1
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Frizinsky S, Rechavi E, Barel O, Lee YN, Simon AJ, Lev A, Stauber T, Adam E, Somech R. Novel NHEJ1 pathogenic variant linked to severe combined immunodeficiency, microcephaly, and abnormal T and B cell receptor repertoires. Front Pediatr 2022; 10:883173. [PMID: 35967585 PMCID: PMC9363661 DOI: 10.3389/fped.2022.883173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND During the process of generating diverse T and B cell receptor (TCR and BCR, respectively) repertoires, double-strand DNA breaks are produced. Subsequently, these breaks are corrected by a complex system led by the non-homologous end-joining (NHEJ). Pathogenic variants in genes involved in this process, such as the NHEJ1 gene, cause severe combined immunodeficiency syndrome (SCID) along with neurodevelopmental disease and sensitivity to ionizing radiation. OBJECTIVE To provide new clinical and immunological insights on NHEJ1 deficiency arising from a newly diagnosed patient with severe immunodeficiency. MATERIALS AND METHODS A male infant, born to consanguineous parents, suspected of having primary immunodeficiency underwent immunological and genetic workup. This included a thorough assessment of T cell phenotyping and lymphocyte activation by mitogen stimulation tests, whole-exome sequencing (WES), TCR repertoire Vβ repertoire via flow cytometry analysis, and TCR and BCR repertoire analysis via next-generation sequencing (NGS). RESULTS Clinical findings included microcephaly, recurrent pneumonia, and failure to thrive. An immune workup revealed lymphopenia, reduced T cell function, and hypogammaglobulinemia. Skewed TCR Vβ repertoire, TCR gamma (TRG) repertoire, and BCR repertoire were determined in the patient. Genetic analysis identified a novel homozygous missense pathogenic variant in XLF/Cernunnos: c.A580Ins.T; p.M194fs. The patient underwent a successful hematopoietic stem cell transplantation (HSCT). CONCLUSION A novel NHEJ1 pathogenic variant is reported in a patient who presented with SCID phenotype that displayed clonally expanded T and B cells. An adjusted HSCT was safe to ensure full T cell immune reconstitution.
Collapse
Affiliation(s)
- Shirly Frizinsky
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Rechavi
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Tali Stauber
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Etai Adam
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
3
|
Calvo-Asensio I, Sugrue T, Bosco N, Rolink A, Ceredig R. DN2 Thymocytes Activate a Specific Robust DNA Damage Response to Ionizing Radiation-Induced DNA Double-Strand Breaks. Front Immunol 2018; 9:1312. [PMID: 29942310 PMCID: PMC6004388 DOI: 10.3389/fimmu.2018.01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
For successful bone marrow transplantation (BMT), a preconditioning regime involving chemo and radiotherapy is used that results in DNA damage to both hematopoietic and stromal elements. Following radiation exposure, it is well recognized that a single wave of host-derived thymocytes reconstitutes the irradiated thymus, with donor-derived thymocytes appearing about 7 days post BMT. Our previous studies have demonstrated that, in the presence of donor hematopoietic cells lacking T lineage potential, these host-derived thymocytes are able to generate a polyclonal cohort of functionally mature peripheral T cells numerically comprising ~25% of the peripheral T cell pool of euthymic mice. Importantly, we demonstrated that radioresistant CD44+ CD25+ CD117+ DN2 progenitors were responsible for this thymic auto-reconstitution. Until recently, the mechanisms underlying the radioresistance of DN2 progenitors were unknown. Herein, we have used the in vitro “Plastic Thymus” culture system to perform a detailed investigation of the mechanisms responsible for the high radioresistance of DN2 cells compared with radiosensitive hematopoietic stem cells. Our results indicate that several aspects of DN2 biology, such as (i) rapid DNA damage response (DDR) activation in response to ionizing radiation-induced DNA damage, (ii) efficient repair of DNA double-strand breaks, and (iii) induction of a protective G1/S checkpoint contribute to promoting DN2 cell survival post-irradiation. We have previously shown that hypoxia increases the radioresistance of bone marrow stromal cells in vitro, at least in part by enhancing their DNA double-strand break (DNA DSB) repair capacity. Since the thymus is also a hypoxic environment, we investigated the potential effects of hypoxia on the DDR of DN2 thymocytes. Finally, we demonstrate for the first time that de novo DN2 thymocytes are able to rapidly repair DNA DSBs following thymic irradiation in vivo.
Collapse
Affiliation(s)
| | - Tara Sugrue
- National University of Ireland, Galway, Ireland
| | - Nabil Bosco
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
4
|
Sayyadi kord Abadi R, Alizadehdakhel A, Dorani Shiraz S. Ab initio and QSAR study of several etoposides as anticancer drugs: Solvent effect. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2017. [DOI: 10.1134/s1990793117020130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Carrillo J, Calvete O, Pintado-Berninches L, Manguan-García C, Sevilla Navarro J, Arias-Salgado EG, Sastre L, Guenechea G, López Granados E, de Villartay JP, Revy P, Benitez J, Perona R. Mutations in XLF/NHEJ1/Cernunnos gene results in downregulation of telomerase genes expression and telomere shortening. Hum Mol Genet 2017; 26:1900-1914. [DOI: 10.1093/hmg/ddx098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/08/2017] [Indexed: 01/08/2023] Open
|
6
|
Prochazkova J, Loizou JI. Programmed DNA breaks in lymphoid cells: repair mechanisms and consequences in human disease. Immunology 2016; 147:11-20. [PMID: 26455503 PMCID: PMC4988471 DOI: 10.1111/imm.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023] Open
Abstract
In recent years, several novel congenital human disorders have been described with defects in lymphoid B-cell and T-cell functions that arise due to mutations in known and/or novel components of DNA repair and damage response pathways. Examples include impaired DNA double-strand break repair, as well as compromised DNA damage-induced signal transduction, including phosphorylation and ubiquitination. These disorders reinforce the importance of genome stability pathways in the development of lymphoid cells in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanisms of genome stability and in some cases may provide potential routes to help exploit these pathways therapeutically. Here we review the mechanisms that repair programmed DNA lesions that occur during B-cell and T-cell development, as well as human diseases that arise through defects in these pathways.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
7
|
Park J, Welner RS, Chan MY, Troppito L, Staber PB, Tenen DG, Yan CT. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining. THE JOURNAL OF IMMUNOLOGY 2015; 196:244-55. [PMID: 26608917 DOI: 10.4049/jimmunol.1403099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Hypomorphic mutations in the nonhomologous end-joining (NHEJ) DNA repair protein DNA ligase IV (LIG4) lead to immunodeficiency with varying severity. In this study, using a murine knock-in model, we investigated the mechanisms underlying abnormalities in class switch recombination (CSR) associated with the human homozygous Lig4 R278H mutation. Previously, we found that despite the near absence of Lig4 end-ligation activity and severely reduced mature B cell numbers, Lig4(R278H/R278H) (Lig4(R/R)) mice exhibit only a partial CSR block, producing near normal IgG1 and IgE but substantially reduced IgG3, IgG2b, and IgA serum levels. In this study, to address the cause of these abnormalities, we assayed CSR in Lig4(R/R) B cells generated via preassembled IgH and IgK V region exons (HL). This revealed that Lig4(R278H) protein levels while intact exhibited a higher turnover rate during activation of switching to IgG3 and IgG2b, as well as delays in CSR kinetics associated with defective proliferation during activation of switching to IgG1 and IgE. Activated Lig4(R/R)HL B cells consistently accumulated high frequencies of activation-induced cytidine deaminase-dependent IgH locus chromosomal breaks and translocations and were more prone to apoptosis, effects that appeared to be p53-independent, as p53 deficiency did not markedly influence these events. Importantly, NHEJ instead of alternative end-joining (A-EJ) was revealed as the predominant mechanism catalyzing robust CSR. Defective CSR was linked to failed NHEJ and residual A-EJ access to unrepaired double-strand breaks. These data firmly demonstrate that Lig4(R278H) activity renders NHEJ to be more error-prone, and they predict increased error-prone NHEJ activity and A-EJ suppression as the cause of the defective B lymphopoiesis in Lig4 patients.
Collapse
Affiliation(s)
- Jihye Park
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215; Broad Institute of MIT and Harvard, Cambridge, MA 02142; and
| | - Robert S Welner
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| | - Mei-Yee Chan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Logan Troppito
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Philipp B Staber
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| | - Catherine T Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215; Broad Institute of MIT and Harvard, Cambridge, MA 02142; and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Tamura S, Higuchi K, Tamaki M, Inoue C, Awazawa R, Mitsuki N, Nakazawa Y, Mishima H, Takahashi K, Kondo O, Imai K, Morio T, Ohara O, Ogi T, Furukawa F, Inoue M, Yoshiura KI, Kanazawa N. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency. Clin Immunol 2015; 160:255-60. [PMID: 26172957 DOI: 10.1016/j.clim.2015.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/05/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022]
Abstract
We herein describe a case of a 17-year-old boy with intractable common warts, short stature, microcephaly and slowly-progressing pancytopenia. Simultaneous quantification of T-cell receptor recombination excision circles (TREC) and immunoglobulin κ-deleting recombination excision circles (KREC) suggested very poor generation of both T-cells and B-cells. By whole exome sequencing, novel compound heterozygous mutations were identified in the patient's DNA ligase IV (LIG4) gene. The diagnosis of LIG4 syndrome was confirmed by delayed DNA double-strand break repair kinetics in γ-irradiated fibroblasts from the patient and their restoration by an introduction of wild-type LIG4. Although the patient received allogeneic hematopoietic stem cell transplantation from his haploidentical mother, he unfortunately expired due to an insufficiently reconstructed immune system. An earlier definitive diagnosis using TREC/KREC quantification and whole exome sequencing would thereby allow earlier intervention, which would be essential for improving long-term survival in similar cases with slowly-progressing LIG4 syndrome masked in adolescents.
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Hematology and Oncology, Kinan Hospital, Wakayama, Japan
| | - Kohei Higuchi
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Masaharu Tamaki
- Department of Hematology and Oncology, Kinan Hospital, Wakayama, Japan
| | | | - Ryoko Awazawa
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Noriko Mitsuki
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuka Nakazawa
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University, Nagasaki, Japan; Department of Genome Repair, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kenzo Takahashi
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Osamu Kondo
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Tomoo Ogi
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University, Nagasaki, Japan; Department of Genome Repair, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Masami Inoue
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
9
|
Radhakrishnan SK, Jette N, Lees-Miller SP. Non-homologous end joining: emerging themes and unanswered questions. DNA Repair (Amst) 2014; 17:2-8. [PMID: 24582502 PMCID: PMC4084493 DOI: 10.1016/j.dnarep.2014.01.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/03/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022]
Abstract
Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks in human cells. Here, we discuss current insights into the mechanism of NHEJ and the interplay between NHEJ and other pathways for repair of IR-induced DNA damage.
Collapse
Affiliation(s)
- Sarvan Kumar Radhakrishnan
- Department of Biochemistry & Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1
| | - Nicholas Jette
- Department of Biochemistry & Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
10
|
Woodbine L, Gennery AR, Jeggo PA. Reprint of "The clinical impact of deficiency in DNA non-homologous end-joining". DNA Repair (Amst) 2014; 17:9-20. [PMID: 24780557 DOI: 10.1016/j.dnarep.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 01/10/2023]
Abstract
DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway in mammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models, since radiation potently induces DSBs. The process of V(D)J recombination functions during the development of the immune response, and involves the introduction and rejoining of programmed DSBs to generate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJ deficiency confers (severe) combined immunodeficiency - (S)CID - due to a failure to carry out V(D)J recombination efficiently. NHEJ also functions in class switch recombination, another step enhancing T and B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patients revealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syndromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have been identified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCID patients frequently display additional characteristics including microcephaly, dysmorphic facial features and growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our current understanding of the underlying biology.
Collapse
Affiliation(s)
- Lisa Woodbine
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Penny A Jeggo
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Woodbine L, Gennery AR, Jeggo PA. The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair (Amst) 2014; 16:84-96. [PMID: 24629483 DOI: 10.1016/j.dnarep.2014.02.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 12/22/2022]
Abstract
DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway in mammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models, since radiation potently induces DSBs. The process of V(D)J recombination functions during the development of the immune response, and involves the introduction and rejoining of programmed DSBs to generate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJ deficiency confers (severe) combined immunodeficiency - (S)CID - due to a failure to carry out V(D)J recombination efficiently. NHEJ also functions in class switch recombination, another step enhancing T and B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patients revealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syndromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have been identified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCID patients frequently display additional characteristics including microcephaly, dysmorphic facial features and growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our current understanding of the underlying biology.
Collapse
Affiliation(s)
- Lisa Woodbine
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Penny A Jeggo
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Gpr97 is essential for the follicular versus marginal zone B-lymphocyte fate decision. Cell Death Dis 2013; 4:e853. [PMID: 24113187 PMCID: PMC3824656 DOI: 10.1038/cddis.2013.346] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023]
Abstract
Gpr97 is an orphan adhesion GPCR and is highly conserved among species. Up to now, its physiological function remains largely unknown. Here, we show that Gpr97 deficiency results in an extensive reduction in B220+ lymphocytes in mice. More intensive analyses reveal an expanded marginal zone but a decreased follicular B-cell population in Gpr97−/−spleen, which displays disorganized architecture characterized by diffuse, irregular B-cell areas and the absence of discrete perifollicular marginal and mantle zones. In vivo functional studies reveal that the mutant mice could generate antibody responses to T cell-dependent and independent antigens, albeit enhanced response to the former and weakened response to the latter. By screening for the molecular events involved in the observed phenotypes, we found that lambda 5 expression is downregulated and its upstream inhibitor Aiolos is increased in the spleen of mutant mice, accompanied by significantly enhanced phosphorylation and nuclear translocation of cAMP response element-binding protein. Interestingly, increased constitutive Nf-κb p50/p65 expression and activity were observed in Gpr97−/− spleen, implicating a crucial role of Gpr97 in regulating Nf-κb activity. These findings uncover a novel biological function of Gpr97 in regulating B-cell development, implying Gpr97 as a potential therapeutic target for treatment of immunological disorders.
Collapse
|
13
|
Tilgner K, Neganova I, Moreno-Gimeno I, AL-Aama JY, Burks D, Yung S, Singhapol C, Saretzki G, Evans J, Gorbunova V, Gennery A, Przyborski S, Stojkovic M, Armstrong L, Jeggo P, Lako M. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors. Cell Death Differ 2013; 20:1089-100. [PMID: 23722522 PMCID: PMC3705601 DOI: 10.1038/cdd.2013.44] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/17/2013] [Accepted: 04/09/2013] [Indexed: 11/08/2022] Open
Abstract
DNA double strand breaks (DSBs) are the most common form of DNA damage and are repaired by non-homologous-end-joining (NHEJ) or homologous recombination (HR). Several protein components function in NHEJ, and of these, DNA Ligase IV is essential for performing the final 'end-joining' step. Mutations in DNA Ligase IV result in LIG4 syndrome, which is characterised by growth defects, microcephaly, reduced number of blood cells, increased predisposition to leukaemia and variable degrees of immunodeficiency. In this manuscript, we report the creation of a human induced pluripotent stem cell (iPSC) model of LIG4 deficiency, which accurately replicates the DSB repair phenotype of LIG4 patients. Our findings demonstrate that impairment of NHEJ-mediated-DSB repair in human iPSC results in accumulation of DSBs and enhanced apoptosis, thus providing new insights into likely mechanisms used by pluripotent stem cells to maintain their genomic integrity. Defects in NHEJ-mediated-DSB repair also led to a significant decrease in reprogramming efficiency of human cells and accumulation of chromosomal abnormalities, suggesting a key role for NHEJ in somatic cell reprogramming and providing insights for future cell based therapies for applications of LIG4-iPSCs. Although haematopoietic specification of LIG4-iPSC is not affected per se, the emerging haematopoietic progenitors show a high accumulation of DSBs and enhanced apoptosis, resulting in reduced numbers of mature haematopoietic cells. Together our findings provide new insights into the role of NHEJ-mediated-DSB repair in the survival and differentiation of progenitor cells, which likely underlies the developmental abnormalities observed in many DNA damage disorders. In addition, our findings are important for understanding how genomic instability arises in pluripotent stem cells and for defining appropriate culture conditions that restrict DNA damage and result in ex vivo expansion of stem cells with intact genomes.
Collapse
Affiliation(s)
- K Tilgner
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, UK
- NESCI, Newcastle University, Newcastle, UK
| | - I Neganova
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, UK
- NESCI, Newcastle University, Newcastle, UK
| | | | - J Y AL-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - D Burks
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - S Yung
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, UK
- NESCI, Newcastle University, Newcastle, UK
| | - C Singhapol
- Institute for Ageing and Health, Newcastle University, Newcastle, UK
| | - G Saretzki
- Institute for Ageing and Health, Newcastle University, Newcastle, UK
| | - J Evans
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, UK
| | - V Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - A Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - S Przyborski
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - M Stojkovic
- Human Genetics Department, Medical Faculty, University of Kragujevac, Kragujevac, Serbia
| | - L Armstrong
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, UK
- NESCI, Newcastle University, Newcastle, UK
| | - P Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - M Lako
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, UK
- NESCI, Newcastle University, Newcastle, UK
| |
Collapse
|
14
|
Zhao P, Zou P, Zhao L, Yan W, Kang C, Jiang T, You Y. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility. BMC Cancer 2013; 13:234. [PMID: 23663450 PMCID: PMC3655843 DOI: 10.1186/1471-2407-13-234] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. Methods We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. Results In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. Conclusions These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Malu S, Malshetty V, Francis D, Cortes P. Role of non-homologous end joining in V(D)J recombination. Immunol Res 2013; 54:233-46. [PMID: 22569912 DOI: 10.1007/s12026-012-8329-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway of V(D)J recombination was discovered almost three decades ago. Yet it continues to baffle scientists because of its inherent complexity and the multiple layers of regulation that are required to efficiently generate a diverse repertoire of T and B cells. The non-homologous end-joining (NHEJ) DNA repair pathway is an integral part of the V(D)J reaction, and its numerous players perform critical functions in generating this vast diversity, while ensuring genomic stability. In this review, we summarize the efforts of a number of laboratories including ours in providing the mechanisms of V(D)J regulation with a focus on the NHEJ pathway. This involves discovering new players, unraveling unknown roles for known components, and understanding how deregulation of these pathways contributes to generation of primary immunodeficiencies. A long-standing interest of our laboratory has been to elucidate various mechanisms that control RAG activity. Our recent work has focused on understanding the multiple protein-protein interactions and protein-DNA interactions during V(D)J recombination, which allow efficient and regulated generation of the antigen receptors. Exploring how deregulation of this process contributes to immunodeficiencies also continues to be an important area of research for our group.
Collapse
Affiliation(s)
- Shruti Malu
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
16
|
Bacon CM, Wilkinson SJ, Spickett GP, Barge D, Lucraft HH, Jackson G, Rand V, Gennery AR. Epstein-Barr virus-independent diffuse large B-cell lymphoma in DNA ligase 4 deficiency. J Allergy Clin Immunol 2012; 131:1237-9, 1239.e1. [PMID: 23228243 DOI: 10.1016/j.jaci.2012.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 11/17/2022]
|
17
|
Puthiyaveetil AG, Reilly CM, Pardee TS, Caudell DL. Non-homologous end joining mediated DNA repair is impaired in the NUP98-HOXD13 mouse model for myelodysplastic syndrome. Leuk Res 2012; 37:112-6. [PMID: 23131583 DOI: 10.1016/j.leukres.2012.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/07/2012] [Accepted: 10/16/2012] [Indexed: 11/17/2022]
Abstract
Chromosomal translocations typically impair cell differentiation and often require secondary mutations for malignant transformation. However, the role of a primary translocation in the development of collaborating mutations is debatable. To delineate the role of leukemic translocation NUP98-HOXD13 (NHD13) in secondary mutagenesis, DNA break and repair mechanisms in stimulated mouse B lymphocytes expressing NHD13 were analyzed. Our results showed significantly reduced expression of non-homologous end joining (NHEJ)-mediated DNA repair genes, DNA Pkcs, DNA ligase4, and Xrcc4 leading to cell cycle arrest at G2/M phase. Our results showed that expression of NHD13 fusion gene resulted in impaired NHEJ-mediated DNA break repair.
Collapse
Affiliation(s)
- Abdul Gafoor Puthiyaveetil
- Laboratory of Molecular Pathology, Center for Molecular Medicine & Infectious Diseases, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
18
|
Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity. Int J Hematol 2012; 95:239-45. [DOI: 10.1007/s12185-012-1008-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/29/2022]
|
19
|
Dvorak CC, Cowan MJ. Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin North Am 2010; 30:125-42. [PMID: 20113890 DOI: 10.1016/j.iac.2009.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inherited defects in components of the nonhomologous end-joining DNA repair mechanism produce a T-B-NK+ severe combined immunodeficiency disease (SCID) characterized by heightened sensitivity to ionizing radiation. Patients with the radiosensitive form of SCID may also have increased short- and long-term sensitivity to the alkylator-based chemotherapy regimens that are traditionally used for conditioning before allogeneic hematopoietic cell transplantation (HCT). Known causes of radiosensitive SCID include deficiencies of Artemis, DNA ligase IV, DNA-dependent protein kinase catalytic subunit, and Cernunnos-XLF, all of which have been treated with HCT. Because of these patients' sensitivity to certain forms of chemotherapy, the approach to donor selection and the type of conditioning regimen used for a patient with radiosensitive SCID requires careful consideration. Significantly more research needs to be done to determine the long-term outcomes of patients with radiosensitive SCID after HCT and to discover novel nontoxic approaches to HCT that might benefit those patients with intrinsic radiosensitivity and chemosensitivity as well as potentially all patients undergoing an HCT.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Blood and Marrow Transplantation, University of California, San Francisco, 505 Parnassus Avenue, M-659, San Francisco, CA 94143-1278, USA
| | | |
Collapse
|
20
|
Walter JE, Rucci F, Patrizi L, Recher M, Regenass S, Paganini T, Keszei M, Pessach I, Lang PA, Poliani PL, Giliani S, Al-Herz W, Cowan MJ, Puck JM, Bleesing J, Niehues T, Schuetz C, Malech H, DeRavin SS, Facchetti F, Gennery AR, Andersson E, Kamani NR, Sekiguchi J, Alenezi HM, Chinen J, Dbaibo G, ElGhazali G, Fontana A, Pasic S, Detre C, Terhorst C, Alt FW, Notarangelo LD. Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency. ACTA ACUST UNITED AC 2010; 207:1541-54. [PMID: 20547827 PMCID: PMC2901061 DOI: 10.1084/jem.20091927] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The contribution of B cells to the pathology of Omenn syndrome and leaky severe combined immunodeficiency (SCID) has not been previously investigated. We have studied a mut/mut mouse model of leaky SCID with a homozygous Rag1 S723C mutation that impairs, but does not abrogate, V(D)J recombination activity. In spite of a severe block at the pro–B cell stage and profound B cell lymphopenia, significant serum levels of immunoglobulin (Ig) G, IgM, IgA, and IgE and a high proportion of Ig-secreting cells were detected in mut/mut mice. Antibody responses to trinitrophenyl (TNP)-Ficoll and production of high-affinity antibodies to TNP–keyhole limpet hemocyanin were severely impaired, even after adoptive transfer of wild-type CD4+ T cells. Mut/mut mice produced high amounts of low-affinity self-reactive antibodies and showed significant lymphocytic infiltrates in peripheral tissues. Autoantibody production was associated with impaired receptor editing and increased serum B cell–activating factor (BAFF) concentrations. Autoantibodies and elevated BAFF levels were also identified in patients with Omenn syndrome and leaky SCID as a result of hypomorphic RAG mutations. These data indicate that the stochastic generation of an autoreactive B cell repertoire, which is associated with defects in central and peripheral checkpoints of B cell tolerance, is an important, previously unrecognized, aspect of immunodeficiencies associated with hypomorphic RAG mutations.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Immunology and The Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu J, Majumdar A, Liu J, Thompson LH, Seidman MM. Sequence conversion by single strand oligonucleotide donors via non-homologous end joining in mammalian cells. J Biol Chem 2010; 285:23198-207. [PMID: 20489199 DOI: 10.1074/jbc.m110.123844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double strand breaks (DSBs) can be repaired by homology independent nonhomologous end joining (NHEJ) pathways involving proteins such as Ku70/80, DNAPKcs, Xrcc4/Ligase 4, and the Mre11/Rad50/Nbs1 (MRN) complex. DSBs can also be repaired by homology-dependent pathways (HDR), in which the MRN and CtIP nucleases produce single strand ends that engage homologous sequences either by strand invasion or strand annealing. The entry of ends into HDR pathways underlies protocols for genomic manipulation that combine site-specific DSBs with appropriate informational donors. Most strategies utilize long duplex donors that participate by strand invasion. Work in yeast indicates that single strand oligonucleotide (SSO) donors are also active, over considerable distance, via a single strand annealing pathway. We examined the activity of SSO donors in mammalian cells at DSBs induced either by a restriction nuclease or by a targeted interstrand cross-link. SSO donors were effective immediately adjacent to the break, but activity declined sharply beyond approximately 100 nucleotides. Overexpression of the resection nuclease CtIP increased the frequency of SSO-mediated sequence modulation distal to the break site, but had no effect on the activity of an SSO donor adjacent to the break. Genetic and in vivo competition experiments showed that sequence conversion by SSOs in the immediate vicinity of the break was not by strand invasion or strand annealing pathways. Instead these donors competed for ends that would have otherwise entered NHEJ pathways.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
DNA-repair pathways recognise and repair DNA damaged by exogenous and endogenous agents to maintain genomic integrity. Defects in these pathways lead to replication errors, loss or rearrangement of genomic material and eventually cell death or carcinogenesis. The creation of diverse lymphocyte receptors to identify potential pathogens requires breaking and randomly resorting gene segments encoding antigen receptors. Subsequent repair of the gene segments utilises ubiquitous DNA-repair proteins. Individuals with defective repair pathways are found to be immunodeficient and many are radiosensitive. The role of repair proteins in the development of adaptive immunity by VDJ recombination, antibody isotype class switching and affinity maturation by somatic hypermutation has become clearer over the past few years, partly because of identification of the genes involved in human disease. We describe the mechanisms involved in the development of adaptive immunity relating to DNA repair, and the clinical consequences and treatment of the primary immunodeficiency resulting from such defects.
Collapse
|
23
|
Homozygous DNA ligase IV R278H mutation in mice leads to leaky SCID and represents a model for human LIG4 syndrome. Proc Natl Acad Sci U S A 2010; 107:3024-9. [PMID: 20133615 DOI: 10.1073/pnas.0914865107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA ligase IV (LIG4) is an essential component of the nonhomologous end-joining (NHEJ) repair pathway and plays a key role in V(D)J recombination. Hypomorphic LIG4 mutations in humans are associated with increased cellular radiosensitivity, microcephaly, facial dysmorphisms, growth retardation, developmental delay, and a variable degree of immunodeficiency. We have generated a knock-in mouse model with a homozygous Lig4 R278H mutation that corresponds to the first LIG4 mutation reported in humans. The phenotype of homozygous mutant mice Lig4(R278H/R278H) (Lig4(R/R)) includes growth retardation, a decreased life span, a severe cellular sensitivity to ionizing radiation, and a very severe, but incomplete block in T and B cell development. Peripheral T lymphocytes show an activated and anergic phenotype, reduced viability, and a restricted repertoire, reminiscent of human leaky SCID. Genomic instability is associated with a high rate of thymic tumor development. Finally, Lig4(R/R) mice spontaneously produce low-affinity antibodies that include autoreactive specificities, but are unable to mount high-affinity antibody responses. These findings highlight the importance of LIG4 in lymphocyte development and function, and in genomic stability maintenance, and provide a model for the complex phenotype of LIG4 syndrome in humans.
Collapse
|
24
|
Molecular insight into the immune up-regulatory properties of the leaf extract of Ashwagandha and identification of Th1 immunostimulatory chemical entity. Vaccine 2009; 27:6080-7. [DOI: 10.1016/j.vaccine.2009.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 01/28/2023]
|