and T cells were characterized by expression of interferon-response genes. This baseline inflammatory signature disappeared after nivolumab infusion. Clinical response was characterized by transient expansion of a polyclonal CD4+ T-cell population and contraction of an AML subpopulation that exhibited megakaryocytic features and elevated PD-L1 expression. At relapse, the proportion of the AML subpopulation with progenitor-like features progressively increased, suggesting coevolution of AML blasts and donor-derived T cells. We thus demonstrate how single-cell technologies can provide complementary insight into cellular mechanisms underlying response to PD-1 blockade, motivating future longitudinal high-dimensional single-cell studies of GVL responses in relapsed myeloid disease.
Collapse
|
8
|
Penter L, Zhang Y, Savell A, Huang T, Cieri N, Thrash EM, Kim-Schulze S, Jhaveri A, Fu J, Ranasinghe S, Li S, Zhang W, Hathaway ES, Nazzaro M, Kim HT, Chen H, Thurin M, Rodig SJ, Severgnini M, Cibulskis C, Gabriel S, Livak KJ, Cutler C, Antin JH, Nikiforow S, Koreth J, Ho VT, Armand P, Ritz J, Streicher H, Neuberg D, Hodi FS, Gnjatic S, Soiffer RJ, Liu XS, Davids MS, Bachireddy P, Wu CJ. Molecular and cellular features of CTLA-4 blockade for relapsed myeloid malignancies after transplantation. Blood 2021; 137:3212-3217. [PMID: 33720354 PMCID: PMC8351891 DOI: 10.1182/blood.2021010867] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed myeloid disease after allogeneic stem cell transplantation (HSCT) remains largely incurable. We previously demonstrated the potent activity of immune checkpoint blockade in this clinical setting with ipilimumab or nivolumab. To define the molecular and cellular pathways by which CTLA-4 blockade with ipilimumab can reinvigorate an effective graft-versus-leukemia (GVL) response, we integrated transcriptomic analysis of leukemic biopsies with immunophenotypic profiling of matched peripheral blood samples collected from patients treated with ipilimumab following HSCT on the Experimental Therapeutics Clinical Trials Network 9204 trial. Response to ipilimumab was associated with transcriptomic evidence of increased local CD8+ T-cell infiltration and activation. Systemically, ipilimumab decreased naïve and increased memory T-cell populations and increased expression of markers of T-cell activation and costimulation such as PD-1, HLA-DR, and ICOS, irrespective of response. However, responding patients were characterized by higher turnover of T-cell receptor sequences in peripheral blood and showed increased expression of proinflammatory chemokines in plasma that was further amplified by ipilimumab. Altogether, these data highlight the compositional T-cell shifts and inflammatory pathways induced by ipilimumab both locally and systemically that associate with successful GVL outcomes. This trial was registered at www.clinicaltrials.gov as #NCT01822509.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yi Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Alexandra Savell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Teddy Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Translational Immunogenomics Laboratory and
| | - Nicoletta Cieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Emily M Thrash
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center at the Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aashna Jhaveri
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Jingxin Fu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Translational Immunogenomics Laboratory and
| | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Emma S Hathaway
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew Nazzaro
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Haesook T Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Helen Chen
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD; and
| | - Magdalena Thurin
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD; and
| | | | | | - Carrie Cibulskis
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Stacey Gabriel
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Translational Immunogenomics Laboratory and
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Joseph H Antin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - John Koreth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD; and
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sacha Gnjatic
- Human Immune Monitoring Center at the Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Pavan Bachireddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
9
|
O'Neill AT, Chakraverty R. Graft Versus Leukemia: Current Status and Future Perspectives. J Clin Oncol 2021; 39:361-372. [PMID: 33434054 DOI: 10.1200/jco.20.01801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aideen T O'Neill
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
| | - Ronjon Chakraverty
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
| |
Collapse
|
10
|
Mazzarini M, Falchi M, Bani D, Migliaccio AR. Evolution and new frontiers of histology in bio-medical research. Microsc Res Tech 2020; 84:217-237. [PMID: 32915487 DOI: 10.1002/jemt.23579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Histology refers to the study of the morphology of cells within their natural tissue environment. As a bio-medical discipline, it dates back to the development of first microscopes which allowed to override the physical visual limitation of the human eye. Since the first observations, it was understood that cell shape predicts function and, therefore, shape alterations can identify and explain dysfunction and diseases. The advancements in morphological investigation techniques have allowed to extend our understanding of the shape-function relationships close to the molecular level of organization of tissues, as well as to derive reliable data not only from fixed, and hence static, biological samples but also living cells and tissues and even for extended time periods. These modern approaches, which encompass quantitative microscopy, precision microscopy, and dynamic microscopy, represent the new frontier of morphology. This article summarizes how the microscopy techniques have evolved to properly face the challenges of biomedical sciences, thus transforming histology from a merely qualitative discipline, which played an ancillary role to traditional "major" sciences such as anatomy, to a modern experimental science capable of driving knowledge progress in biology and medicine.
Collapse
Affiliation(s)
- Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Bani
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Rita Migliaccio
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy.,Myeloproliferative Neoplasm-Research Consortium, New York City, New York, USA
| |
Collapse
|
11
|
Abstract
In spite of the recent approval of new promising targeted therapies, the clinical outcome of patients with acute myeloid leukemia (AML) remains suboptimal, prompting the search for additional and synergistic therapeutic rationales. It is increasingly evident that the bone marrow immune environment of AML patients is profoundly altered, contributing to the severity of the disease but also providing several windows of opportunity to prompt or rewire a proficient antitumor immune surveillance. In this Review, we present current evidence on immune defects in AML, discuss the challenges with selective targeting of AML cells, and summarize the clinical results and immunologic insights from studies that are testing the latest immunotherapy approaches to specifically target AML cells (antibodies, cellular therapies) or more broadly reactivate antileukemia immunity (vaccines, checkpoint blockade). Given the complex interactions between AML cells and the many components of their environment, it is reasonable to surmise that the future of immunotherapy in AML lies in the rational combination of complementary immunotherapeutic strategies with chemotherapeutics or other oncogenic pathway inhibitors. Identifying reliable biomarkers of response to improve patient selection and avoid toxicities will be critical in this process.
Collapse
Affiliation(s)
- Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, and
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ivana Gojo
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|