1
|
Dunne S, Gibney ER, McGillicuddy FC, Feeney EL. The effects of saturated fat intake from dairy on CVD markers: the role of food matrices. Proc Nutr Soc 2024; 83:236-244. [PMID: 38316603 DOI: 10.1017/s0029665124000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
CVD is the leading cause of death worldwide, and is commonly associated with modifiable risk factors. Most studies to date examining link between food intake and risk of CVD, have focused on modulation of plasma cholesterol concentrations (total cholesterol (TC), LDL-C). However, recent studies suggest LDL particle size is a more sensitive risk marker for CVD with smaller, dense LDL particles reported as more atherogenic than larger, more buoyant LDL. Although dietary guidelines recommend SFA intake of < 10 % of total energy, this does not consider food source, with recent evidence suggesting differing, sometimes beneficial, lipid responses following consumption of SFA from dairy compared to other food sources. This may be from differences in the physical food matrices, the nutrient content of the foods, and/or how these components interact with each other, described as a 'dairy matrix effect'. Dietary fat not only raises LDL-C, but also HDL cholesterol (HDL-C), associated with reduced CVD risk. HDL particles are complex emulsions of lipids, proteins and microRNAs that exhibit atheroprotective properties. In addition, HDL particles exhibit a very heterogeneous proteomic composition, dependent on a person's disease state - with a more pro-inflammatory proteome evident in patients with established CVD. This review will discuss the evidence to date on the importance of the food matrix in modulating response to dietary SFA and impact on CVD risk factors. A focus on potential biomarker properties of lipoprotein particles beyond cholesterol and current use of such biomarkers in human nutrition research will be considered.
Collapse
Affiliation(s)
- Simone Dunne
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- UCD Institute for Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Eileen R Gibney
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- UCD Institute for Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Fiona C McGillicuddy
- UCD Diabetes Complications Research Centre, University College Dublin, Dublin 4, Republic of Ireland
| | - Emma L Feeney
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- UCD Institute for Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| |
Collapse
|
2
|
Kailemia MJ, Wei W, Nguyen K, Beals E, Sawrey-Kubicek L, Rhodes C, Zhu C, Sacchi R, Zivkovic AM, Lebrilla CB. Targeted Measurements of O- and N-Glycopeptides Show That Proteins in High Density Lipoprotein Particles Are Enriched with Specific Glycosylation Compared to Plasma. J Proteome Res 2017; 17:834-845. [PMID: 29212317 DOI: 10.1021/acs.jproteome.7b00604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High density lipoprotein (HDL) particles are believed to be protective due to their inverse correlation with the prevalence of cardiovascular diseases. However, recent studies show that in some conditions such as heart disease and diabetes, HDL particles can become dysfunctional. Great attention has been directed toward HDL particle composition because the relative abundances of HDL constituents determine HDL's functional properties. A key factor to consider when studying the structure and composition of plasma particles is the protein glycosylation. Here, we profile the O- and N-linked glycosylation of HDL associated-proteins including the truncated form of Apo CIII and their glycan heterogeneity in a site-specific manner. Apolipoprotein CIII, fetuin A, and alpha 1 antitrypsin are glycoproteins associated with lipoproteins and are implicated in many cardiovascular and other disease conditions. A targeted method (UHPLC-QQQ) was used to measure the glycoprotein concentrations and site-specific glycovariations of the proteins in human plasma and compared with HDL particles isolated from the same plasma samples. The proteins found in the plasma are differentially glycosylated compared to those isolated in HDL. The results of this study suggest that glycosylation may play a role in protein partitioning in the blood, with possible functional implications.
Collapse
Affiliation(s)
- Muchena J Kailemia
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Wanghui Wei
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Khoa Nguyen
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Elizabeth Beals
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Lisa Sawrey-Kubicek
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Christopher Rhodes
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Chenghao Zhu
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Romina Sacchi
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Angela M Zivkovic
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Carlito B Lebrilla
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| |
Collapse
|
3
|
Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G. Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res 2014; 56:36-46. [PMID: 25107698 DOI: 10.1016/j.plipres.2014.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
Although the epidemiology of high-density lipoprotein (HDL) cholesterol and cardiovascular risk has been consistent, pharmacologic interventions to increase HDL-cholesterol by delaying HDL catabolism did not translate into reduction in cardiovascular risk. HDL particles are small, protein-rich when compared to other plasma lipoprotein classes. Latest progresses in proteomics technology have dramatically increased our understanding of proteins carried by HDL. In addition to proteins with well-established functions in lipid transport, iron transport proteins, members of the complement pathway, and proteins involved in immune function and acute phase response were repeatedly identified on HDL particles. With the unraveling of the complexity of the HDL proteome, different laboratories have started to monitor its changes in various disease states. In addition, dynamic aspects of HDL subgroups are being discovered. These recent studies clearly illustrate the promise of HDL proteomics for deriving new biomarkers for disease diagnosis and to measure the effectiveness of current and future treatment regimens. This review summarizes recent advances in proteomics and lipidomics helping to understand HDL function in health and disease.
Collapse
Affiliation(s)
- Ruth Birner-Gruenberger
- Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed, Graz, Austria.
| | - Matthias Schittmayer
- Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed, Graz, Austria
| | - Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Abstract
The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.
Collapse
Affiliation(s)
- Lajos Jakab
- Semmelweis Egyetem, Általános Orvostudományi Kar III. Belgyógyászati Klinika Budapest Kútvölgyi út 4. 1125
| |
Collapse
|
5
|
Adsorption of plasma proteins on uncoated PLGA nanoparticles. Eur J Pharm Biopharm 2013; 85:53-60. [DOI: 10.1016/j.ejpb.2012.11.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 01/05/2023]
|
6
|
Abstract
PURPOSE OF REVIEW HDL cholesterol concentration is inversely correlated with cardiovascular disease and has a wide range of functions involved in many systems. The purpose of this review is to summarize HDL functionality, its relevance to atherosclerosis and factors affecting HDL functions. RECENT FINDINGS The contribution of HDL to reverse cholesterol transport may not be as great as first envisaged. However, it still plays an important role in cholesterol efflux from peripheral tissues. The capacity of HDL to promote cellular cholesterol efflux in an ex-vivo model has been reported to correlate more closely with carotid intima-media thickness than HDL cholesterol concentration. Recently, a variety of other functions of HDL have been described including antimicrobial, antioxidant, antiglycation, anti-inflammatory, nitric oxide--inducing, antithrombotic and antiatherogenic activity and immune modulation as well as a potential role in glucose homeostasis, diabetes pathophysiology and complications. SUMMARY HDL has a wide range of functions some of which are independent of its cholesterol content. Its cargo of apolipoproteins, various proteins and phospholipids contributes most to its various functions. These functions are affected by a number of genetic, physiological and pathological factors.
Collapse
Affiliation(s)
- Handrean Soran
- University Department of Medicine, Central Manchester and Manchester Children University Hospital NHS Foundation Trust, School of Biomedicine, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
7
|
Zhang L, Li X, Tai J, Li W, Chen L. Predicting candidate genes based on combined network topological features: a case study in coronary artery disease. PLoS One 2012; 7:e39542. [PMID: 22761820 PMCID: PMC3382204 DOI: 10.1371/journal.pone.0039542] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/22/2012] [Indexed: 11/26/2022] Open
Abstract
Predicting candidate genes using gene expression profiles and unbiased protein-protein interactions (PPI) contributes a lot in deciphering the pathogenesis of complex diseases. Recent studies showed that there are significant disparities in network topological features between non-disease and disease genes in protein-protein interaction settings. Integrated methods could consider their characteristics comprehensively in a biological network. In this study, we introduce a novel computational method, based on combined network topological features, to construct a combined classifier and then use it to predict candidate genes for coronary artery diseases (CAD). As a result, 276 novel candidate genes were predicted and were found to share similar functions to known disease genes. The majority of the candidate genes were cross-validated by other three methods. Our method will be useful in the search for candidate genes of other diseases.
Collapse
Affiliation(s)
- Liangcai Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (LCZ); (LC)
| | - Xu Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingxie Tai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (LCZ); (LC)
| |
Collapse
|
8
|
Davidson MH, Ballantyne CM, Jacobson TA, Bittner VA, Braun LT, Brown AS, Brown WV, Cromwell WC, Goldberg RB, McKenney JM, Remaley AT, Sniderman AD, Toth PP, Tsimikas S, Ziajka PE, Maki KC, Dicklin MR. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol 2012; 5:338-67. [PMID: 21981835 DOI: 10.1016/j.jacl.2011.07.005] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/16/2022]
Abstract
The National Cholesterol Education Program Adult Treatment Panel guidelines have established low-density lipoprotein cholesterol (LDL-C) treatment goals, and secondary non-high-density lipoprotein (HDL)-C treatment goals for persons with hypertriglyceridemia. The use of lipid-lowering therapies, particularly statins, to achieve these goals has reduced cardiovascular disease (CVD) morbidity and mortality; however, significant residual risk for events remains. This, combined with the rising prevalence of obesity, which has shifted the risk profile of the population toward patients in whom LDL-C is less predictive of CVD events (metabolic syndrome, low HDL-C, elevated triglycerides), has increased interest in the clinical use of inflammatory and lipid biomarker assessments. Furthermore, the cost effectiveness of pharmacological intervention for both the initiation of therapy and the intensification of therapy has been enhanced by the availability of a variety of generic statins. This report describes the consensus view of an expert panel convened by the National Lipid Association to evaluate the use of selected biomarkers [C-reactive protein, lipoprotein-associated phospholipase A(2), apolipoprotein B, LDL particle concentration, lipoprotein(a), and LDL and HDL subfractions] to improve risk assessment, or to adjust therapy. These panel recommendations are intended to provide practical advice to clinicians who wrestle with the challenges of identifying the patients who are most likely to benefit from therapy, or intensification of therapy, to provide the optimum protection from CV risk.
Collapse
Affiliation(s)
- Michael H Davidson
- University of Chicago Pritzker School of Medicine, Chicago, IL 60610, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS NANO 2011; 5:7155-67. [PMID: 21866933 DOI: 10.1021/nn201950e] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In biological fluids, proteins associate with nanoparticles, leading to a protein "corona" defining the biological identity of the particle. However, a comprehensive knowledge of particle-guided protein fingerprints and their dependence on nanomaterial properties is incomplete. We studied the long-lived ("hard") blood plasma derived corona on monodispersed amorphous silica nanoparticles differing in size (20, 30, and 100 nm). Employing label-free liquid chromatography mass spectrometry, one- and two-dimensional gel electrophoresis, and immunoblotting the composition of the protein corona was analyzed not only qualitatively but also quantitatively. Detected proteins were bioinformatically classified according to their physicochemical and biological properties. Binding of the 125 identified proteins did not simply reflect their relative abundance in the plasma but revealed an enrichment of specific lipoproteins as well as proteins involved in coagulation and the complement pathway. In contrast, immunoglobulins and acute phase response proteins displayed a lower affinity for the particles. Protein decoration of the negatively charged particles did not correlate with protein size or charge, demonstrating that electrostatic effects alone are not the major driving force regulating the nanoparticle-protein interaction. Remarkably, even differences in particle size of only 10 nm significantly determined the nanoparticle corona, although no clear correlation with particle surface volume, protein size, or charge was evident. Particle size quantitatively influenced the particle's decoration with 37% of all identified proteins, including (patho)biologically relevant candidates. We demonstrate the complexity of the plasma corona and its still unresolved physicochemical regulation, which need to be considered in nanobioscience in the future.
Collapse
Affiliation(s)
- Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wilke RA. High-density lipoprotein (HDL) cholesterol: leveraging practice-based biobank cohorts to characterize clinical and genetic predictors of treatment outcome. THE PHARMACOGENOMICS JOURNAL 2011; 11:162-73. [PMID: 21151197 PMCID: PMC3309611 DOI: 10.1038/tpj.2010.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 10/27/2010] [Indexed: 11/09/2022]
Abstract
Over the past decade, large multicenter trials have unequivocally demonstrated that decreasing low-density lipoprotein (LDL) cholesterol can reduce both primary and secondary cardiovascular events in patients at risk. However, even in the context of maximal LDL lowering, there remains considerable residual cardiovascular risk. Some of this risk can be attributed to variability in high-density lipoprotein (HDL) cholesterol. As such, there is tremendous interest in defining determinants of HDL homeostasis. Risk prediction models are being constructed based upon (1) clinical contributors, (2) known molecular determinants and (3) the genetic architecture underlying HDL cholesterol levels. To date, however, no single resource has combined these factors within the context of a practice-based data set. Recently, a number of academic medical centers have begun constructing DNA biobanks linked to secure encrypted versions of their respective electronic medical record. As these biobanks combine resources, the clinical community is in a position to characterize lipid-related treatment outcome on an unprecedented scale.
Collapse
Affiliation(s)
- R A Wilke
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Miarka P, Idzior-Waluś B, Kuźniewski M, Waluś-Miarka M, Klupa T, Sułowicz W. Corticosteroid treatment of kidney disease in a patient with familial lecithin-cholesterol acyltransferase deficiency. Clin Exp Nephrol 2011; 15:424-429. [PMID: 21327698 DOI: 10.1007/s10157-011-0409-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/06/2011] [Indexed: 02/02/2023]
Abstract
Familial lecithin-cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disorder of lipid metabolism, characterised by low plasma HDL cholesterol, proteinuria, haemolytic anaemia and corneal opacities. Usually renal disease progresses during the third decade of life to renal failure; however the pathogenesis of renal disease is not well understood. In this study we describe treatment of renal disease in two siblings with FLD. The proband WX at the age of 31 years presented proteinuria and ankle oedema during her third pregnancy. Diagnosis of FLD was based on a renal biopsy with characteristic serpiginous fibrillar deposits under electron microscopy, markedly decreased HDL cholesterol, esterified cholesterol levels and LCAT activity, confirmed by molecular analysis. After 3 years her proteinuria increased and she received an ACE inhibitor to which she responded well. During further increases of proteinuria she additionally received methylprednisolone and her proteinuria decreased. This long-term observation indicates the efficacy of corticosteroids and renin-angiotensin-aldosterone system blockers in the treatment of proteinuria in patients with FLD. The results suggest the role of inflammatory processes as well as dyslipidemia in the pathogenesis of glomerular disorders in LCAT-deficient patients.
Collapse
Affiliation(s)
- Przemysław Miarka
- Department of Nephrology, Medical College, Jagiellonian University, Kraków, Poland
| | - Barbara Idzior-Waluś
- Department of Metabolic Diseases, Medical College, Jagiellonian University, Kopernika Street 15, 31-501, Kraków, Poland.
| | - Marek Kuźniewski
- Department of Nephrology, Medical College, Jagiellonian University, Kraków, Poland
| | - Małgorzata Waluś-Miarka
- Department of Metabolic Diseases, Medical College, Jagiellonian University, Kopernika Street 15, 31-501, Kraków, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Medical College, Jagiellonian University, Kopernika Street 15, 31-501, Kraków, Poland
| | - Władysław Sułowicz
- Department of Nephrology, Medical College, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Rosenson RS. Systemic inflammation and the dynamics of HDL cholesterol-associated residual cardiovascular risk. Curr Atheroscler Rep 2011; 13:187-9. [PMID: 21279708 DOI: 10.1007/s11883-011-0167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert S Rosenson
- Mount Sinai Heart, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1031, New York, NY 10029, USA.
| |
Collapse
|
13
|
Abstract
Cardiovascular disease (CVD) increases in a curvilinear fashion after 65 years in men and 75 years in women and the majority of all cardiovascular events occur in individuals older then 65 years. There are notable differences in the clinical assessment of hyperlipidaemia, cardiovascular risk estimation as well as the safety and tolerability profiles in the elderly compared to younger individuals. Clinical trial data have now demonstrated the benefits of statin treatment in the elderly in both the primary and secondary prevention settings. There is however limited data for individuals older than 80 years. Little data is available on other lipid modifying medication in the elderly. With continuing increases in average life expectancy, preventive efforts will become increasingly important for preventing morbidity, improving quality of life, and reducing healthcare expenditures for older persons. This emphasizes the importance of clinical decision-making and weighing up the risks and benefits of treatment.
Collapse
Affiliation(s)
- A Viljoen
- Department of Chemical Pathology, Lister Hospital, Stevenage, Hertfordshire SG1 4AB, UK.
| |
Collapse
|
14
|
Chenevard R, Hürlimann D, Spieker L, Béchir M, Enseleit F, Hermann M, Flammer AJ, Sudano I, Corti R, Lüscher TF, Noll G, Ruschitzka F. Reconstituted HDL in acute coronary syndromes. Cardiovasc Ther 2010; 30:e51-7. [PMID: 20840194 DOI: 10.1111/j.1755-5922.2010.00221.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES The strong inverse relationship between plasma high-density lipoprotein (HDL)-cholesterol and atherosclerotic cardiovascular disease provides the epidemiological basis that HDL is atheroprotective. Since HDL enhances cholesterol efflux and exhibits potent antiinflammatory properties, the aim of the present study was to investigate whether infusion of reconstituted HDL (rHDL) impacts on vascular function, a well-established surrogate of atherosclerotic vascular disease, as well as markers of inflammation and oxidative stress in patients with acute coronary syndromes (ACS). METHODS Twenty-nine patients with ACS were randomized to double-blind treatment with rHDL or albumin. Endothelium-dependent and independent vasodilatation to intraarterial acetylcholine and sodium nitroprusside were measured by forearm venous occlusion plethysmography. In addition, oxidized LDL and high-sensitivity C-reactive protein were determined as markers of oxidative stress and vascular inflammation. RESULTS rHDL infusion increased plasma HDL (P < 0.0001) and decreased LDL (P < 0.0001). Oxidized LDL (P= 0.11), high-sensitivity C-reactive protein (P= 0.12) and the response to endothelium-dependent and -independent vasodilatators remained unchanged after rHDL compared to albumin infusion (14.9 ± 9.2 versus 14.5 ± 12.4, P= 0.93 and 12.8 ± 7.1 versus 13.2 ± 9.6, P= 0.27, respectively). CONCLUSIONS An increase of HDL and a reduction of LDL notwithstanding, human rHDL did not improve vascular function in patients with ACS thus further challenging the clinical benefit of interventions, which rapidly raise HDL in ACS, particularly with the infusion of reconstituted HDL.
Collapse
Affiliation(s)
- Rémy Chenevard
- Cardiovascular Center, Cardiology, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gordon S, Durairaj A, Lu JL, Davidson WS. High-Density Lipoprotein Proteomics: Identifying New Drug Targets and Biomarkers by Understanding Functionality. CURRENT CARDIOVASCULAR RISK REPORTS 2010; 4:1-8. [PMID: 20625533 PMCID: PMC2901108 DOI: 10.1007/s12170-009-0069-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent proteomics studies on human plasma high-density lipoprotein (HDL) have discovered up to 50 individual protein constituents. Many of these have known functions that vary surprisingly from the lipid transport roles commonly thought to mediate HDL's ability to protect from coronary artery disease. Given newly discovered roles in inflammation, protease inhibition, complement regulation, and innate immunity, many have begun to view HDL as a broad collection of distinct particle subfamilies, each distinguished by unique protein compositions and functions. Herein we review recent applications of high-resolution proteomics to HDL and summarize evidence supporting the idea of HDL functional subspeciation. These studies have set the stage for a more complete understanding of the molecular basis of HDL functional heterogeneity and hold promise for the identification of new biomarkers that can predict disease or evaluate the success of clinical interventions.
Collapse
Affiliation(s)
- Scott Gordon
- Center for Lipid and Arteriosclerosis Science, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Anita Durairaj
- Center for Lipid and Arteriosclerosis Science, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Jason L. Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Research Foundation, 3333 Burnet Avenue, MLC 7024, Cincinnati, OH 45229-3039, USA
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, OH 45237-0507, USA
| |
Collapse
|
16
|
Davidsson P, Hulthe J, Fagerberg B, Camejo G. Proteomics of apolipoproteins and associated proteins from plasma high-density lipoproteins. Arterioscler Thromb Vasc Biol 2009; 30:156-63. [PMID: 19778948 DOI: 10.1161/atvbaha.108.179317] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteomics studies have extended the list of identified apolipoproteins and associated proteins present in HDL and its subclasses. These proteins appear to cluster around specific functions related to lipid metabolism, inflammation, the immune system, hormone-binding, hemostasis, and antioxidant properties. Small studies suggest that there are substantial differences between the HDL proteome from cardiovascular disease patients and that from controls. Furthermore, dyslipidemia therapy shifts the HDL proteome from patients toward the profile observed in healthy controls. In addition, the proteome of HDL and LDL from patients with insulin resistance and peripheral atherosclerosis show significant differences with that of matched healthy controls. The proteome of HDL and LDL density subclasses have apolipoproteins and associated proteins profiles that suggest subclass-specific functions. However, proteomics studies of lipoproteins are few and small and should be interpreted with caution. Nonetheless rapid technical progress in proteomic platforms suggest that soon analysis time will be reduced and precise measurement of identified proteins will be possible. This, combined with controlled purification steps of HDL and its subclasses should provide further information about proteins involved in the particles postulated spectrum of functions, including those believed to be atheroprotective.
Collapse
|
17
|
Blumenstein M, McMaster MT, Black MA, Wu S, Prakash R, Cooney J, McCowan LME, Cooper GJS, North RA. A proteomic approach identifies early pregnancy biomarkers for preeclampsia: Novel linkages between a predisposition to preeclampsia and cardiovascular disease. Proteomics 2009; 9:2929-45. [DOI: 10.1002/pmic.200800625] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Abstract
PURPOSE OF REVIEW To address the progress of the investigation on dysfunctional high-density lipoprotein (HDL). RECENT FINDINGS HDL is generally considered to be an independent protective factor against cardiovascular disease. However, emerging evidence indicates that HDL can be modified under certain circumstances and lose its protective effect or even become atherogenic. The underlying mechanisms responsible for generating the dysfunctional HDL and the chemical and structural changes of HDL remain largely unknown. Recent studies focus on the role of myeloperoxidase in generating oxidants as participants in rendering HDL dysfunctional in vivo. Myeloperoxidase modifies HDL in humans by oxidation of specific amino acid residues in apolipoprotein A-I, which impairs cholesterol efflux through ATP-binding cassette transporter A1 and contributes to atherogenesis. SUMMARY HDL may not always be atheroprotective and can be atherogenic paradoxically under certain conditions. The mechanisms responsible for generating the dysfunctional HDL remain largely unknown. Recent data suggest that myeloperoxidase-associated modification of HDL may be one of the mechanisms. Further studies are needed to investigate the in-vivo mechanisms of HDL modification and identify therapeutic approaches aiming at controlling HDL modification.
Collapse
Affiliation(s)
- Hong Feng
- Kentucky Pediatric Research Institute, Department of Pediatrics, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Although it has long been recognized that atherosclerotic lesions show evidence of complement activation, the functional roles of the complement system in atherogenesis are not yet fully resolved. This article highlights recent publications on the complement system in the atherosclerosis field. RECENT FINDINGS There have been a number of recent papers reporting on the association of complement proteins and complement regulators with high density lipoproteins, complement activation by enzymatically-modified LDL, signalling pathways downstream of C3a and C5a receptors and membrane C5b-9 assembly, and the prevention of C5b-9 assembly on endothelial cells via upregulation of CD59 expression in response to arterial laminar flow. C1q has been found to play a protective role in early lesion formation in LDL receptor deficient mice, and Crry-Ig and soluble C1 inhibitor have both been shown to have therapeutic effects in models of vascular injury in ApoE deficient mice. The possibility that the Y402H Factor H polymorphism influences atherosclerosis has been supported in a recent paper showing increased risk in white hypertensive individuals. SUMMARY The articles that have emerged over the last year highlight the relevance of the complement system to the atherosclerosis field.
Collapse
Affiliation(s)
- Dorian O Haskard
- Bywaters Centre for Vascular Inflammation, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, UK.
| | | | | |
Collapse
|
20
|
Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 2008. [PMID: 18809927 DOI: 10.1073/pnas.0805135105)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles in a biological fluid (plasma, or otherwise) associate with a range of biopolymers, especially proteins, organized into the "protein corona" that is associated with the nanoparticle and continuously exchanging with the proteins in the environment. Methodologies to determine the corona and to understand its dependence on nanomaterial properties are likely to become important in bionanoscience. Here, we study the long-lived ("hard") protein corona formed from human plasma for a range of nanoparticles that differ in surface properties and size. Six different polystyrene nanoparticles were studied: three different surface chemistries (plain PS, carboxyl-modified, and amine-modified) and two sizes of each (50 and 100 nm), enabling us to perform systematic studies of the effect of surface properties and size on the detailed protein coronas. Proteins in the corona that are conserved and unique across the nanoparticle types were identified and classified according to the protein functional properties. Remarkably, both size and surface properties were found to play a very significant role in determining the nanoparticle coronas on the different particles of identical materials. We comment on the future need for scientific understanding, characterization, and possibly some additional emphasis on standards for the surfaces of nanoparticles.
Collapse
|
21
|
Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 2008; 105:14265-70. [PMID: 18809927 DOI: 10.1073/pnas.0805135105] [Citation(s) in RCA: 2138] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles in a biological fluid (plasma, or otherwise) associate with a range of biopolymers, especially proteins, organized into the "protein corona" that is associated with the nanoparticle and continuously exchanging with the proteins in the environment. Methodologies to determine the corona and to understand its dependence on nanomaterial properties are likely to become important in bionanoscience. Here, we study the long-lived ("hard") protein corona formed from human plasma for a range of nanoparticles that differ in surface properties and size. Six different polystyrene nanoparticles were studied: three different surface chemistries (plain PS, carboxyl-modified, and amine-modified) and two sizes of each (50 and 100 nm), enabling us to perform systematic studies of the effect of surface properties and size on the detailed protein coronas. Proteins in the corona that are conserved and unique across the nanoparticle types were identified and classified according to the protein functional properties. Remarkably, both size and surface properties were found to play a very significant role in determining the nanoparticle coronas on the different particles of identical materials. We comment on the future need for scientific understanding, characterization, and possibly some additional emphasis on standards for the surfaces of nanoparticles.
Collapse
|
22
|
Abstract
Clinical and epidemiological studies have shown that HDLs, a class of plasma lipoproteins, heterogeneous in size and density, have an atheroprotective role attributed, for years, to their capacity to promote the efflux of cholesterol from activated cholesterol-loaded arterial macrophages. Recent studies, however, have recognized that the physical heterogeneity of HDLs is associated with multiple functions that involve both the protein and the lipid components of these particles. ApoA-I, quantitatively the major protein constituent, has an amphipathic structure suited for transport of lipids. It readily interacts with the ATP-binding cassette transporter ABCA1, the SR-B1 scavenger receptor; activates the enzyme lecithin-cholesterol acyl transferase (LCAT), which is critical for HDL maturation. It also has antioxidant and antiinflammatory properties, along with the HDL-associated enzymes paraoxonase, platelet activating factor acetylhydrolase (PAF), and glutathione peroxidase. Regarding the lipid moiety, an atheroprotective role has been recognized for lysosphingolipids, particularly sphingosine-1-phosphate (S1P). All of these atheroprotective functions are lost in the post-translational dependent dysfunctional plasma HDLs of subjects with systemic inflammation, coronary heart disease, diabetes, and chronic renal disease. The emerging notion that particle quality has more predictive power than quantity has stimulated further exploration of the HDL proteome, already revealing unsuspected pro- or antiatherogenic proteins/peptides associated with HDL.
Collapse
Affiliation(s)
- Angelo M Scanu
- Department of Medicine, University of Chicago, MC5041, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | |
Collapse
|
23
|
Abstract
High density lipoprotein-cholesterol (HDL-C) concentration in the blood is independently and inversely associated with an increased risk of coronary heart disease. Some of the cholesterol-lowering drugs (niacin, fibrates, and statins) incidentally raise HDL-C. These drugs are not effective in causing major changes in HDL-C. Since the discovery of human genetic cholesteryl ester transfer protein (CETP) deficiency in a Japanese population with high levels of HDL-C and apolipoprotein A-I, CETP inhibition has become a novel strategy for raising HDL-C in humans. Mice, a species naturally lacking CETP, were transduced with the human CETP gene, which resulted in dose-related reductions in HDL-C. Rabbits, a species with naturally high levels of CETP, were fed a synthetic CETP inhibitor, JTT-705, leading to both a 90% increase in HDL-C and a 70% reduction in aortic atherosclerotic lesion area. Human intervention trials with a new potent and selective CETP inhibitor, torcetrapib, have taken place. In a phase I multidose trial, HDL-C increased by 91% with torcetrapib 120 mg twice daily. A phase II trial conducted with multiple combinations of torcetrapib and atorvastatin showed that the combination was well tolerated and doses 30 mg and higher of torcetrapib caused 8.3-40.2% changes from baseline HDL-C across the dose range of atorvastatin at 12 weeks. Recently the phase III clinical trial ILLUMINATE (Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events) was prematurely terminated because of an increase in mortality in the torcetrapib/atorvastatin treatment arm compared with atorvastatin used alone. In companion studies no improvement in carotid or coronary atherosclerosis could be detected in patients treated with the torcetrapib/atorvastatin combination despite favorable changes in both low density lipoprotein (LDL)- and HDL-cholesterol levels. The future for CETP inhibition with drug therapy is now unclear, and must include a closer look at CETP inhibitor's effects on blood pressure and HDL itself. Accordingly, it was recently shown in 2 double-blind, placebo-controlled, randomized, phase I studies with the CETP inhibitor anacetrapib in healthy individuals and in patients with dyslipidemias that the drug increased HDL and reduced LDL, while having no effect on blood pressure.
Collapse
|
24
|
Samaha FF, Foster GD, Makris AP. Low-carbohydrate diets, obesity, and metabolic risk factors for cardiovascular disease. Curr Atheroscler Rep 2008; 9:441-7. [PMID: 18377783 DOI: 10.1007/s11883-007-0059-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given the increased prevalence of obesity in the United States (and its associated cardiovascular risk) despite reduced fat intake, there has been increasing interest in the effect of low-carbohydrate diets on obesity. Recent prospective trials have demonstrated equivalent weight loss on low-carbohydrate versus low-fat diets, but with significantly different effects on metabolic risk factors for cardiovascular disease. Low-carbohydrate diets have more favorable effects on metabolic abnormalities found in insulin resistance syndromes, including serum triglyceride levels, high-density lipoprotein cholesterol levels, and small, dense low-density lipoprotein particles. The translation of these different metabolic effects on cardiovascular disease and events requires future studies. These studies should take into consideration that patients with insulin resistance syndromes would be the most likely group to benefit from carbohydrate restriction.
Collapse
Affiliation(s)
- Frederick F Samaha
- University of Pennsylvania Medical Center, Philadelphia VA Medical Center, 3900 Woodland Avenue, 8th Floor Cardiology MC 111C, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
25
|
Stabilization of the active form(s) of human paraoxonase by human phosphate-binding protein. Biochem Soc Trans 2008; 35:1616-20. [PMID: 18031277 DOI: 10.1042/bst0351616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
While there is a consensus that human PON1 (paraoxonase-1) has a protective role, its primary biological function remains unclear. A protective role against poisoning by organophosphates [OPs (organophosphorus compounds)] drove earlier works. Clinical interest has recently focused on a protective role of PON1 against vascular diseases. PON1 resides mainly on HDL (high-density lipoprotein) particles, and converging recent works show that both its activities and stability dramatically depend on this versatile and dynamic molecular environment. The discovery that HPBP (human phosphate-binding protein) has a firm tendency to associate with PON1 has steered new directions for characterizing PON1 functional state(s). Storage stability studies provided evidence that HPBP is involved in maintaining physiologically active PON1 conformation(s). Thermal stability studies showed that human PON1 is remarkably thermostable and that its association with HPBP strongly contributes to slowing down the denaturation rate. A hybrid PON1, displaying mutations that stabilized recombinant enzyme expressed in Escherichia coli, was shown to be more thermostable than natural human PON1. Predictably, its stability was unaffected by the presence of HPBP. Synergistic efforts on characterizing natural PON1 and rPON1 (recombinant PON1) provide information for the design of future stable mutants of PON1-based bioscavengers to be used as safe and effective countermeasures to challenge OPs. Maintaining a stable environment for such administrable human rPON1 should, at least, preserve the anti-atherogenic activity of the enzyme.
Collapse
|
26
|
Abstract
Biomarkers are increasingly employed in empirical studies of human populations to understand physiological processes that change with age, diseases whose onset appears linked to age, and the aging process itself. In this chapter, we describe some of the most commonly used biomarkers in population aging research, including their collection, associations with other markers, and relationships to health outcomes. We discuss biomarkers of the cardiovascular system, metabolic processes, inflammation, activity in the hypothalamic-pituitary axis (HPA) and sympathetic nervous system (SNS), and organ functioning (including kidney, lung, and heart). In addition, we note that markers of functioning of the central nervous system and genetic markers are now becoming part of population measurement. Where possible, we detail interrelationships between these markers by providing correlations between high risk levels of each marker from three population-based surveys: the National Health and Nutrition Examination Survey (NHANES) III, NHANES 1999-2002, and the MacArthur Study of Successful Aging. NHANES III is used instead of NHANES 1999-2002 when specific markers of interest are available only in NHANES III and when we examine the relationship of biomarkers to mortality which is only known for NHANES III. We also describe summary measures combining biomarkers across systems. Finally, we examine associations between individual markers and mortality and provide information about biomarkers of growing interest for future research in population aging and health.
Collapse
Affiliation(s)
- Eileen Crimmins
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
27
|
Van Lenten BJ, Wagner AC, Navab M, Anantharamaiah GM, Hama S, Reddy ST, Fogelman AM. Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits. J Lipid Res 2007; 48:2344-53. [PMID: 17693626 DOI: 10.1194/jlr.m700138-jlr200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabbits on a 1% cholesterol diet received injections of vehicle with or without D-4F or L-4F. After 1 month, the percent of aorta with atherosclerotic lesions was 24 +/- 15% (vehicle), 10 +/- 6% (D-4F) (P < 0.01 vs. vehicle), and 13 +/- 9% (L-4F) (P < 0.05 vs. vehicle). Inflammatory indexes for HDL and LDL were determined by measuring monocyte chemotactic activity after adding rabbit lipoproteins to human endothelial cells. HDL-inflammatory index (HII) and LDL-inflammatory index (LII), respectively, were 1.39 +/- 0.24; 1.35 +/- 0.29 (vehicle), 0.67 +/- 0.26; 0.63 +/- 0.38 (D-4F) (P < 0.001 vs. vehicle), and 0.67 +/- 0.2; 0.68 +/- 0.32 (L-4F) (P < 0.01 vs. vehicle). Serum amyloid A (SAA) levels were 95 +/- 39, 8 +/- 22, and 7 +/- 19 mug/ml, respectively, for vehicle, D-4F, and L-4F (P < 0.001 vs. vehicle). There was no correlation between lesion area and total plasma or HDL-cholesterol levels. In contrast, there was a positive correlation with HII, LII, and SAA (P = 0.002, P = 0.0026, P = 0.0079, respectively). HII correlated closely with SAA levels (r = 0.6616; r(2) = 0.4377, P < 0.0001). Thus, HII, LII, and SAA are better predictors of lesion area than are total plasma or HDL-cholesterol levels in cholesterol-fed rabbits.
Collapse
Affiliation(s)
- Brian J Van Lenten
- Department of Medicine, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Bibliography—Editors' selection of current world literature. Coron Artery Dis 2007; 18:411-5. [PMID: 17627192 DOI: 10.1097/01.mca.0000280834.14145.a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|