1
|
Kallionpää RA, Martikkala E, Haapaniemi P, Karppinen SM, Riihilä P, Rokka A, Leivo I, Pihlajaniemi T, Peltonen S, Peltonen J. Mass spectrometric insights into the protein composition of human cutaneous neurofibromas: comparison of neurofibromas with the overlying skin. Br J Cancer 2025:10.1038/s41416-025-03055-9. [PMID: 40394150 DOI: 10.1038/s41416-025-03055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 04/20/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Cutaneous neurofibromas (cNFs) are the hallmark of the tumor-predisposition syndrome neurofibromatosis 1 (NF1). While cNFs are always benign, they markedly decrease quality of life in individuals with NF1. Understanding the differences between cNFs and the skin is essential for developing treatments for cNFs. METHODS We collected 15 cNFs from four NF1 individuals and used mass spectrometry to compare the tumor tissue with the skin overlying each tumor. Data were analyzed based on Gene Ontology (GO) terms. RESULTS The expression patterns of the Schwann cell marker S100B and several keratins confirmed successful dissection of cNF tissue from the overlying skin. Hierarchical clustering showed extensive overlap between the tumor and skin samples in three out of four individuals, suggesting high overall similarity between the two tissue types. Based on the analysis of the GO terms, cNFs were associated with decreased expression of proteins related to cell proliferation, extracellular matrix remodeling, angiogenesis and cellular metabolism. CONCLUSION The cNFs are relatively quiescent, consistent with their benign nature and limited growth potential. The development of pharmacological therapy for cNFs requires overcoming the high similarity between cNFs and the overlying skin. The present dataset can serve as a resource for future research on cNFs.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Eija Martikkala
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pekka Haapaniemi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sanna-Maria Karppinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pilvi Riihilä
- Department of Dermatology and Venereology, University of Turku, Turku, Finland
- Department of Dermatology, Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ilmo Leivo
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland
- Department of Dermatology, Turku University Hospital, Turku, Finland
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Dermatology and Allergology, University of Helsinki, Helsinki, Finland
- Inflammation Center, Helsinki University Hospital, Helsinki, Finland
| | - Juha Peltonen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland.
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Zaidi Y, Tritz R, Zaidi N, Nabi F, Zaidi SAH, Morsy A, Harris V, Racine R, Hudson FZ, Bordan Z, Kennard S, Batori R, Huo Y, Csanyi G, Belin de Chantemèle EJ, Lei K, Boulis NM, Fulton DJ, Khan RH, Caldwell RB, Stansfield BK. Loss of neurofibromin induces inflammatory macrophage phenotypic switch and retinal neovascularization via GLUT1 activation. Cell Rep 2025; 44:115625. [PMID: 40279245 DOI: 10.1016/j.celrep.2025.115625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 04/07/2025] [Indexed: 04/27/2025] Open
Abstract
Persons with neurofibromatosis type 1 (NF1) exhibit enhanced glucose metabolism, which is replicated in Nf1-mutant mice. Inflammatory macrophages invest NF1-associated tumors, and targeting macrophages appears efficacious in NF1 models. Inflammatory macrophages rely on glycolysis to generate ATP; thus, identifying whether neurofibromin, the protein encoded by NF1, controls glucose metabolism in macrophages is therapeutically compelling. Using neurofibromin-deficient macrophages and macrophage-specific Nf1-knockout mice, we demonstrate that neurofibromin complexes with glucose transporter-1 (GLUT1) to restrain its activity and that loss of neurofibromin permits Akt2 to facilitate GLUT1 translocation to the membrane. In turn, glucose internalization and glycolysis are upregulated and provoke reparative (MIL4) macrophages to undergo an inflammatory phenotypic switch. Inflammatory MLPSIFNγ macrophages and inflammatory-like MIL4 macrophages invest the perivascular stroma of tumors and induce pathologic angiogenesis in macrophage-specific Nf1-knockout mice. These studies identify a mechanism for the enhanced glycolysis associated with NF1 and provide a novel therapeutic target for NF1.
Collapse
Affiliation(s)
- Yusra Zaidi
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rebekah Tritz
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Syed Adeel H Zaidi
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Abdelhakim Morsy
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Ophthalmology, Al-Azhar University, Cairo, Egypt
| | - Valerie Harris
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rilee Racine
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Farlyn Z Hudson
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsuzsanna Bordan
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Simone Kennard
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Robert Batori
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Yuqing Huo
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David J Fulton
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Brian K Stansfield
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
3
|
Lai GY, Lee YC, Weng HJ, Lai KH, Hsiang MC, Hsu KY, Liao CP. Discoidin domain receptor inhibitor DDR1-IN-1 induces autophagy and necroptotic cell death in malignant peripheral nerve sheath tumor. Cell Death Discov 2025; 11:83. [PMID: 40025071 PMCID: PMC11873111 DOI: 10.1038/s41420-025-02367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/14/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a soft tissue sarcoma commonly associated with the tumor-predisposition disorder neurofibromatosis 1. The extracellular matrix collagens contribute to many fibrotic tumors; however, the role of collagen signaling in MPNST was unclear. This study investigated the effects of blocking the interaction between collagens and their receptors in MPNST. We first analyzed the expressions of collagen family proteins in MPNSTs and found an overall increase compared to neurofibroma. Treatment of DDR1-IN-1, a small molecule inhibitor for the collagen receptor discoidin domain receptor, induced a robust MPNST cell death, highlighting the dependence of MPNST survival on collagen signaling. DDR1-IN-1 induced MPNST cell death by activating autophagy and necroptosis signaling. Treatment of necroptosis inhibitors necrostatin-1 or necrosulfonamide reduced the numbers of DDR1-IN-1-induced necrotic cells and autolysosomes, suggesting that the autophagic process depends on necroptosis activation. Combinations of DDR1-IN-1 with other anti-MPNST agents revealed synergistic activities against MPNST. In summary, this study discovered a critical MPNST death signaling induced by the small molecule DDR1-IN-1, which might shed light on future MPNST therapeutic strategies.
Collapse
Affiliation(s)
- Guan-Yi Lai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hao-Jui Weng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Min-Chen Hsiang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kai-Yu Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chung-Ping Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
| |
Collapse
|
4
|
Rambo M, Agarwala I, Vanek C, Xiao Y, Brown E, Mills KL. Schwann Cells Deficient in Neurofibromin Lack Sensitivity to Their Biomechanical Microenvironment. Genes Chromosomes Cancer 2025; 64:e70036. [PMID: 39996425 DOI: 10.1002/gcc.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND AIMS Plexiform neurofibromas (PNFs) are benign tumors of the peripheral nervous system that affect approximately 30% of people with neurofibromatosis type 1 (NF1). Schwann cells (SCs), the tumor progenitor cells, respond to and use biomechanical signals like tissue stiffness and mechanical loads in their maintenance and repair functions in healthy tissues. PNFs are described as having altered biomechanics, and we hypothesize this plays a role in PNF development. As a first step in studying the role that altered biomechanics may play in the development of PNFs, we aimed to determine how PNF SCs alter in their response to various biomechanical signals as compared to healthy SCs. METHODS We examined the behavior of healthy and PNF SCs in three different tissue-mimicking biomechanical models. First, we examined their spreading behavior on extracellular matrix (ECM) protein-coated polyacrylamide hydrogels of varying stiffness in the healthy and pathological range. Second, we investigated their collective migration with respect to substrate stiffness and ECM protein-coating. Finally, we generated multicellular spheroid tissue models using healthy and PNF SCs and measured their mechanical properties as a function of spheroid size. RESULTS We found that PNF SCs are differently sensitive to substrate stiffness in a physiological range compared to healthy SCs, lack sensitivity to ECM protein coating when collectively migrating, and lack sensitivity to environmental deficiencies in oxygen and nutrient supplies when in spheroid culture. INTERPRETATION We propose that PNF SC altered biomechanics likely play a role in tumor initiation and progression, and that further biomechanical-based investigations of NF1 tumor growth are needed.
Collapse
Affiliation(s)
- Micah Rambo
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Isheka Agarwala
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Mechanical, Aerospace, and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Camdyn Vanek
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Mechanical, Aerospace, and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Yuxin Xiao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Mechanical, Aerospace, and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Emma Brown
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Mechanical, Aerospace, and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - K L Mills
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Mechanical, Aerospace, and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
5
|
Wang X, Wang Z. A novel basement membrane-related gene signature for predicting prognosis of HNSCC. Medicine (Baltimore) 2025; 104:e41316. [PMID: 39833042 PMCID: PMC11749747 DOI: 10.1097/md.0000000000041316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
In recent years, a notably heterogeneous malignant tumor, squamous cell carcinoma of the head and neck (HNSCC), has received increasing attention, with no significant improvement in its survival rate. The rapid increase in the number of prognostic models associated with HNSCC has been observed due to its accuracy, which offers crucial clinical benefits. The 10 genes were selected from 222 human genes associated with the basement membrane in the analysis of this article. The gene pool was narrowed through different classifications and intersections, followed by univariate Cox regression analysis. Genes with statistical significance underwent further Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, resulting in the final selection of 10 genes. The data and images extracted from the Human Protein Atlas database were utilized to confirm the differential expression of the corresponding genes. Multivariate Cox regression analysis was employed to develop a nomogram, and the nomogram was assessed by additional decision curve analysis (DCA). The Gene Expression Omnibus validation set was used to validate the established model. Finally, between the high- and low-risk score groups, Gene Set Enrichment Analysis, immune correlation analysis, and drug sensitivity analysis were conducted in this paper. ITGA5, SPOCK1, EVA1C, TINAGL1, LAMB4, ADAMTS1, EGFL6, GPC2, BGN, and ITGA2B were successfully developed as basement membrane-associated risk models. The time-dependent receiver operating characteristic (timeROC) curve illustrated that the risk score prediction accuracy outperformed indicators, which were commonly adopted in clinical practice, consisting of age, stage, gender, T-staging, and N-staging. The 3-year risk score timeROC area under the curve value was 0.679. This model demonstrates a reliable ability to assess the prognosis of HNSCC patients. In addition, the specific potential biomarkers associated with the basement membrane were explored in this research.
Collapse
Affiliation(s)
- Xia Wang
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiming Wang
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Yu X, Gu Y, Liu J, Huang J, Li Q, Wang Z. Emerging mechanism and therapeutic potential of neurofibromatosis type 1-related nerve system tumor: Advancing insights into tumor development. Neurooncol Adv 2025; 7:vdaf040. [PMID: 40134850 PMCID: PMC11934560 DOI: 10.1093/noajnl/vdaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 gene, which increases susceptibility to various nervous system tumors, including plexiform neurofibromas, malignant peripheral nerve sheath tumors, and optic pathway gliomas. Recent research has shown that these tumors are intricately connected to the complex, dynamic interactions within neurons, culminating in neuronal signaling that fosters tumor growth. These interactions offer crucial insights into the molecular mechanisms underpinning tumor development, as well as broader implications for therapeutic strategies. This review summarizes the mechanisms through which mutations in the NF1 gene within neural tissues trigger tumorigenesis, while examining the role of the neuron-via factors such as visual experience, neurotransmitter, tumor microenvironment, and psychological influences-in both promoting tumor progression and being affected by the tumors themselves. By investigating the dynamic relationship between NF1-associated nervous system tumor cells and neurons, we aim to shed light on novel biological pathways and disease processes, emphasizing the potential of interdisciplinary approaches that combine neurobiology, oncology, and pharmacology to enhance treatment strategies and even inhibit the tumorigenesis.
Collapse
Affiliation(s)
- Xuan Yu
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Gu
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxuan Huang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichao Wang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 PMCID: PMC12123372 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater 2024; 15:229. [PMID: 39194667 DOI: 10.3390/jfb15080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
| | - Lei Yang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Gurung SK, Shevde LA, Rao SS. Laminin I mediates resistance to lapatinib in HER2-positive brain metastatic breast cancer cells in vitro. Biochem Biophys Res Commun 2024; 720:150142. [PMID: 38788545 DOI: 10.1016/j.bbrc.2024.150142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The role of extracellular matrix (ECM) prevalent in the brain metastatic breast cancer (BMBC) niche in mediating cancer cell growth, survival, and response to therapeutic agents is not well understood. Emerging evidence suggests a vital role of ECM of the primary breast tumor microenvironment (TME) in tumor progression and survival. Possibly, the BMBC cells are also similarly influenced by the ECM of the metastatic niche; therefore, understanding the effect of the metastatic ECM on BMBC cells is imperative. Herein, we assessed the impact of various ECM components (i.e., Tenascin C, Laminin I, Collagen I, Collagen IV, and Fibronectin) on brain metastatic human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) cell lines in vitro. The highly aggressive TNBC cell line was minimally affected by ECM components exhibiting no remarkable changes in viability and morphology. On the contrary, amongst various ECM components tested, the HER2-positive cell line was significantly affected by Laminin I with higher viability and demonstrated a distinct spread morphology. In addition, HER2-positive BMBC cells exhibited resistance to Lapatinib in presence of Laminin I. Mechanistically, Laminin I-induced resistance to Lapatinib was mediated in part by phosphorylation of Erk 1/2 and elevated levels of Vimentin. Laminin I also significantly enhanced the migratory potential and replicative viability of HER2-positive BMBC cells. In sum, our findings show that presence of Laminin I in the TME of BMBC cells imparts resistance to targeted therapeutic agent Lapatinib, while increasing the possibility of its dispersal and clonogenic survival.
Collapse
Affiliation(s)
- Sumiran Kumar Gurung
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
10
|
Church C, Fay CX, Kriukov E, Liu H, Cannon A, Baldwin LA, Crossman DK, Korf B, Wallace MR, Gross AM, Widemann BC, Kesterson RA, Baranov P, Wallis D. snRNA-seq of human cutaneous neurofibromas before and after selumetinib treatment implicates role of altered Schwann cell states, inter-cellular signaling, and extracellular matrix in treatment response. Acta Neuropathol Commun 2024; 12:102. [PMID: 38907342 PMCID: PMC11191180 DOI: 10.1186/s40478-024-01821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.
Collapse
Affiliation(s)
- Cameron Church
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christian X Fay
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Emil Kriukov
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Hui Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ashley Cannon
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lauren Ashley Baldwin
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bruce Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
- University of Florida Genetics Institute, Gainesville, FL, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Robert A Kesterson
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Petr Baranov
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
White EE, Rhodes SD. The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation. Cancers (Basel) 2024; 16:994. [PMID: 38473354 PMCID: PMC10930863 DOI: 10.3390/cancers16050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
Collapse
Affiliation(s)
- Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D. Rhodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Coulpier F, Pulh P, Oubrou L, Naudet J, Fertitta L, Gregoire JM, Bocquet A, Schmitt AM, Wolkenstein P, Radomska KJ, Topilko P. Topical delivery of mitogen-activated protein kinase inhibitor binimetinib prevents the development of cutaneous neurofibromas in neurofibromatosis type 1 mutant mice. Transl Res 2023; 261:16-27. [PMID: 37331503 DOI: 10.1016/j.trsl.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Cutaneous neurofibromas (cNFs) are a hallmark of patients with the neurofibromatosis type 1 (NF1) genetic disorder. These benign nerve sheath tumors, which can amount to thousands, develop from puberty onward, often cause pain and are considered by patients to be the primary burden of the disease. Mutations of NF1, encoding a negative regulator of the RAS signaling pathway, in the Schwann cell (SCs) lineage are considered to be at the origin of cNFs. The mechanisms governing cNFs development are poorly understood, and therapeutics to reduce cNFs are missing, mainly due to the lack of appropriate animal models. To address this, we designed the Nf1-KO mouse model that develops cNFs. Using this model, we found that cNFs development is a singular event and goes through 3 successive stages: initiation, progression, and stabilization characterized by changes in the proliferative and MAPK activities of tumor SCs. We found that skin trauma accelerated the development of cNFs and further used this model to explore the efficacy of the MEK inhibitor binimetinib to cure these tumors. We showed that while topically delivered binimetinib has a selective and minor effect on mature cNFs, the same drug prevents their development over long periods.
Collapse
Affiliation(s)
- Fanny Coulpier
- Mondor Institute for Biomedical Research, Creteil, France
| | - Pernelle Pulh
- Mondor Institute for Biomedical Research, Creteil, France
| | - Layna Oubrou
- Mondor Institute for Biomedical Research, Creteil, France
| | - Julie Naudet
- Mondor Institute for Biomedical Research, Creteil, France
| | - Laura Fertitta
- Mondor Institute for Biomedical Research, Creteil, France; Dermatology Department, Centre de Référence des Neurofibromatoses, Hôpital Henri-Mondor, AP-HP, Créteil, France
| | | | | | | | - Pierre Wolkenstein
- Mondor Institute for Biomedical Research, Creteil, France; Dermatology Department, Centre de Référence des Neurofibromatoses, Hôpital Henri-Mondor, AP-HP, Créteil, France
| | | | - Piotr Topilko
- Mondor Institute for Biomedical Research, Creteil, France.
| |
Collapse
|