1
|
Koch S. The transcription factor FOXQ1 in cancer. Cancer Metastasis Rev 2025; 44:22. [PMID: 39777582 PMCID: PMC11711781 DOI: 10.1007/s10555-025-10240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
FOXQ1 is a member of the large forkhead box (FOX) family of transcription factors that is involved in all aspects of mammalian development, physiology, and pathobiology. FOXQ1 has emerged as a major regulator of epithelial-to-mesenchymal transition and tumour metastasis in cancers, especially carcinomas of the digestive tract. Accordingly, FOXQ1 induction is recognised as an independent prognostic factor for worse overall survival in several types of cancer, including gastric and colorectal cancer. In this review article, I summarise new evidence on the role of FOXQ1 in cancer, with a focus on molecular mechanisms that control FOXQ1 levels and the regulation of FOXQ1 target genes. Unravelling the functions of FOXQ1 has the potential to facilitate the development of targeted treatments for metastatic cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden.
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, BKV/MMV - Plan 13, Lab 1, 581 85, Linköping, Sweden.
| |
Collapse
|
2
|
Hwang I, Nikoli H, Paik J. Functional Motif Discovery in FOXO1 Through CRISPR/Cas9 Exon Tiling Scan. Methods Mol Biol 2025; 2871:57-68. [PMID: 39565578 DOI: 10.1007/978-1-0716-4217-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The study of FOXO1, a pivotal transcription factor, has garnered significant attention due to its critical role in diverse cellular processes, including lineage differentiation, apoptosis, cell cycle regulation, and metabolism. To comprehensively understand the functional intricacies of FOXO1, an innovative approach is essential. This chapter highlights employing CRISPR exon scanning as a strategic tool to dissect the functional domains of FOXO1 and unravel its diverse regulatory functions. CRISPR exon scan allows for the identification of functionally important domains based on the levels of sgRNA depletion or enrichment within the FOXO1 gene, providing a unique opportunity to investigate the domain function under relevant biological contexts. This approach enables the systematic exploration of FOXO1's structural domains, shedding light on how distinct regions contribute to its overall function. The comprehensive exon scan analysis using CRISPR technology allows gaining a nuanced understanding of FOXO1's functional diversity and regulatory mechanisms.
Collapse
Affiliation(s)
- Inah Hwang
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| | - Helgi Nikoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- The Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Hlavac K, Pavelkova P, Ondrisova L, Mraz M. FoxO1 signaling in B cell malignancies and its therapeutic targeting. FEBS Lett 2024. [PMID: 39533662 DOI: 10.1002/1873-3468.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
FoxO transcription factors (FoxO1, FoxO3a, FoxO4, FoxO6) are a highly evolutionary conserved subfamily of the 'forkhead' box proteins. They have traditionally been considered tumor suppressors, but FoxO1 also exhibits oncogenic properties. The complex nature of FoxO1 is illustrated by its various roles in B cell development and differentiation, immunoglobulin gene rearrangement and cell-surface B cell receptor (BCR) structure, DNA damage control, cell cycle regulation, and germinal center reaction. FoxO1 is tightly regulated at a transcriptional (STAT3, HEB, EBF, FoxOs) and post-transcriptional level (Akt, AMPK, CDK2, GSK3, IKKs, JNK, MAPK/Erk, SGK1, miRNA). In B cell malignancies, recurrent FoxO1 activating mutations (S22/T24) and aberrant nuclear export and activity have been described, underscoring the potential of its therapeutic inhibition. Here, we review FoxO1's roles across B cell and myeloid malignancies, namely acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and multiple myeloma (MM). We also discuss preclinical evidence for FoxO1 targeting by currently available inhibitors (AS1708727, AS1842856, cpd10).
Collapse
Affiliation(s)
- Krystof Hlavac
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Petra Pavelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
4
|
Ondrisova L, Seda V, Hlavac K, Pavelkova P, Hoferkova E, Chiodin G, Kostalova L, Mladonicka Pavlasova G, Filip D, Vecera J, Zeni PF, Oppelt J, Kahounova Z, Vichova R, Soucek K, Panovska A, Plevova K, Pospisilova S, Simkovic M, Vrbacky F, Lysak D, Fernandes SM, Davids MS, Maiques-Diaz A, Charalampopoulou S, Martin-Subero JI, Brown JR, Doubek M, Forconi F, Mayer J, Mraz M. FoxO1/Rictor axis induces a non-genetic adaptation to Ibrutinib via Akt activation in chronic lymphocytic leukemia. J Clin Invest 2024; 134:e173770. [PMID: 39436708 PMCID: PMC11601945 DOI: 10.1172/jci173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BTK inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL) lasting for several months. It remains unclear whether non-genetic adaptation mechanisms exist, allowing CLL cells' survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70 % of CLL cases, ibrutinib treatment in vivo increases Akt activity above pre-therapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of FoxO1 transcription factor, which induces expression of Rictor, an assembly protein for mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knock-out or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. FoxO1/Rictor/pAktS473 axis represents an early non-genetic adaptation to BCR inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically, and its inhibition induces CLL cells' apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T-cell factors (CD40L, IL-4, and IL-21).
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Vaclav Seda
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Krystof Hlavac
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Pavelkova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Eva Hoferkova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Giorgia Chiodin
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lenka Kostalova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Daniel Filip
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Josef Vecera
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Jan Oppelt
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
| | - Zuzana Kahounova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Rachel Vichova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Anna Panovska
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Karla Plevova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Simkovic
- Fourth Department of Internal Medicine–Haematology, University Hospital Hradec Kralove and Faculty of Medicine Hradec Kralove, Charles University, Prague, Czechia
| | - Filip Vrbacky
- Fourth Department of Internal Medicine–Haematology, University Hospital Hradec Kralove and Faculty of Medicine Hradec Kralove, Charles University, Prague, Czechia
| | - Daniel Lysak
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alba Maiques-Diaz
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Stella Charalampopoulou
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jose I. Martin-Subero
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Francesco Forconi
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Haematology Department, Cancer Care Directorate, University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
Accili D, Talchai SC, Bouchi R, Lee AY, Du W, Kitamoto T, McKimpson WM, Belvedere S, Lin HV. Diabetes treatment by conversion of gut epithelial cells to insulin-producing cells. J Diabetes Investig 2024; 15:797-804. [PMID: 38426644 PMCID: PMC11215681 DOI: 10.1111/jdi.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Insulin-deficient (type 1) diabetes is treated by providing insulin to maintain euglycemia. The current standard of care is a quasi-closed loop integrating automated insulin delivery with a continuous glucose monitoring sensor. Cell replacement technologies are advancing as an alternative treatment and have been tested as surrogates to cadaveric islets in transplants. In addition, immunomodulatory treatments to delay the onset of type 1 diabetes in high-risk (stage 2) individuals have gained regulatory approval. We have pioneered a cell conversion approach to restore insulin production through pharmacological conversion of intestinal epithelial cells into insulin-producing cells. We have advanced this approach along a translational trajectory through the discovery of small molecule forkhead box protein O1 inhibitors. When administered to different rodent models of insulin-deficient diabetes, these inhibitors have resulted in robust glucose-lowering responses and generation of insulin-producing cells in the gut epithelium. We review past work and delineate a path to human clinical trials.
Collapse
Affiliation(s)
- Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes CenterVagelos College of Physicians and Surgeons of Columbia UniversityNew York CityNew YorkUSA
| | | | - Ryotaro Bouchi
- Diabetes and Metabolism Information Center, Diabetes Research CenterResearch Institute, National Center for Global Health and MedicineTokyoJapan
| | | | - Wen Du
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhouChina
| | - Takumi Kitamoto
- Department of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
| | - Wendy M McKimpson
- Department of Medicine and Naomi Berrie Diabetes CenterVagelos College of Physicians and Surgeons of Columbia UniversityNew York CityNew YorkUSA
| | - Sandro Belvedere
- ARMGO Pharma, Inc.ArdsleyNew YorkUSA
- Avicenna Biosciences, Inc.DurhamNorth CarolinaUSA
| | - Hua V Lin
- Render TherapeuticsLincolnMassachusettsUSA
| |
Collapse
|
6
|
Abstract
Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms. Front Immunol 2024; 15:1320689. [PMID: 38318177 PMCID: PMC10839018 DOI: 10.3389/fimmu.2024.1320689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.
Collapse
Affiliation(s)
- Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Asante Y, Benischke K, Osman I, Ngo QA, Wurth J, Laubscher D, Kim H, Udhayakumar B, Khan MIH, Chin DH, Porch J, Chakraborty M, Sallari R, Delattre O, Zaidi S, Morice S, Surdez D, Danielli SG, Schäfer BW, Gryder BE, Wachtel M. PAX3-FOXO1 uses its activation domain to recruit CBP/P300 and shape RNA Pol2 cluster distribution. Nat Commun 2023; 14:8361. [PMID: 38102136 PMCID: PMC10724205 DOI: 10.1038/s41467-023-43780-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.
Collapse
Affiliation(s)
- Yaw Asante
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Katharina Benischke
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Issra Osman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Quy A Ngo
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Jakob Wurth
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Dominik Laubscher
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Md Imdadul H Khan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Diana H Chin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jadon Porch
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Sakina Zaidi
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Sarah Morice
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Sara G Danielli
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Beat W Schäfer
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
| | - Berkley E Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Marco Wachtel
- University Children's Hospital, Children's Research Center and Department of Oncology, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
| |
Collapse
|
9
|
Doan A, Mueller KP, Chen A, Rouin GT, Daniel B, Lattin J, Chen Y, Mozarsky B, Markovska M, Arias-Umana J, Hapke R, Jung I, Xu P, Klysz D, Bashti M, Quinn PJ, Sandor K, Zhang W, Hall J, Lareau C, Grupp SA, Fraietta JA, Sotillo E, Satpathy AT, Mackall CL, Weber EW. FOXO1 is a master regulator of CAR T memory programming. RESEARCH SQUARE 2023:rs.3.rs-2802998. [PMID: 37986944 PMCID: PMC10659532 DOI: 10.21203/rs.3.rs-2802998/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3-7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.
Collapse
Affiliation(s)
- Alexander Doan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine P Mueller
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Geoffrey T Rouin
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - John Lattin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yingshi Chen
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brett Mozarsky
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Markovska
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jose Arias-Umana
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Hapke
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inyoung Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malek Bashti
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Wenxi Zhang
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junior Hall
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caleb Lareau
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| | - Stephan A Grupp
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Division of Blood and Marrow Transplantation and Cell Therapy, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Evan W Weber
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| |
Collapse
|
10
|
Brown-Burke F, Hwang I, Sloan S, Hinterschied C, Helmig-Mason J, Long M, Chan WK, Prouty A, Chung JH, Zhang Y, Singh S, Youssef Y, Bhagwat N, Chen Z, Chen-Kiang S, Di Liberto M, Elemento O, Sehgal L, Alinari L, Vaddi K, Scherle P, Lapalombella R, Paik J, Baiocchi RA. PRMT5 inhibition drives therapeutic vulnerability to combination treatment with BCL-2 inhibition in mantle cell lymphoma. Blood Adv 2023; 7:6211-6224. [PMID: 37327122 PMCID: PMC10582835 DOI: 10.1182/bloodadvances.2023009906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The average overall survival of patients with MCL is 5 years, and for most patients who progress on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life. The protein arginine methyltransferase 5 (PRMT5) enzyme is overexpressed in MCL and promotes growth and survival. Inhibition of PRMT5 drives antitumor activity in MCL cell lines and preclinical murine models. PRMT5 inhibition reduced the activity of prosurvival AKT signaling, which led to the nuclear translocation of FOXO1 and modulation of its transcriptional activity. Chromatin immunoprecipitation and sequencing identified multiple proapoptotic BCL-2 family members as FOXO1-bound genomic loci. We identified BAX as a direct transcriptional target of FOXO1 and demonstrated its critical role in the synergy observed between the selective PRMT5 inhibitor, PRT382, and the BCL-2 inhibitor, venetoclax. Single-agent and combination treatments were performed in 9 MCL lines. Loewe synergy scores showed significant levels of synergy in most MCL lines tested. Preclinical, in vivo evaluation of this strategy in multiple MCL models showed therapeutic synergy with combination venetoclax/PRT382 treatment with an increased survival advantage in 2 patient-derived xenograft models (P ≤ .0001, P ≤ .0001). Our results provide mechanistic rationale for the combination of PRMT5 inhibition and venetoclax to treat patients with MCL.
Collapse
Affiliation(s)
- Fiona Brown-Burke
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Inah Hwang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Shelby Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Claire Hinterschied
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Mackenzie Long
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Alexander Prouty
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ji-Hyun Chung
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | - Satishkumar Singh
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Department of Physiology & Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | | | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Wang L, Li Z, Lu T, Su L, Mao C, Zhang Y, Zhang X, Jiang X, Xie H, Yu X. The potential mechanism of Choulingdan mixture in improving acute lung injury based on HPLC-Q-TOF-MS, network pharmacology and in vivo experiments. Biomed Chromatogr 2023; 37:e5709. [PMID: 37533317 DOI: 10.1002/bmc.5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Choulingdan mixture (CLDM) is an empirical clinical prescription for the adjuvant treatment of acute lung injury (ALI). CLDM has been used for almost 30 years in the clinic. However, its mechanism for improving ALI still needs to be investigated. In this study, high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) was applied to characterize the overall chemical composition of CLDM. A total of 93 ingredients were characterized, including 25 flavonoids, 20 organic acids, 11 saponins, nine terpenoids, seven tannins and 21 other compounds. Then network pharmacology was applied to predict the potential bioactive components, target genes and signaling pathways of CLDM in improving ALI. Additionally, molecular docking was performed to demonstrate the interaction between the active ingredients and the disease targets. Finally, animal experiments further confirmed that CLDM significantly inhibits pulmonary inflammation, pulmonary edema and oxidative stress in lipopolysaccharide-induced ALI mice by inhibiting the PI3K-AKT signaling pathway. This study enhanced the amount and accuracy of compounds of CLDM and provided new insights into CLDM preventing and treating ALI.
Collapse
Affiliation(s)
- Lili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyan Li
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiting Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinrui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Yu
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
12
|
Lees J, Hay J, Moles MW, Michie AM. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front Immunol 2023; 14:1179101. [PMID: 37275916 PMCID: PMC10233034 DOI: 10.3389/fimmu.2023.1179101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Forkhead box (FOX) class O (FOXO) proteins are a dynamic family of transcription factors composed of four family members: FOXO1, FOXO3, FOXO4 and FOXO6. As context-dependent transcriptional activators and repressors, the FOXO family regulates diverse cellular processes including cell cycle arrest, apoptosis, metabolism, longevity and cell fate determination. A central pathway responsible for negative regulation of FOXO activity is the phosphatidylinositol-3-kinase (PI3K)-AKT signalling pathway, enabling cell survival and proliferation. FOXO family members can be further regulated by distinct kinases, both positively (e.g., JNK, AMPK) and negatively (e.g., ERK-MAPK, CDK2), with additional post-translational modifications further impacting on FOXO activity. Evidence has suggested that FOXOs behave as 'bona fide' tumour suppressors, through transcriptional programmes regulating several cellular behaviours including cell cycle arrest and apoptosis. However, an alternative paradigm has emerged which indicates that FOXOs operate as mediators of cellular homeostasis and/or resistance in both 'normal' and pathophysiological scenarios. Distinct FOXO family members fulfil discrete roles during normal B cell maturation and function, and it is now clear that FOXOs are aberrantly expressed and mutated in discrete B-cell malignancies. While active FOXO function is generally associated with disease suppression in chronic lymphocytic leukemia for example, FOXO expression is associated with disease progression in diffuse large B cell lymphoma, an observation also seen in other cancers. The opposing functions of the FOXO family drives the debate about the circumstances in which FOXOs favour or hinder disease progression, and whether targeting FOXO-mediated processes would be effective in the treatment of B-cell malignancies. Here, we discuss the disparate roles of FOXO family members in B lineage cells, the regulatory events that influence FOXO function focusing mainly on post-translational modifications, and consider the potential for future development of therapies that target FOXO activity.
Collapse
Affiliation(s)
| | | | | | - Alison M. Michie
- Paul O’Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|