1
|
Emin MT, Dubuisson AM, Kumar PS, Knutsen C, Alvira CM, Hough RF. Yes-associated Protein Induces Age-dependent Inflammatory Signaling in the Pulmonary Endothelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640349. [PMID: 40196616 PMCID: PMC11974671 DOI: 10.1101/2025.02.26.640349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acute Lung Injury (ALI) causes the highly lethal Acute Respiratory Distress Syndrome (ARDS) in children and adults, for which therapy is lacking. Children with Pediatric ARDS (PARDS) have a mortality rate that is about half of adults with ARDS. Improved ALI measures can be reproduced in rodent models with juvenile animals, suggesting that physiologic differences may underlie these different outcomes. Here, we show that pneumonia-induced ALI caused inflammatory signaling in the endothelium of adult mice which depended on Yes-associated protein (YAP). This signaling was not present in 21-day-old weanling mice. Transcriptomic analysis of lung endothelial responses revealed nuclear factor kappa-B (NF-κB) as significantly increased with ALI in adult versus weanling mice. Blockade of YAP signaling protected against ALI and NF-κB nuclear translocation in adult mice. Our results demonstrate an important signaling cascade in the lung endothelium of adult mice that is not present in weanlings. We suggest other pathways may also exhibit age-dependent inflammatory signaling, which would have important implications for therapeutics in the adult and pediatric age groups.
Collapse
Affiliation(s)
- Memet T. Emin
- Pediatric Critical Care, Hospitalist, and Palliative Medicine, Department of Pediatrics, Columbia University Irving Medical Center
| | - Alexandra M. Dubuisson
- Pediatric Critical Care, Hospitalist, and Palliative Medicine, Department of Pediatrics, Columbia University Irving Medical Center
- Louisiana State University Health Sciences Center Shreveport
| | - Prisha Sujin Kumar
- Pediatric Critical Care, Hospitalist, and Palliative Medicine, Department of Pediatrics, Columbia University Irving Medical Center
| | - Carsten Knutsen
- Department of Pediatrics, University of California, San Francisco School of Medicine
| | - Cristina M. Alvira
- Department of Pediatrics, University of California, San Francisco School of Medicine
| | - Rebecca F. Hough
- Pediatric Critical Care, Hospitalist, and Palliative Medicine, Department of Pediatrics, Columbia University Irving Medical Center
| |
Collapse
|
2
|
Mekontso Dessap A, AlShamsi F, Belletti A, De Backer D, Delaney A, Møller MH, Gendreau S, Hernandez G, Machado FR, Mer M, Monge Garcia MI, Myatra SN, Peng Z, Perner A, Pinsky MR, Sharif S, Teboul JL, Vieillard-Baron A, Alhazzani W. European Society of Intensive Care Medicine (ESICM) 2025 clinical practice guideline on fluid therapy in adult critically ill patients: part 2-the volume of resuscitation fluids. Intensive Care Med 2025; 51:461-477. [PMID: 40163133 DOI: 10.1007/s00134-025-07840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/11/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE This European Society of Intensive Care Medicine (ESICM) guideline provides evidence-based recommendations on the volume of early resuscitation fluid for adult critically ill patients. METHODS An international panel of experts developed the guideline, focusing on fluid resuscitation volume in adult critically ill patients with circulatory failure. Using the PICO format, questions were formulated, and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was applied to assess evidence and formulate recommendations. RESULTS In adults with sepsis or septic shock, the guideline suggests administering up to 30 ml/kg of intravenous crystalloids in the initial phase, with adjustments based on clinical context and frequent reassessments (very low certainty of evidence). We suggest using an individualized approach in the optimization phase (very low certainty of evidence). No recommendation could be made for or against restrictive or liberal fluid strategies in the optimization phase (moderate certainty of no effect). For hemorrhagic shock, a restrictive fluid strategy is suggested after blunt trauma (moderate certainty) and penetrating trauma (low certainty), with fluid administration for non-traumatic hemorrhagic shock guided by hemodynamic and biochemical parameters (ungraded best practice). For circulatory failure due to left-sided cardiogenic shock, fluid resuscitation as the primary treatment is not recommended. Fluids should be administered cautiously for cardiac tamponade until definitive treatment and guided by surrogate markers of right heart congestion in acute pulmonary embolism (ungraded best practice). No recommendation could be made for circulatory failure associated with acute respiratory distress syndrome. CONCLUSIONS The panel made four conditional recommendations and four ungraded best practice statements. No recommendations were made for two questions. Knowledge gaps were identified, and suggestions for future research were provided.
Collapse
Affiliation(s)
- Armand Mekontso Dessap
- Medical Intensive Care, Henri-Mondor Hospital (AP-HP), UPEC, IMRB, CARMAS Research Group, Creteil, France.
- CARMAS research group, IMRB, UPEC, Créteil, France.
| | - Fayez AlShamsi
- Department of Internal Medicine, College of Medicine and Health Sciences, Emirates University, Al Ain, United Arab Emirates
| | - Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Anthony Delaney
- Critical Care Program, The George Institute for Global Health, Sydney, NSW, Australia
| | - Morten Hylander Møller
- Department of Intensive Care, Copenhagen University Hospital - Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Segolène Gendreau
- Medical Intensive Care, Henri-Mondor Hospital (AP-HP), UPEC, IMRB, CARMAS Research Group, Creteil, France
- CARMAS research group, IMRB, UPEC, Créteil, France
| | - Glenn Hernandez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Flavia R Machado
- Intensive Care Department, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mervyn Mer
- Department of Medicine, Divisions of Critical Care and Pulmonology, Faculty of Health Sciences, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anders Perner
- Department of Intensive Care, Copenhagen University Hospital - Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Sameer Sharif
- Division of Critical Care and Emergency Medicine, Department of Medicine, McMaster University, Hamilton, Canada
| | - Jean-Louis Teboul
- Medical Intensive Care, Bicetre Hospital (AP-HP), Le Kremlin-Bicêtre, France
| | - Antoine Vieillard-Baron
- Medical and Surgical Intensive Care Unit, University Hospital Ambroise Paré, APHP, UMR 1018, UVSQ, Boulogne-Billancourt, France
| | - Waleed Alhazzani
- Critical Care and Internal Medicine Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Health Research Center, Ministry of Defense Health Services, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Joseph A, Evrard B, Petit M, Goudelin M, Prat G, Slama M, Charron C, Vignon P, Vieillard-Baron A. Fluid responsiveness in acute respiratory distress syndrome patients: a post hoc analysis of the HEMOPRED study. Intensive Care Med 2024; 50:1850-1860. [PMID: 39254736 DOI: 10.1007/s00134-024-07639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE Optimal fluid management in patients with acute respiratory distress syndrome (ARDS) is challenging due to risks associated with both circulatory failure and fluid overload. The performance of dynamic indices to predict fluid responsiveness (FR) in ARDS patients is uncertain. METHODS This post hoc analysis of the HEMOPRED study compared the performance of dynamic indices in mechanically ventilated patients with shock, with and without ARDS, to predict FR, defined as an increase in aortic velocity time integral (VTI) > 10% after passive leg raising (PLR). RESULTS Among 540 patients, 117 (22%) had ARDS and were ventilated with a median tidal volume of 7.6 mL/kg [6.9-8.4] and a median positive end-expiratory pressure of 7 cmH2O [5-9]. FR was observed in 45 ARDS patients (39% vs 44% in non-ARDS patients, p = 0.384). Reliability of dynamic indices to predict FR remained consistent in ARDS patients, though with different thresholds. Collapsibility index of the superior vena cava (ΔSVC) showed the best predictive performance in both ARDS (area under the curve [AUC] = 0.763 [0.659-0.868]) and non-ARDS (AUC = 0.750 [0.698-0.802]) patients. A right to left ventricle end-diastolic area ratio > 0.8 or paradoxical septal motion were strongly linked to the absence of FR (> 80% specificity). FR was not associated with intensive care unit (ICU) mortality (47% vs. 46%, p = 1). However, hypovolemia, defined as an aortic VTI increase > 32% during PLR (median increase in patients with a partial SVC collapse) was independently associated with ICU mortality (odds ratio [OR] = 1.355 [1.077-1.705], p = 0.011), as well as pulse pressure variation (OR = 1.014 [1.001-1.026], p = 0.034). CONCLUSION Performance of dynamic indices to predict FR appears preserved in ARDS patients, albeit with distinct thresholds. Hypovolemia, indicated by a > 32% increase in aortic VTI during PLR, rather than FR, was associated with ICU mortality in this population.
Collapse
Affiliation(s)
- Adrien Joseph
- Medical and Surgical intensive care unit, University Hospital Ambroise Paré, GHU Paris-Saclay, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France.
- Inserm U1173, Laboratory of Infection & Inflammation, University Versailles Saint Quentin - University Paris Saclay, Guyancourt, France.
| | - Bruno Evrard
- Medical-Surgical Intensive Care Unit, INSERM CIC 1435 and Faculty of Medicine, University of Limoges, Limoges, France
| | - Matthieu Petit
- Medical and Surgical intensive care unit, University Hospital Ambroise Paré, GHU Paris-Saclay, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France
- Inserm U1018, CESP, University Versailles Saint Quentin - University Paris Saclay, Guyancourt, France
| | - Marine Goudelin
- Medical-Surgical Intensive Care Unit, INSERM CIC 1435 and Faculty of Medicine, University of Limoges, Limoges, France
| | - Gwenaël Prat
- Medical Intensive Care Unit, Brest University Hospital, Brest, France
| | - Michel Slama
- Medical Intensive Care Unit, Amiens University Hospital, Amiens, France
| | - Cyril Charron
- Medical and Surgical intensive care unit, University Hospital Ambroise Paré, GHU Paris-Saclay, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France
| | - Philippe Vignon
- Medical-Surgical Intensive Care Unit, INSERM CIC 1435 and Faculty of Medicine, University of Limoges, Limoges, France
| | - Antoine Vieillard-Baron
- Medical and Surgical intensive care unit, University Hospital Ambroise Paré, GHU Paris-Saclay, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France
- Inserm U1018, CESP, University Versailles Saint Quentin - University Paris Saclay, Guyancourt, France
| |
Collapse
|
4
|
Sallee CJ, Fitzgerald JC, Smith LS, Angelo JR, Daniel MC, Gertz SJ, Hsing DD, Mahadeo KM, McArthur JA, Rowan CM. Fluid Overload in Pediatric Acute Respiratory Distress Syndrome after Allogeneic Hematopoietic Cell Transplantation. J Pediatr Intensive Care 2024; 13:286-295. [PMID: 39629158 PMCID: PMC11379529 DOI: 10.1055/s-0042-1757480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022] Open
Abstract
The aim of the study is to examine the relationship between fluid overload (FO) and severity of respiratory dysfunction in children posthematopoietic cell transplantation (HCT) with pediatric acute respiratory distress syndrome (PARDS). This investigation was a secondary analysis of a multicenter retrospective cohort of children (1month to 21 years) postallogeneic HCT with PARDS receiving invasive mechanical ventilation (IMV) from 2009 to 2014. Daily FO % (FO%) and daily oxygenation index (OI) were calculated for each patient up to the first week of IMV (day 0 = intubation). Linear mixed-effect regression was employed to examine whether FO% and OI were associated on any day during the study period. In total, 158 patients were included. Severe PARDS represented 63% of the cohort and had higher mortality (78 vs. 42%, p <0.001), fewer ventilator free days at 28 (0 [IQR: 0-0] vs. 14 [IQR: 0-23], p <0.001), and 60 days (0 [IQR: 0-27] v. 45 [IQR: 0-55], p <0.001) relative to nonsevere PARDS. Increasing FO% was strongly associated with higher OI ( p <0.001). For children with 10% FO, OI was higher by nearly 5 points (adjusted β , 4.6, 95% CI: [2.9, 6.3]). In subgroup analyses, the association between FO% and OI was strongest among severe PARDS ( p <0.001) and during the first 3 days elapsed from intubation ( p <0.001). FO% was associated with lower PaO 2 /FiO 2 (adjusted β , -1.92, 95% CI: [-3.11, -0.73], p = 0.002), but not mean airway pressure ( p = 0.746). In a multicenter cohort of children post-HCT with PARDS, FO was independently associated with oxygenation impairment. The associations were strongest among children with severe PARDS and early in the course of IMV.
Collapse
Affiliation(s)
- Colin J. Sallee
- Department of Pediatrics, Division of Pediatric Critical Care, UCLA Mattel Children's Hospital, University of California Los Angeles, Los Angeles, California, United States
| | - Julie C. Fitzgerald
- Department of Anesthesiology and Critical Care, Division of Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Lincoln S. Smith
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Seattle Children's Hospital, University of Washington, Seattle, Washington, United States
| | - Joseph R. Angelo
- Department of Pediatrics, Renal Section, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States
| | - Megan C. Daniel
- Department of Pediatrics, Division of Critical Care, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States
| | - Shira J. Gertz
- Department of Pediatrics, Division of Pediatric Critical Care, Saint Barnabas Medical Center, Livingston, New Jersey, United States
| | - Deyin D. Hsing
- Department of Pediatrics, Division of Critical Care, Weil Cornell Medical College, New York Presbyterian Hospital, New York City, New York, United States
| | - Kris M. Mahadeo
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jennifer A. McArthur
- Department of Pediatrics, Division of Critical Care, St Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Courtney M. Rowan
- Department of Pediatrics, Division of Critical Care, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | | |
Collapse
|
5
|
Li N, Cheng Y, Jin T, Cao L, Zha J, Zhu X, He Q. Kaempferol and ginsenoside Rg1 ameliorate acute hypobaric hypoxia induced lung injury based on network pharmacology analysis. Toxicol Appl Pharmacol 2023; 480:116742. [PMID: 37923178 DOI: 10.1016/j.taap.2023.116742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Acute hypobaric hypoxia at high altitude can cause fatal non-cardiogenic high altitude pulmonary edema. Anti-inflammatory and anti-oxidant treatments appear to be a prospective way to alleviate acute hypoxia lung injury. Kaempferol (KA) and ginsenoside Rg1 (GRg1) can be isolated and purified from ginseng with anti-inflammatory, antioxidant, anti-carcinogenic, neuroprotective, and antiaging effects. However, their effects and pharmacological mechanisms on lung injury remains unclear. Network pharmacology analyses were used to explore potential targets of KA and GRg1 against acute hypobaric hypoxia induced lung injury. Rat lung tissues were further used for animal experiment verification. Among the putative targets of KA and GRg1 for inhibition of acute hypobaric hypoxia induced lung injury, AKT1, PIK3R1, PTK2, STAT3, HSP90AA1 and AKT2 were recognized as higher interrelated targets. And PI3K-AKT signaling pathway is considered to be the most important and relevant pathway. The rat experimental results showed that KA and GRg1 significantly improved histopathological changes and decreased pulmonary edema in rats with lung injury caused by acute hypobaric hypoxia. The concentrations of IL-6, TNF-α, MDA, SOD and CAT in rats treated with KA and GRg1 were significantly ameliorated. Protein and mRNA levels of PI3K and AKTI were significantly inhibited after KA administration. KA and GRg1 can lower lung water content, improve lung tissue damage, reduce the production of pro-inflammatory cytokines and the oxidative stress level.
Collapse
Affiliation(s)
- Na Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yuan Cheng
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Tao Jin
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lirui Cao
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jieyu Zha
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xiong Zhu
- Department of Critical Care Medicine, Zhuhai People's Hospital, Zhuhai, Guangdong, China
| | - Qing He
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China; Department of Intensive Care Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, China.
| |
Collapse
|
6
|
Kitzerow O, Suder P, Shukry M, Lisco SJ, Zucker IH, Wang HJ. Systemic mapping of organ plasma extravasation at multiple stages of chronic heart failure. Front Physiol 2023; 14:1288907. [PMID: 38033338 PMCID: PMC10687360 DOI: 10.3389/fphys.2023.1288907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Chronic Heart failure (CHF) is a highly prevalent disease that leads to significant morbidity and mortality. Diffuse vasculopathy is a commonmorbidity associated with CHF. Increased vascular permeability leading to plasma extravasation (PEx) occurs in surrounding tissues following endothelial dysfunction. Such micro- and macrovascular complications develop over time and lead to edema, inflammation, and multi-organ dysfunction in CHF. However, a systemic examination of PEx in vital organs among different time windows of CHF has never been performed. In the present study, we investigated time-dependent PEx in several major visceral organs including heart, lung, liver, spleen, kidney, duodenum, ileum, cecum, and pancreas between sham-operated and CHF rats induced by myocardial infarction (MI). Methods: Plasma extravasation was determined by colorimetric evaluation of Evans Blue (EB) concentrations at 3 days, ∼10 weeks and 4 months following MI. Results: Data show that cardiac PEx was initially high at day 3 post MI and then gradually decreased but remained at a moderately high level at ∼10 weeks and 4 months post MI. Lung PEx began at day 3 and remained significantly elevated at both ∼10 weeks and 4 months post MI. Spleen PExwas significantly increased at ∼10 weeks and 4 months but not on day 3 post MI. Liver PEx occurred early at day 3 and remain significantly increased at ∼10 weeks and 4 months post MI. For the gastrointestinal (GI) organs including duodenum, ileum and cecum, there was a general trend that PEx level gradually increased following MI and reached statistical significance at either 10 weeks or 4 months post MI. Similar to GI PEx, renal PEx was significantly elevated at 4 months post MI. Discussion: In summary, we found that MI generally incites a timedependent PEx of multiple visceral organs. However, the PEx time window for individual organs in response to the MI challenge was different, suggesting that different mechanisms are involved in the pathogenesis of PEx in these vital organs during the development of CHF.
Collapse
Affiliation(s)
- Oliver Kitzerow
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Paul Suder
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mohanad Shukry
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Steven J. Lisco
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
7
|
Emin MT, Lee MJ, Bhattacharya J, Hough RF. Mitochondria of lung venular capillaries mediate lung-liver cross talk in pneumonia. Am J Physiol Lung Cell Mol Physiol 2023; 325:L277-L287. [PMID: 37431588 PMCID: PMC10625830 DOI: 10.1152/ajplung.00209.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Failure of the lung's endothelial barrier underlies lung injury, which causes the high mortality acute respiratory distress syndrome (ARDS). Multiple organ failure predisposes to the mortality, but mechanisms are poorly understood. Here, we show that mitochondrial uncoupling protein 2 (UCP2), a component of the mitochondrial inner membrane, plays a role in the barrier failure. Subsequent lung-liver cross talk mediated by neutrophil activation causes liver congestion. We intranasally instilled lipopolysaccharide (LPS). Then, we viewed the lung endothelium by real-time confocal imaging of the isolated, blood-perfused mouse lung. LPS caused alveolar-capillary transfer of reactive oxygen species and mitochondrial depolarization in lung venular capillaries. The mitochondrial depolarization was inhibited by transfection of alveolar Catalase and vascular knockdown of UCP2. LPS instillation caused lung injury as indicated by increases in bronchoalveolar lavage (BAL) protein content and extravascular lung water. LPS or Pseudomonas aeruginosa instillation also caused liver congestion, quantified by liver hemoglobin and plasma aspartate aminotransferase (AST) increases. Genetic inhibition of vascular UCP2 prevented both lung injury and liver congestion. Antibody-mediated neutrophil depletion blocked the liver responses, but not lung injury. Knockdown of lung vascular UCP2 mitigated P. aeruginosa-induced mortality. Together, these data suggest a mechanism in which bacterial pneumonia induces oxidative signaling to lung venular capillaries, known sites of inflammatory signaling in the lung microvasculature, depolarizing venular mitochondria. Successive activation of neutrophils induces liver congestion. We conclude that oxidant-induced UCP2 expression in lung venular capillaries causes a mechanistic sequence leading to liver congestion and mortality. Lung vascular UCP2 may present a therapeutic target in ARDS.NEW & NOTEWORTHY We report that mitochondrial injury in lung venular capillaries underlies barrier failure in pneumonia, and venular capillary uncoupling protein 2 (UCP2) causes neutrophil-mediated liver congestion. Using in situ imaging, we found that epithelial-endothelial transfer of H2O2 activates UCP2, depolarizing mitochondria in venular capillaries. The conceptual advance from our findings is that mitochondrial depolarization in lung capillaries mediates liver cross talk through circulating neutrophils. Pharmacologic blockade of UCP2 could be a therapeutic strategy for lung injury.
Collapse
Affiliation(s)
- Memet T Emin
- Department of Pediatrics, Pediatric Critical Care and Hospital Medicine, Columbia University Irving Medical Center, New York, New York, United States
| | - Michael J Lee
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Jahar Bhattacharya
- Lung Biology Laboratory, Pulmonary Division, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States
| | - Rebecca F Hough
- Department of Pediatrics, Pediatric Critical Care and Hospital Medicine, Columbia University Irving Medical Center, New York, New York, United States
- Lung Biology Laboratory, Pulmonary Division, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
8
|
Cusack R, Bos LD, Povoa P, Martin-Loeches I. Endothelial dysfunction triggers acute respiratory distress syndrome in patients with sepsis: a narrative review. Front Med (Lausanne) 2023; 10:1203827. [PMID: 37332755 PMCID: PMC10272540 DOI: 10.3389/fmed.2023.1203827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe organ failure occurring mainly in critically ill patients as a result of different types of insults such as sepsis, trauma or aspiration. Sepsis is the main cause of ARDS, and it contributes to a high mortality and resources consumption both in hospital setting and in the community. ARDS develops mainly an acute respiratory failure with severe and often refractory hypoxemia. ARDS also has long term implications and sequelae. Endothelial damage plays an important role in the pathogenesis of ARDS. Understanding the mechanisms of ARDS presents opportunities for novel diagnostic and therapeutic targets. Biochemical signals can be used in concert to identify and classify patients into ARDS phenotypes allowing earlier effective treatment with personalised therapies. This is a narrative review where we aimed to flesh out the pathogenetic mechanisms and heterogeneity of ARDS. We examine the links between endothelium damage and its contribution to organ failure. We have also investigated future strategies for treatment with a special emphasis in endothelial damage.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Intensive Care, St. James’s Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Lieuwe D. Bos
- Intensive Care, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pedro Povoa
- NOVA Medical School, CHRC, New University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
- Department of Intensive Care, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
| | - Ignacio Martin-Loeches
- Department of Intensive Care, St. James’s Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Felix NS, Maia LA, Rocha NN, Rodrigues GC, Medeiros M, da Silva LA, Baldavira CM, Fernezlian SDM, Eher EM, Capelozzi VL, Malbrain MLNG, Pelosi P, Rocco PRM, Silva PL. Biological impact of restrictive and liberal fluid strategies at low and high PEEP levels on lung and distal organs in experimental acute respiratory distress syndrome. Front Physiol 2022; 13:992401. [PMID: 36388107 PMCID: PMC9663484 DOI: 10.3389/fphys.2022.992401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Fluid regimens in acute respiratory distress syndrome (ARDS) are conflicting. The amount of fluid and positive end-expiratory pressure (PEEP) level may interact leading to ventilator-induced lung injury (VILI). We therefore evaluated restrictive and liberal fluid strategies associated with low and high PEEP levels with regard to lung and kidney damage, as well as cardiorespiratory function in endotoxin-induced ARDS. Methods: Thirty male Wistar rats received an intratracheal instillation of Escherichia coli lipopolysaccharide. After 24 h, the animals were anesthetized, protectively ventilated (VT = 6 ml/kg), and randomized to restrictive (5 ml/kg/h) or liberal (40 ml/kg/h) fluid strategies (Ringer lactate). Both groups were then ventilated with PEEP = 3 cmH2O (PEEP3) and PEEP = 9 cmH2O (PEEP9) for 1 h (n = 6/group). Echocardiography, arterial blood gases, and lung mechanics were evaluated throughout the experiments. Histologic analyses were done on the lungs, and molecular biology was assessed in lungs and kidneys using six non-ventilated animals with no fluid therapy. Results: In lungs, the liberal group showed increased transpulmonary plateau pressure compared with the restrictive group (liberal, 23.5 ± 2.9 cmH2O; restrictive, 18.8 ± 2.3 cmH2O, p = 0.046) under PEEP = 9 cmH2O. Gene expression associated with inflammation (interleukin [IL]-6) was higher in the liberal-PEEP9 group than the liberal-PEEP3 group (p = 0.006) and restrictive-PEEP9 (p = 0.012), Regardless of the fluid strategy, lung mechanical power and the heterogeneity index were higher, whereas birefringence for claudin-4 and zonula-ocludens-1 gene expression were lower in the PEEP9 groups. Perivascular edema was higher in liberal groups, regardless of PEEP levels. Markers related to damage to epithelial cells [club cell secreted protein (CC16)] and the extracellular matrix (syndecan) were higher in the liberal-PEEP9 group than the liberal-PEEP3 group (p = 0.010 and p = 0.024, respectively). In kidneys, the expression of IL-6 and neutrophil gelatinase-associated lipocalin was higher in PEEP9 groups, regardless of the fluid strategy. For the liberal strategy, PEEP = 9 cmH2O compared with PEEP = 3 cmH2O reduced the right ventricle systolic volume (37%) and inferior vena cava collapsibility index (45%). Conclusion: The combination of a liberal fluid strategy and high PEEP led to more lung damage. The application of high PEEP, regardless of the fluid strategy, may also be deleterious to kidneys.
Collapse
Affiliation(s)
- Nathane S. Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia A. Maia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth N. Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gisele C. Rodrigues
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mayck Medeiros
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia A. da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila M. Baldavira
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Esmeralda M. Eher
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vera L. Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Manu L. N. G. Malbrain
- First Department of Anesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Pedro L. Silva,
| |
Collapse
|
10
|
Herminghaus A, Kozlov AV, Szabó A, Hantos Z, Gylstorff S, Kuebart A, Aghapour M, Wissuwa B, Walles T, Walles H, Coldewey SM, Relja B. A Barrier to Defend - Models of Pulmonary Barrier to Study Acute Inflammatory Diseases. Front Immunol 2022; 13:895100. [PMID: 35874776 PMCID: PMC9300899 DOI: 10.3389/fimmu.2022.895100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Andrey V. Kozlov
- L Boltzmann Institute for Traumatology in Cooperation with AUVA and Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Human Pathology , IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Zoltán Hantos
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Severin Gylstorff
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Mahyar Aghapour
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Bianka Wissuwa
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, Magdeburg University Medicine, Magdeburg, Germany
| | - Heike Walles
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- *Correspondence: Borna Relja,
| |
Collapse
|
11
|
Katira BH, Engelberts D, Bouch S, Fliss J, Bastia L, Osada K, Connelly KA, Amato MBP, Ferguson ND, Kuebler WM, Kavanagh BP, Brochard LJ, Post M. Repeated endo-tracheal tube disconnection generates pulmonary edema in a model of volume overload: an experimental study. Crit Care 2022; 26:47. [PMID: 35180891 PMCID: PMC8857825 DOI: 10.1186/s13054-022-03924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An abrupt lung deflation in rodents results in lung injury through vascular mechanisms. Ventilator disconnections during endo-tracheal suctioning in humans often cause cardio-respiratory instability. Whether repeated disconnections or lung deflations cause lung injury or oedema is not known and was tested here in a porcine large animal model. METHODS Yorkshire pigs (~ 12 weeks) were studied in three series. First, we compared PEEP abruptly deflated from 26 cmH2O or from PEEP 5 cmH2O to zero. Second, pigs were randomly crossed over to receive rapid versus gradual PEEP removal from 20 cmH2O. Third, pigs with relative volume overload, were ventilated with PEEP 15 cmH2O and randomized to repeated ETT disconnections (15 s every 15 min) or no disconnection for 3 h. Hemodynamics, pulmonary variables were monitored, and lung histology and bronchoalveolar lavage studied. RESULTS As compared to PEEP 5 cmH2O, abrupt deflation from PEEP 26 cmH2O increased PVR, lowered oxygenation, and increased lung wet-to-dry ratio. From PEEP 20 cmH2O, gradual versus abrupt deflation mitigated the changes in oxygenation and vascular resistance. From PEEP 15, repeated disconnections in presence of fluid loading led to reduced compliance, lower oxygenation, higher pulmonary artery pressure, higher lung wet-to-dry ratio, higher lung injury score and increased oedema on morphometry, compared to no disconnects. CONCLUSION Single abrupt deflation from high PEEP, and repeated short deflations from moderate PEEP cause pulmonary oedema, impaired oxygenation, and increased PVR, in this large animal model, thus replicating our previous finding from rodents. Rapid deflation may thus be a clinically relevant cause of impaired lung function, which may be attenuated by gradual pressure release.
Collapse
Affiliation(s)
- Bhushan H Katira
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
- The Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division of Critical Care Medicine, Department of Paediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Doreen Engelberts
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
| | - Sheena Bouch
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
| | - Jordan Fliss
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Luca Bastia
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Kohei Osada
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Sciences, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Niall D Ferguson
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health Systems, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Brian P Kavanagh
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
- The Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Departments of Critical Care Medicine and Anaesthesiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Laurent J Brochard
- Keenan Research Centre for Biomedical Sciences, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada.
- The Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Jain A, Giesinger RE, Dakshinamurti S, ElSayed Y, Jankov RP, Weisz DE, Lakshminrusimha S, Mitra S, Mazwi ML, Ting J, Narvey M, McNamara PJ. Care of the critically ill neonate with hypoxemic respiratory failure and acute pulmonary hypertension: framework for practice based on consensus opinion of neonatal hemodynamics working group. J Perinatol 2022; 42:3-13. [PMID: 35013586 DOI: 10.1038/s41372-021-01296-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Circulatory transition after birth presents a critical period whereby the pulmonary vascular bed and right ventricle must adapt to rapidly changing loading conditions. Failure of postnatal transition may present as hypoxemic respiratory failure, with disordered pulmonary and systemic blood flow. In this review, we present the biological and clinical contributors to pathophysiology and present a management framework.
Collapse
Affiliation(s)
- Amish Jain
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | - Yasser ElSayed
- Department of Pediatrics, University of Manitoba, Winnipeg, MB, Canada
| | - Robert P Jankov
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Dany E Weisz
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Souvik Mitra
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Mjaye L Mazwi
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Joseph Ting
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Michael Narvey
- Department of Pediatrics, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
13
|
Abstract
Live imaging is critical to determining the dynamics and spatial interactions of cells within the tissue environment. In the lung, this has proven to be difficult due to the motion brought about by ventilation and cardiac contractions. A previous version of this Current Protocols in Cytometry article reported protocols for imaging ex vivo live lung slices and the intact mouse lung. Here, we update those protocols by adding new methodologies, new approaches for quantitative image analysis, and new areas of potential application. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Live imaging of lung slices Support Protocol 1: Staining lung sections with fluorescent antibodies Basic Protocol 2: Live imaging in the mouse lung Support Protocol 2: Intratracheal instillations Support Protocol 3: Intravascular instillations Support Protocol 4: Monitoring vital signs of the mouse during live lung imaging Support Protocol 5: Antibodies Support Protocol 6: Fluorescent reporter mice Basic Protocol 3: Quantification of neutrophil-platelet aggregation in pulmonary vasculature Basic Protocol 4: Quantification of platelet-dependent pulmonary thrombosis Basic Protocol 5: Quantification of pulmonary vascular permeability.
Collapse
Affiliation(s)
- Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tomasz W Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Margaret F Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Amado-Rodríguez L, Del Busto C, López-Alonso I, Parra D, Mayordomo-Colunga J, Arias-Guillén M, Albillos-Almaraz R, Martín-Vicente P, López-Martínez C, Huidobro C, Camporota L, Slutsky AS, Albaiceta GM. Biotrauma during ultra-low tidal volume ventilation and venoarterial extracorporeal membrane oxygenation in cardiogenic shock: a randomized crossover clinical trial. Ann Intensive Care 2021; 11:132. [PMID: 34453620 PMCID: PMC8397875 DOI: 10.1186/s13613-021-00919-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
Background Cardiogenic pulmonary oedema (CPE) may contribute to ventilator-associated lung injury (VALI) in patients with cardiogenic shock. The appropriate ventilatory strategy remains unclear. We aimed to evaluate the impact of ultra-low tidal volume ventilation with tidal volume of 3 ml/kg predicted body weight (PBW) in patients with CPE and veno–arterial extracorporeal membrane oxygenation (V–A ECMO) on lung inflammation compared to conventional ventilation. Methods A single-centre randomized crossover trial was performed in the Cardiac Intensive Care Unit (ICU) at a tertiary university hospital. Seventeen adults requiring V–A ECMO and mechanical ventilation due to cardiogenic shock were included from February 2017 to December 2018. Patients were ventilated for two consecutive periods of 24 h with tidal volumes of 6 and 3 ml/kg of PBW, respectively, applied in random order. Primary outcome was the change in proinflammatory mediators in bronchoalveolar lavage fluid (BALF) between both ventilatory strategies. Results Ventilation with 3 ml/kg PBW yielded lower driving pressures and end-expiratory lung volumes. Overall, there were no differences in BALF cytokines. Post hoc analyses revealed that patients with high baseline levels of IL-6 showed statistically significant lower levels of IL-6 and IL-8 during ultra-low tidal volume ventilation. This reduction was significantly proportional to the decrease in driving pressure. In contrast, those with lower IL-6 baseline levels showed a significant increase in these biomarkers. Conclusions Ultra-low tidal volume ventilation in patients with CPE and V–A ECMO may attenuate inflammation in selected cases. VALI may be driven by an interaction between the individual proinflammatory profile and the mechanical load overimposed by the ventilator. Trial registration The trial was registered in ClinicalTrials.gov (identifier NCT03041428, Registration date: 2nd February 2017). Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00919-0.
Collapse
Affiliation(s)
- Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain. .,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Cecilia Del Busto
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Parra
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Juan Mayordomo-Colunga
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Cuidados Intensivos Pediátricos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Miguel Arias-Guillén
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Neumología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Rodrigo Albillos-Almaraz
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, King's College, London, UK
| | - Arthur S Slutsky
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
15
|
Rocha NN, Samary CS, Antunes MA, Oliveira MV, Hemerly MR, Santos PS, Capelozzi VL, Cruz FF, Marini JJ, Silva PL, Pelosi P, Rocco PRM. The impact of fluid status and decremental PEEP strategy on cardiac function and lung and kidney damage in mild-moderate experimental acute respiratory distress syndrome. Respir Res 2021; 22:214. [PMID: 34330283 PMCID: PMC8323327 DOI: 10.1186/s12931-021-01811-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We evaluated the effects of abrupt versus gradual PEEP decrease, combined with standard versus high-volume fluid administration, on cardiac function, as well as lung and kidney damage in an established model of mild-moderate acute respiratory distress syndrome (ARDS). METHODS Wistar rats received endotoxin intratracheally. After 24 h, they were treated with Ringer's lactate at standard (10 mL/kg/h) or high (30 mL/kg/h) dose. For 30 min, all animals were mechanically ventilated with tidal volume = 6 mL/kg and PEEP = 9 cmH2O (to keep alveoli open), then randomized to undergo abrupt or gradual (0.2 cmH2O/min for 30 min) PEEP decrease from 9 to 3 cmH2O. Animals were then further ventilated for 10 min at PEEP = 3 cmH2O, euthanized, and their lungs and kidneys removed for molecular biology analysis. RESULTS At the end of the experiment, left and right ventricular end-diastolic areas were greater in animals treated with high compared to standard fluid administration, regardless of PEEP decrease rate. However, pulmonary arterial pressure, indicated by the pulmonary acceleration time (PAT)/pulmonary ejection time (PET) ratio, was higher in abrupt compared to gradual PEEP decrease, independent of fluid status. Animals treated with high fluids and abrupt PEEP decrease exhibited greater diffuse alveolar damage and higher expression of interleukin-6 (a pro-inflammatory marker) and vascular endothelial growth factor (a marker of endothelial cell damage) compared to the other groups. The combination of standard fluid administration and gradual PEEP decrease increased zonula occludens-1 expression, suggesting epithelial cell preservation. Expression of club cell-16 protein, an alveolar epithelial cell damage marker, was higher in abrupt compared to gradual PEEP decrease groups, regardless of fluid status. Acute kidney injury score and gene expression of kidney injury molecule-1 were higher in the high versus standard fluid administration groups, regardless of PEEP decrease rate. CONCLUSION In the ARDS model used herein, decreasing PEEP abruptly increased pulmonary arterial hypertension, independent of fluid status. The combination of abrupt PEEP decrease and high fluid administration led to greater lung and kidney damage. This information adds to the growing body of evidence that supports gradual transitioning of ventilatory patterns and warrants directing additional investigative effort into vascular and deflation issues that impact lung protection.
Collapse
Affiliation(s)
- Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Biomedical Institute, Niteroi, Brazil
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiotherapy, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milena V Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus R Hemerly
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrine S Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera L Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - John J Marini
- Division of Pulmonary and Critical Care Medicine, Regions Hospital, University of Minnesota, St. Paul, MN, USA
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Pulmonary Investigation, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
16
|
Vignon P, Evrard B, Asfar P, Busana M, Calfee CS, Coppola S, Demiselle J, Geri G, Jozwiak M, Martin GS, Gattinoni L, Chiumello D. Fluid administration and monitoring in ARDS: which management? Intensive Care Med 2020; 46:2252-2264. [PMID: 33169217 PMCID: PMC7652045 DOI: 10.1007/s00134-020-06310-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022]
Abstract
Modalities of fluid management in patients sustaining the acute respiratory distress syndrome (ARDS) are challenging and controversial. Optimal fluid management should provide adequate oxygen delivery to the body, while avoiding inadvertent increase in lung edema which further impairs gas exchange. In ARDS patients, positive fluid balance has been associated with prolonged mechanical ventilation, longer ICU and hospital stay, and higher mortality. Accordingly, a restrictive strategy has been compared to a more liberal approach in randomized controlled trials conducted in various clinical settings. Restrictive strategies included fluid restriction guided by the monitoring of extravascular lung water, pulmonary capillary wedge or central venous pressure, and furosemide targeted to diuresis and/or albumin replacement in hypoproteinemic patients. Overall, restrictive strategies improved oxygenation significantly and reduced duration of mechanical ventilation, but had no significant effect on mortality. Fluid management may require different approaches depending on the time course of ARDS (i.e., early vs. late period). The effects of fluid strategy management according to ARDS phenotypes remain to be evaluated. Since ARDS is frequently associated with sepsis-induced acute circulatory failure, the prediction of fluid responsiveness is crucial in these patients to avoid hemodynamically inefficient—hence respiratory detrimental—fluid administration. Specific hemodynamic indices of fluid responsiveness or mini-fluid challenges should be preferably used. Since the positive airway pressure contributes to positive fluid balance in ventilated ARDS patients, it should be kept as low as possible. As soon as the hemodynamic status is stabilized, correction of cumulated fluid retention may rely on diuretics administration or renal replacement therapy.
Collapse
Affiliation(s)
- Philippe Vignon
- Medical-Surgical ICU, Dupuytren Teaching Hospital, 87000, Limoges, France. .,Inserm CIC-1435, Dupuytren Teaching Hospital, 87000, Limoges, France. .,Faculty of Medicine, University of Limoges, 87000, Limoges, France. .,Réanimation Polyvalente, CHU Dupuytren, 2 Avenue Martin Luther King, 87042, Limoges, France.
| | - Bruno Evrard
- Medical-Surgical ICU, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm CIC-1435, Dupuytren Teaching Hospital, 87000, Limoges, France.,Faculty of Medicine, University of Limoges, 87000, Limoges, France
| | - Pierre Asfar
- Service de Médecine Intensive Réanimation, Médecine Hyperbare, CHU Angers, 4 rue Larrey 49933, Angers Cedex 9, France
| | - Mattia Busana
- Department of Anesthesiology and Intensive Care Medicine, University of Göttingen Medical Center, Göttingen, Germany
| | - Carolyn S Calfee
- Departments of Medicine and Anesthesia, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Silvia Coppola
- SC Anestesia e Rianimazione, Ospedale San Paolo, Polo Universitario, ASST Santi Paolo e Carlo, Milan, Italy.,Dipartimento di Scienze Della Salute, Università Degli Studi Di Milano, Milan, Italy.,Centro Ricerca Coordinata di Insufficienza Respiratoria, Milan, Italy
| | - Julien Demiselle
- Service de Médecine Intensive Réanimation, Médecine Hyperbare, CHU Angers, 4 rue Larrey 49933, Angers Cedex 9, France
| | - Guillaume Geri
- Medical-Surgical Intensive Care Unit, Ambroise Paré University Hospital, APHP, 9 avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France.,Paris-Saclay University, Saint-Aubin, France.,Inserm UMR-1018, CESP, Villejuif, France
| | - Mathieu Jozwiak
- Medical Intensive Care Unit, University Hospital, APHP, Centre, Cochin Hospital, 27 rue du faubourg Saint Jacques, 75014, Paris, France.,Paris University, Paris, France
| | - Greg S Martin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine and Grady Memorial Hospital, Atlanta, GA, USA
| | - Luciano Gattinoni
- Department of Anesthesiology and Intensive Care Medicine, University of Göttingen Medical Center, Göttingen, Germany
| | - Davide Chiumello
- SC Anestesia e Rianimazione, Ospedale San Paolo, Polo Universitario, ASST Santi Paolo e Carlo, Milan, Italy.,Dipartimento di Scienze Della Salute, Università Degli Studi Di Milano, Milan, Italy.,Centro Ricerca Coordinata di Insufficienza Respiratoria, Milan, Italy
| |
Collapse
|
17
|
Weinmann GG, Croxton TL, Aggarwal NR, Twery MJ, Kiley JP. A Perspective: Division of Lung Diseases at Fifty. Am J Respir Crit Care Med 2019; 200:1466-1471. [PMID: 31657967 DOI: 10.1164/rccm.201910-1999pp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | | | - James P Kiley
- Division of Lung Diseases, NHLBI, NIH, Bethesda, Maryland
| | | |
Collapse
|
18
|
Sundd P, Kuebler WM. Smooth Muscle Cells: A Novel Site of P-Selectin Expression with Pathophysiological and Therapeutic Relevance in Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 199:1307-1309. [PMID: 30592637 PMCID: PMC6543715 DOI: 10.1164/rccm.201812-2242ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Prithu Sundd
- 1 Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute.,2 Division of Pulmonary, Allergy, and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Wolfgang M Kuebler
- 3 Institute of Physiology Charité-Universitätsmedizin Berlin Berlin, Germany.,4 Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto, Ontario, Canada.,5 Department of Surgery and.,6 Department of Physiology University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
19
|
Bihari S, Wiersema UF, Perry R, Schembri D, Bouchier T, Dixon D, Wong T, Bersten AD. Efficacy and safety of 20% albumin fluid loading in healthy subjects: a comparison of four resuscitation fluids. J Appl Physiol (1985) 2019; 126:1646-1660. [DOI: 10.1152/japplphysiol.01058.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, buffered salt solutions and 20% albumin (small volume resuscitation) have been advocated as an alternative fluid for intravenous resuscitation. The relative comparative efficacy and potential adverse effects of these solutions have not been evaluated. In a randomized, double blind, cross-over study of six healthy male subjects we compared the pulmonary and hemodynamic effects of intravenous administration of 30 ml/kg of 0.9% saline, Hartmann's solution and 4% albumin, and 6 ml/kg of 20% albumin (albumin dose equivalent). Lung tests (spirometry, ultrasound, impulse oscillometry, diffusion capacity, and plethysmography), two- to three-dimensional Doppler echocardiography, carotid applanation tonometry, blood gases, serum/urine markers of endothelial, and kidney injury were measured before and after each fluid bolus. Data were analyzed with repeated measures ANOVA with effect of fluid type examined as an interaction. Crystalloids caused lung edema [increase in ultrasound B line ( P = 0.006) and airway resistance ( P = 0.009)], but evidence of lung injury [increased angiopoietin-2 ( P = 0.019)] and glycocalyx injury [increased syndecan ( P = 0.026)] was only observed with 0.9% saline. The colloids caused greater left atrial stretch, decrease in lung volumes, and increase in diffusion capacity than the crystalloids, but without pulmonary edema. Stroke work increased proportionally to increase in preload with all four fluids ( R2 = 0.71). There was a greater increase in cardiac output and stroke volume after colloid administration, associated with a reduction in afterload. Hartmann’s solution did not significantly alter ventricular performance. Markers of kidney injury were not affected by any of the fluids administrated. Bolus administration of 20% albumin is both effective and safe in healthy subjects. NEW & NOTEWORTHY Bolus administration of 20% albumin is both effective and safe in healthy subjects when compared with other commonly available crystalloids and colloidal solution.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ubbo F Wiersema
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Rebecca Perry
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
- Department of Heart Health, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David Schembri
- Department of Respiratory Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Tara Bouchier
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Dani Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Teresa Wong
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew D Bersten
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Positive Cumulative Fluid Balance Is Associated With Mortality in Pediatric Acute Respiratory Distress Syndrome in the Setting of Acute Kidney Injury. Pediatr Crit Care Med 2019; 20:323-331. [PMID: 30672838 PMCID: PMC6454886 DOI: 10.1097/pcc.0000000000001845] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES As acute kidney injury and elevated cumulative fluid balance commonly co-occur in pediatric acute respiratory distress syndrome, we aimed to identify risk factors for their development and evaluate their independent relationships with mortality. We hypothesized that acute kidney injury and elevated cumulative fluid balance would be associated with markers of inflammation and that children with elevated cumulative fluid balance and concomitant acute kidney injury would have worse outcomes than other children. DESIGN Prospective observational study using the pediatric Risk, Injury, Failure, Loss, End-Stage acute kidney injury classification. SETTING Five academic PICUs. PATIENTS Two-hundred sixty patients 1 month to 18 years old meeting the Berlin definition of acute respiratory distress syndrome between 2008 and 2014. INTERVENTIONS None. MEASUREMENTS AND RESULTS PICU mortality was 13% (34/260). Relative to survivors, nonsurvivors had greater cumulative fluid balance on day 3 of acute respiratory distress syndrome (+90.1 mL/kg; interquartile range 26.6-161.7 vs +44.9 mL/kg; interquartile range 10.0-111.3; p = 0.008) and also had higher prevalence of acute kidney injury on day 3 of acute respiratory distress syndrome (50% vs 23%; p = 0.001). On stratified analysis, greater cumulative fluid balance on day 3 of acute respiratory distress syndrome was associated with mortality among patients with concomitant acute kidney injury (+111.5 mL/kg for nonsurvivors; interquartile range 82.6-236.8 vs +58.5 mL/kg for survivors; interquartile range 0.9-176.2; p = 0.041) but not among patients without acute kidney injury (p = 0.308). The presence of acute kidney injury on acute respiratory distress syndrome day 3 was associated with mortality among patients with positive cumulative fluid balance (29.1% vs 10.4% mortality; p = 0.001) but not among patients with even or negative cumulative fluid balance (p = 0.430). Day 1 plasma interleukin-6 levels were associated with the development of day 3 positive cumulative fluid balance, day 3 acute kidney injury, and PICU mortality and the association between elevated day 1 interleukin-6 and PICU mortality was partially mediated by the interval development of day 3 positive cumulative fluid balance and day 3 acute kidney injury (p < 0.001). CONCLUSIONS In pediatric acute respiratory distress syndrome, elevated cumulative fluid balance on day 3 of acute respiratory distress syndrome is associated with mortality specifically in patients with concomitant acute kidney injury. Plasma interleukin-6 levels are associated with the development of positive cumulative fluid balance and acute kidney injury, suggesting a potential mechanism by which inflammation might predispose to mortality.
Collapse
|
21
|
Ingelse SA, Juschten J, Maas MAW, Matute-Bello G, Juffermans NP, van Woensel JBM, Bem RA. Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats. PLoS One 2019; 14:e0210172. [PMID: 30653512 PMCID: PMC6336323 DOI: 10.1371/journal.pone.0210172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Experimental acute lung injury models are often used to increase our knowledge on the acute respiratory distress syndrome (ARDS), however, existing animal models often do not take into account the impact of specific fluid strategies on the development of lung injury. In contrast, the current literature strongly suggests that fluid management strategies have a significant impact on clinical outcome of patients with ARDS. Thus, it is important to characterize the role of fluid management strategies in experimental models of lung injury. In this study we investigated the effect of two different fluid strategies on commonly used outcome variables in a short-term model of acute lung injury, in relation to age. Infant (2–3 weeks) and adult (3–4 months) Wistar rats received intratracheal instillations of lipopolysaccharide and 24 hours later were mechanically ventilated for 6 hours. During mechanical ventilation, rats from both age groups were randomized to either a standard or conservative intravenous fluid strategy. We found that the hemodynamic response in infant and adult rats was similar in both fluid strategies. Lung wet-to-dry ratios were lower in adult, but not in infant rats receiving the conservative fluid strategy as compared to the standard fluid strategy. There were age-related differences in markers of alveolar capillary barrier disruption and alveolar fluid clearance, yet these were unaffected by fluid strategy. Finally, we found significantly higher IL-1β and TNF-α concentrations in the adult rats treated with the conservative as compared to the standard fluid regimen. In conclusion, the choice of fluid strategy in mechanically ventilated rats with experimental LPS-induced acute lung injury has a significant effect on pulmonary extravascular water, an important and well-recognized lung injury marker, and on the local pro-inflammatory cytokine profiles. We advocate the use of a more uniform, conservative, fluid strategy regimen in experimental models of acute lung injury.
Collapse
Affiliation(s)
- Sarah A. Ingelse
- Pediatric Intensive Care Unit, Emma Children’s Hospital, Academic Medical Center, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Jenny Juschten
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care and Research VUmc Intensive Care (REVIVE), VU Medical Center, Amsterdam, The Netherlands
| | - Martinus A. W. Maas
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
| | - Gustavo Matute-Bello
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, and Medical Research Service, VA Puget Sound Healthcare System, Seattle, WA, United States of America
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
| | - Job B. M. van Woensel
- Pediatric Intensive Care Unit, Emma Children’s Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Reinout A. Bem
- Pediatric Intensive Care Unit, Emma Children’s Hospital, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Obstructive Sleep Apnea and Subclinical Interstitial Lung Disease in the Multi-Ethnic Study of Atherosclerosis (MESA). Ann Am Thorac Soc 2018; 14:1786-1795. [PMID: 28613935 DOI: 10.1513/annalsats.201701-091oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Obstructive sleep apnea (OSA) has been postulated to contribute to idiopathic pulmonary fibrosis by promoting alveolar epithelial injury via tractional forces and intermittent hypoxia. OBJECTIVES To determine whether OSA is associated with subclinical interstitial lung disease (ILD) and with biomarkers of alveolar epithelial injury and remodeling. METHODS We performed cross-sectional analyses of 1,690 community-dwelling adults who underwent 15-channel in-home polysomnography and thoracic computed tomographic imaging in the Multi-Ethnic Study of Atherosclerosis. We measured the obstructive apnea-hypopnea index (oAHI) by polysomnography and high-attenuation areas (HAAs) and interstitial lung abnormalities (ILAs) by computed tomography. Serum matrix metalloproteinase-7 (MMP-7) and surfactant protein-A (SP-A) were measured by ELISA in 99 participants. We used generalized linear models to adjust for potential confounders. RESULTS The mean age was 68 years, and the mean forced vital capacity was 97% predicted. The median oAHI was 8.4 events/h, and 32% had an oAHI greater than 15. After adjusting for demographics, smoking, and center, an oAHI greater than 15 was associated with a 4.0% HAA increment (95% confidence interval [CI], 1.4-6.8%; P = 0.003) and 35% increased odds of ILA (95% CI, 13-61%; P = 0.001). However, there was evidence that these associations varied by body mass index (BMI) (P for interaction = 0.08 and 0.04, respectively). Among those with a BMI less than 25 kg/m2, an oAHI greater than 15 was associated with a 6.1% HAA increment (95% CI, 0.5-12%; P = 0.03) and 2.3-fold increased odds of ILA (95% CI, 1.3-4.1; P = 0.005). Among those with a BMI greater than 30 kg/m2, an oAHI greater than 15 was associated with 1.8-fold greater odds of ILA (95% CI, 1.1-2.9; P = 0.01) but was not associated with HAA. There were no meaningful associations detected among those with a BMI of 25-30 kg/m2. Greater oAHI was associated higher serum SP-A and MMP-7 levels, particularly among those with a BMI less than 25 kg/m2. CONCLUSIONS Moderate to severe OSA is associated with subclinical ILD and with evidence of alveolar epithelial injury and extracellular matrix remodeling in community-dwelling adults, an association that is strongest among normal-weight individuals. These findings support the hypothesis that OSA might contribute to early ILD.
Collapse
|
23
|
Middleton EA, Rondina MT, Schwertz H, Zimmerman GA. Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2018; 59:18-35. [PMID: 29553813 PMCID: PMC6039872 DOI: 10.1165/rcmb.2017-0420tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Elizabeth A. Middleton
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T. Rondina
- Division of General Internal Medicine, Department of Internal Medicine
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hansjorg Schwertz
- Division of Vascular Surgery, Department of Surgery, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A. Zimmerman
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
24
|
Abstract
Experimental models of sepsis in small and large animals and a variety of in vitro preparations have established several basic mechanisms that drive endothelial injury. This review is focused on what can be learned from the results of clinical studies of plasma biomarkers of endothelial injury and inflammation in patients with sepsis. There is excellent evidence that elevated plasma levels of several biomarkers of endothelial injury, including von Willebrand factor antigen (VWF), angiopoietin-2 (Ang-2), and soluble fms-like tyrosine kinase 1 (sFLT-1), and biomarkers of inflammation, especially interleukin-8 (IL-8) and soluble tumor necrosis factor receptor (sTNFr), identify sepsis patients with a higher mortality. There are also some data that elevated levels of endothelial biomarkers can identify which patients with non-pulmonary sepsis will develop acute respiratory distress syndrome (ARDS). If ARDS patients are divided among those with indirect versus direct lung injury, then there is an association of elevated levels of endothelial biomarkers in indirect injury and markers of inflammation and alveolar epithelial injury in patients with direct lung injury. New research suggests that the combination of biologic and clinical markers may make it possible to segregate patients with ARDS into hypo- versus hyper-inflammatory phenotypes that may have implications for therapeutic responses to fluid therapy. Taken together, the studies reviewed here support a primary role of the microcirculation in the pathogenesis and prognosis of ARDS after sepsis. Biological differences identified by molecular patterns could explain heterogeneity of treatment effects that are not explained by clinical factors alone.
Collapse
Affiliation(s)
- Carolyn M. Hendrickson
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A. Matthay
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA
- Michael A. Matthay, 505 Parnassus Avenue, San Francisco, CA 94117, USA.
| |
Collapse
|
25
|
Huertas A, Guignabert C, Barberà JA, Bärtsch P, Bhattacharya J, Bhattacharya S, Bonsignore MR, Dewachter L, Dinh-Xuan AT, Dorfmüller P, Gladwin MT, Humbert M, Kotsimbos T, Vassilakopoulos T, Sanchez O, Savale L, Testa U, Wilkins MR. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. Eur Respir J 2018; 51:13993003.00745-2017. [DOI: 10.1183/13993003.00745-2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 02/03/2018] [Indexed: 12/15/2022]
Abstract
The European Respiratory Society (ERS) Research Seminar entitled “Pulmonary vascular endothelium: orchestra conductor in respiratory diseases - highlights from basic research to therapy” brought together international experts in dysfunctional pulmonary endothelium, from basic science to translational medicine, to discuss several important aspects in acute and chronic lung diseases. This review will briefly sum up the different topics of discussion from this meeting which was held in Paris, France on October 27–28, 2016. It is important to consider that this paper does not address all aspects of endothelial dysfunction but focuses on specific themes such as: 1) the complex role of the pulmonary endothelium in orchestrating the host response in both health and disease (acute lung injury, chronic obstructive pulmonary disease, high-altitude pulmonary oedema and pulmonary hypertension); and 2) the potential value of dysfunctional pulmonary endothelium as a target for innovative therapies.
Collapse
|
26
|
Kuebler WM, Bonnet S, Tabuchi A. Inflammation and autoimmunity in pulmonary hypertension: is there a role for endothelial adhesion molecules? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893218757596. [PMID: 29480134 PMCID: PMC5865459 DOI: 10.1177/2045893218757596] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While pulmonary hypertension (PH) has traditionally not been considered as a disease that is directly linked to or, potentially, even caused by inflammation, a rapidly growing body of evidence has demonstrated the accumulation of a variety of inflammatory and immune cells in PH lungs, in and around the wall of remodeled pulmonary resistance vessels and in the vicinity of plexiform lesions, respectively. Concomitantly, abundant production and release of various inflammatory mediators has been documented in both PH patients and experimental models of PH. While these findings unequivocally demonstrate an inflammatory component in PH, they have fueled an intense and presently ongoing debate as to the nature of this inflammatory aspect: is it a mere bystander of or response to the actual disease process, or is it a pathomechanistic contributor or potentially even a trigger of endothelial injury, smooth muscle hypertrophy and hyperplasia, and the resulting lung vascular remodeling? In this review, we will discuss the present evidence for an inflammatory component in PH disease with a specific focus on the potential role of the endothelium in this scenario and highlight future avenues of experimental investigation which may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| | | | - Arata Tabuchi
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| |
Collapse
|
27
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
28
|
Schneberger D, Sethi RS, Singh B. Comparative View of Lung Vascular Endothelium of Cattle, Horses, and Water Buffalo. MOLECULAR AND FUNCTIONAL INSIGHTS INTO THE PULMONARY VASCULATURE 2018; 228:21-39. [DOI: 10.1007/978-3-319-68483-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Abstract
This brief review assesses the role of Ca2+ signaling in lung endothelium in regulation of endothelial permeability. The disconnect between experimental and clinical outcomes to date may be due, in part, to the use of tools which yield information about aggregate permeability or Ca2+ responses in lung or in endothelial monolayers. The teaching point of this review is to “unpack the box,” i.e. consider the many potential issues which could impact interpretation of outcomes. These include phenotypic heterogeneity and resultant segment-specific permeability responses, methodologic issues related to permeability measures, contributions from Ca2+ channels in cells other than endothelium—such as alveolar macrophages or blood leukocytes), Ca2+ dynamic patterns, rather than averaged Ca2+ responses to channel activation, and the background context, such as changes in endothelial bioenergetics with sepsis. Any or all of these issues might color interpretation of permeability and Ca2+ signaling in lung.
Collapse
Affiliation(s)
- Mary I Townsley
- 12214 Department of Physiology & Cell Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
30
|
IDH3 mediates apoptosis of alveolar epithelial cells type 2 due to mitochondrial Ca 2+ uptake during hypocapnia. Cell Death Dis 2017; 8:e3005. [PMID: 28837149 PMCID: PMC5596584 DOI: 10.1038/cddis.2017.403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 01/25/2023]
Abstract
In adult respiratory distress syndrome (ARDS) pulmonary perfusion failure increases physiologic dead-space (VD/VT) correlating with mortality. High VD/VT results in alveolar hypocapnia, which has been demonstrated to cause edema formation, atelectasis, and surfactant depletion, evoked, at least in part, by apoptosis of alveolar epithelial cells (AEC). However, the mechanism underlying the hypocapnia-induced AEC apoptosis is unknown. Here, using fluorescent live-cell imaging of cultured AEC type 2 we could show that in terms of CO2 sensing the tricarboxylic acid cycle enzyme isocitrate dehydrogenase (IDH) 3 seems to be an important player because hypocapnia resulted independently from pH in an elevation of IDH3 activity and subsequently in an increase of NADH, the substrate of the respiratory chain. As a consequence, the mitochondrial transmembrane potential (ΔΨ) rose causing a Ca2+ shift from cytosol into mitochondria, whereas the IDH3 knockdown inhibited these responses. Furthermore, the hypocapnia-induced mitochondrial Ca2+ uptake resulted in reactive oxygen species (ROS) production, and both the mitochondrial Ca2+ uptake and ROS production induced apoptosis. Accordingly, we provide evidence that in AEC type 2 hypocapnia induces elevation of IDH3 activity leading to apoptosis. This finding might give new insight into the pathogenesis of ARDS and may help to develop novel strategies to reduce tissue injury in ARDS.
Collapse
|
31
|
Bihari S, Dixon DL, Lawrence MD, De Bellis D, Bonder CS, Dimasi DP, Bersten AD. Fluid-induced lung injury-role of TRPV4 channels. Pflugers Arch 2017; 469:1121-1134. [PMID: 28456852 DOI: 10.1007/s00424-017-1983-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023]
Abstract
Administration of bolus intravenous fluid is associated with respiratory dysfunction and increased mortality, findings with no clear mechanistic explanation. The objective of this study was to examine whether bolus intravenous (i.v.) fluid administration results in acute lung injury in a rat model and further, to examine whether this injury is associated with transient receptor potential vallinoid (TRPV)4 channel function and endothelial inflammatory response. Healthy male Sprague-Dawley rats were administered 60 ml/kg 0.9% saline i.v. over 30 min. Manifestation of acute lung injury was assessed by lung physiology, morphology, and markers of inflammation. The role of TRPV4 channels in fluid-induced lung injury was subsequently examined by the administration of ruthenium red (RR) in this established rat model and again in TRPV4 KO mice. In endothelial cell culture, permeability and P-selectin expression were measured following TRPV4 agonist with and without antagonist; 0.9% saline resulted in an increase in lung water, lavage protein and phospholipase A2, and plasma angiopoietin-2, with worsening in arterial blood oxygen (PaO2), lung elastance, surfactant activity, and lung histological injury score. These effects were ameliorated following i.v. fluid in rats receiving RR. TRPV4 KO mice did not develop lung edema. Expression of P-selectin increased in endothelial cells following administration of a TRPV4 agonist, which was ameliorated by simultaneous addition of RR. Bolus i.v. 0.9% saline resulted in permeability pulmonary edema. Data from ruthenium red, TRPV4 KO mice, and endothelial cell culture suggest activation of TRPV4 and release of angiopoietin 2 and P-selectin as the central mechanism.
Collapse
Affiliation(s)
- Shailesh Bihari
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia. .,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia.
| | - Dani-Louise Dixon
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia.,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Mark D Lawrence
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia
| | - Dylan De Bellis
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, Australia
| | - David P Dimasi
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, Australia
| | - Andrew D Bersten
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia.,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia
| |
Collapse
|
32
|
Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev 2017; 26:26/143/160096. [PMID: 28143879 PMCID: PMC9488514 DOI: 10.1183/16000617.0096-2016] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022] Open
Abstract
At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases. Lack of acclimatisation is the main risk factor for acute altitude illness; descent is the optimal treatmenthttp://ow.ly/45d2305JyZ0
Collapse
Affiliation(s)
- Andrew M Luks
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Peter Bärtsch
- Dept of Internal Medicine, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Chen T, Yang C, Li M, Tan X. Alveolar Hypoxia-Induced Pulmonary Inflammation: From Local Initiation to Secondary Promotion by Activated Systemic Inflammation. J Vasc Res 2016; 53:317-329. [PMID: 27974708 DOI: 10.1159/000452800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with high mortality and morbidity. Hypoxic PH (HPH) is a common form of PH occurring mainly due to lung disease and/or hypoxia. Most causes of HPH are associated with persistent or intermittent alveolar hypoxia, including exposure to high altitude and chronic obstructive respiratory disease. Recent evidence suggests that inflammation is a critical step for HPH initiation and development. A detailed understanding of the initiation and progression of pulmonary inflammation would help in exploring potential clinical treatments for HPH. In this review, the mechanism for alveolar hypoxia-induced local lung inflammation and its progression are discussed as follows: (1) low alveolar PO2 levels activate resident lung cells, mainly the alveolar macrophages, which initiate pulmonary inflammation; (2) systemic inflammation is induced by alveolar hypoxia through alveolar macrophage activation; (3) monocytes are recruited into the pulmonary circulation by alveolar hypoxia-induced macrophage activation, which then contributes to the progression of pulmonary inflammation during the chronic phase of alveolar hypoxia, and (4) alveolar hypoxia-induced systemic inflammation contributes to the development of HPH. We hypothesize that a combination of alveolar hypoxia-induced local lung inflammation and the initiation of systemic inflammation ("second hit") is essential for HPH progression.
Collapse
Affiliation(s)
- Ting Chen
- Department of High Altitude Physiology and Biology, College of High Altitude Medicine, Third Military Medical University, Ministry of Education, Chongqing, China
| | | | | | | |
Collapse
|
34
|
Ingelse SA, Wösten-van Asperen RM, Lemson J, Daams JG, Bem RA, van Woensel JB. Pediatric Acute Respiratory Distress Syndrome: Fluid Management in the PICU. Front Pediatr 2016; 4:21. [PMID: 27047904 PMCID: PMC4800174 DOI: 10.3389/fped.2016.00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 12/16/2022] Open
Abstract
The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS). Patients with ARDS have widespread damage of the alveolar-capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes.
Collapse
Affiliation(s)
- Sarah A Ingelse
- Pediatric Intensive Care Unit, Academic Medical Center, Emma Children's Hospital , Amsterdam , Netherlands
| | | | - Joris Lemson
- Pediatric Intensive Care Unit, Radboud University Medical Center , Nijmegen , Netherlands
| | - Joost G Daams
- Medical Library, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Reinout A Bem
- Pediatric Intensive Care Unit, Academic Medical Center, Emma Children's Hospital , Amsterdam , Netherlands
| | - Job B van Woensel
- Pediatric Intensive Care Unit, Academic Medical Center, Emma Children's Hospital , Amsterdam , Netherlands
| |
Collapse
|
35
|
Breitling S, Ravindran K, Goldenberg NM, Kuebler WM. The pathophysiology of pulmonary hypertension in left heart disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L924-41. [DOI: 10.1152/ajplung.00146.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics.
Collapse
Affiliation(s)
- Siegfried Breitling
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Neil M. Goldenberg
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and
- German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
36
|
|
37
|
Bihari S, Wiersema UF, Schembri D, De Pasquale CG, Dixon DL, Prakash S, Lawrence MD, Bowden JJ, Bersten AD. Bolus intravenous 0.9% saline, but not 4% albumin or 5% glucose, causes interstitial pulmonary edema in healthy subjects. J Appl Physiol (1985) 2015; 119:783-92. [PMID: 26228998 DOI: 10.1152/japplphysiol.00356.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023] Open
Abstract
Rapid intravenous (iv) infusion of 0.9% saline alters respiratory mechanics in healthy subjects. However, the relative cardiovascular and respiratory effects of bolus iv crystalloid vs. colloid are unknown. Six healthy male volunteers were given 30 ml/kg iv 0.9% saline, 4% albumin, and 5% glucose at a rate of 100 ml/min on 3 separate days in a double-blinded, randomized crossover study. Impulse oscillometry, spirometry, lung volumes, diffusing capacity (DLCO), and blood samples were measured before and after fluid administration. Lung ultrasound B-line score (indicating interstitial pulmonary edema) and Doppler echocardiography indices of cardiac preload were measured before, midway, immediately after, and 1 h after fluid administration. Infusion of 0.9% saline increased small airway resistance at 5 Hz (P = 0.04) and lung ultrasound B-line score (P = 0.01) without changes in Doppler echocardiography measures of preload. In contrast, 4% albumin increased DLCO, decreased lung volumes, and increased the Doppler echocardiography mitral E velocity (P = 0.001) and E-to-lateral/septal e' ratio, estimated blood volume, and N-terminal pro B-type natriuretic peptide (P = 0.01) but not lung ultrasound B-line score, consistent with increased pulmonary blood volume without interstitial pulmonary edema. There were no significant changes with 5% glucose. Plasma angiopoietin-2 concentration increased only after 0.9% saline (P = 0.001), suggesting an inflammatory mechanism associated with edema formation. In healthy subjects, 0.9% saline and 4% albumin have differential pulmonary effects not attributable to passive fluid filtration. This may reflect either different effects of these fluids on active signaling in the pulmonary circulation or a protective effect of albumin.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, Australia;
| | - Ubbo F Wiersema
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia
| | - David Schembri
- Department of Respiratory Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Carmine G De Pasquale
- Cardiology, Flinders Medical Centre, Adelaide, Australia; and Department of Medicine, Flinders University, Adelaide, Australia
| | - Dani-Louise Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, Australia
| | - Shivesh Prakash
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia
| | - Mark D Lawrence
- Department of Critical Care Medicine, Flinders University, Adelaide, Australia
| | - Jeffrey J Bowden
- Department of Respiratory Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Andrew D Bersten
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
38
|
Abstract
The unique characteristics of pulmonary circulation and alveolar-epithelial capillary-endothelial barrier allow for maintenance of the air-filled, fluid-free status of the alveoli essential for facilitating gas exchange, maintaining alveolar stability, and defending the lung against inhaled pathogens. The hallmark of pathophysiology in acute respiratory distress syndrome is the loss of the alveolar capillary permeability barrier and the presence of protein-rich edema fluid in the alveoli. This alteration in permeability and accumulation of fluid in the alveoli accompanies damage to the lung epithelium and vascular endothelium along with dysregulated inflammation and inappropriate activity of leukocytes and platelets. In addition, there is uncontrolled activation of coagulation along with suppression of fibrinolysis and loss of surfactant. These pathophysiological changes result in the clinical manifestations of acute respiratory distress syndrome, which include hypoxemia, radiographic opacities, decreased functional residual capacity, increased physiologic deadspace, and decreased lung compliance. Resolution of acute respiratory distress syndrome involves the migration of cells to the site of injury and re-establishment of the epithelium and endothelium with or without the development of fibrosis. Most of the data related to acute respiratory distress syndrome, however, originate from studies in adults or in mature animals with very few studies performed in children or juvenile animals. The lack of studies in children is particularly problematic because the lungs and immune system are still developing during childhood and consequently the pathophysiology of pediatric acute respiratory distress syndrome may differ in significant ways from that seen in acute respiratory distress syndrome in adults. This article describes what is known of the pathophysiologic processes of pediatric acute respiratory distress syndrome as we know it today while also presenting the much greater body of evidence on these processes as elucidated by adult and animal studies. It is also our expressed intent to generate enthusiasm for larger and more in-depth investigations of the mechanisms of disease and repair specific to children in the years to come.
Collapse
|
39
|
Goldenberg NM, Ravindran K, Kuebler WM. TRPV4: physiological role and therapeutic potential in respiratory diseases. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:421-36. [PMID: 25342095 DOI: 10.1007/s00210-014-1058-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/10/2014] [Indexed: 01/11/2023]
Abstract
Members of the family of transient receptor potential (TRP) channels have been implicated in the pathophysiology of a host of lung diseases. The role of these multimodal cation channels in lung homeostasis is thought to stem from their ability to respond to changes in mechanical stimuli (i.e., shear and stretch), as well as to various protein and lipid mediators. The vanilloid subfamily member, TRPV4, which is highly expressed in the majority of lung cell types, is well positioned for critical involvement in several pulmonary conditions, including edema formation, control of pulmonary vascular tone, and the lung response to local or systemic inflammatory insults. In recent years, several pharmacological inhibitors of TRPV4 have been developed, and the current generation of compounds possess high affinity and specificity for TRPV4. As such, we have now entered a time where the therapeutic potential of TRPV4 inhibitors can be systematically examined in a variety of lung diseases. Due to this fact, this review seeks to describe the current state of the art with respect to the role of TRPV4 in pulmonary homeostasis and disease, and to highlight the current and future roles of TRPV4 inhibitors in disease treatment. We will first focus on genera aspects of TRPV4 structure and function, and then will discuss known roles for TRPV4 in pulmonary diseases, including pulmonary edema formation, pulmonary hypertension, and acute lung injury. Finally, both promising aspects and potential pitfalls of the clinical use of TRPV4 inhibitors will be examined.
Collapse
Affiliation(s)
- Neil M Goldenberg
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
40
|
Morty RE, Kuebler WM. TRPV4: an exciting new target to promote alveolocapillary barrier function. Am J Physiol Lung Cell Mol Physiol 2014; 307:L817-21. [PMID: 25281637 DOI: 10.1152/ajplung.00254.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transient receptor potential (TRP) channels are emerging as important players and drug targets in respiratory disease. Amongst the vanilloid-type TRP channels (which includes the six members of the TRPV family), target diseases include cough, asthma, cancer, and more recently, pulmonary edema associated with acute respiratory distress syndrome. Here, we critically evaluate a recent report that addresses TRPV4 as a candidate target for the management of acute lung injury that develops as a consequence of aspiration of gastric contents, or acute chlorine gas exposure. By use of two new TRPV4 inhibitors (GSK2220691 or GSK2337429A) and a trpv4(-/-) mouse strain, TRPV4 was implicated as a key mediator of pulmonary inflammation after direct chemical insult. Additionally, applied therapeutically, TRPV4 inhibitors exhibited vasculoprotective effects after chlorine gas exposure, inhibiting vascular leakage, and improving blood oxygenation. These observations underscore TRPV4 channels as candidate therapeutic targets in the management of lung injury, with the added need to balance these against the potential drawbacks of TRPV4 inhibition, such as the danger of limiting the immune response in settings of pathogen-provoked injury.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany;
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité Universitätsmedizin Berlin, Germany; Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and The Keenan Research Center for Biomedical Science of St. Michael's, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 2014; 189:1301-8. [PMID: 24881936 DOI: 10.1164/rccm.201403-0535oe] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the last 30 years, we have learned much about the molecular, cellular, and physiological mechanisms that regulate the resolution of pulmonary edema in both the normal and the injured lung. Although the physiological mechanisms responsible for the formation of pulmonary edema were identified by 1980, the mechanisms that explain the resolution of pulmonary edema were not well understood at that time. However, in the 1980s several investigators provided novel evidence that the primary mechanism for removal of alveolar edema fluid depended on active ion transport across the alveolar epithelium. Sodium enters through apical channels, primarily the epithelial sodium channel, and is pumped into the lung interstitium by basolaterally located Na/K-ATPase, thus creating a local osmotic gradient to reabsorb the water fraction of the edema fluid from the airspaces of the lungs. The resolution of alveolar edema across the normally tight epithelial barrier can be up-regulated by cyclic adenosine monophosphate (cAMP)-dependent mechanisms through adrenergic or dopamine receptor stimulation, and by several cAMP-independent mechanisms, including glucocorticoids, thyroid hormone, dopamine, and growth factors. Whereas resolution of alveolar edema in cardiogenic pulmonary edema can be rapid, the rate of edema resolution in most patients with acute respiratory distress syndrome (ARDS) is markedly impaired, a finding that correlates with higher mortality. Several mechanisms impair the resolution of alveolar edema in ARDS, including cell injury from unfavorable ventilator strategies or pathogens, hypoxia, cytokines, and oxidative stress. In patients with severe ARDS, alveolar epithelial cell death is a major mechanism that prevents the resolution of lung edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Departments of Medicine and Anesthesia and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
42
|
Bihari S, Prakash S, Bersten AD. Early changes in serum electrolytes and acid-base status with administration of 4 % albumin. Intensive Care Med 2014; 40:1392-3. [PMID: 25001477 DOI: 10.1007/s00134-014-3385-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Shailesh Bihari
- Department of Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, SA, Australia,
| | | | | |
Collapse
|
43
|
Yan X, Hegab AE, Endo J, Anzai A, Matsuhashi T, Katsumata Y, Ito K, Yamamoto T, Betsuyaku T, Shinmura K, Shen W, Vivier E, Fukuda K, Sano M. Lung Natural Killer Cells Play a Major Counter-Regulatory Role in Pulmonary Vascular Hyperpermeability After Myocardial Infarction. Circ Res 2014; 114:637-49. [DOI: 10.1161/circresaha.114.302625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale
:
Natural killer (NK) cells are lymphocytes of the innate immune system that play specialized and niche-specific roles in distinct organs.
Objective
:
We investigated the possible function of NK cells in the pathogenesis of congestive heart failure after myocardial infarction.
Methods and Results
:
Depletion of NK cells from mice had little effect on cytokine expression (tumor necrosis factor-α, interleukin [IL]-6, and IL-1β), neutrophil and macrophage infiltration into infarcted myocardium, or left ventricular remodeling after myocardial infarction. However, these mice exhibited severe respiratory distress associated with protein-rich, high-permeability alveolar edema accompanied by neutrophil infiltration. In addition, there were 20-fold more NK cells in the mouse lungs than in heart, and these cells were accumulated around the vasculature. CD107a-positive and interferon-γ–positive cell populations were unchanged, whereas IL-10–positive populations increased. Adoptive transfer of NK cells from wild-type mice, but not from IL-10 knockout mice, into the NK cell–depleted mice rescued the respiratory phenotype. IL-1β–mediated dextran leakage from a lung endothelial cell monolayer was also blocked by coculture with NK cells from wild-type mice but not from IL-10 knockout mice.
Conclusions
:
This study is the first to identify a critical role for lung NK cells in protecting lung from the development of cardiogenic pulmonary edema after myocardial infarction.
Collapse
Affiliation(s)
- Xiaoxiang Yan
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Ahmed E. Hegab
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Jin Endo
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Atsushi Anzai
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Tomohiro Matsuhashi
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Yoshinori Katsumata
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Kentaro Ito
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Tsunehisa Yamamoto
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Tomoko Betsuyaku
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Ken Shinmura
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Weifeng Shen
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Eric Vivier
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Keiichi Fukuda
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| | - Motoaki Sano
- From the Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China (X.Y., W.S.); Departments of Cardiology (X.Y., J.E., A.A., T.M., Y.K., K.I., T.Y., K.F., M.S.), Pulmonary Medicine (A.E.H., T.B.), and Geriatric Medicine (K.S.), Keio University School of Medicine, Tokyo, Japan; Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, Marseille, France (E.V.); Precursory Research for Embryonic Science and Technology (PRESTO), Japan
| |
Collapse
|
44
|
Abstract
High-altitude pulmonary edema (HAPE), a not uncommon form of acute altitude illness, can occur within days of ascent above 2500 to 3000 m. Although life-threatening, it is avoidable by slow ascent to permit acclimatization or with drug prophylaxis. The critical pathophysiology is an excessive rise in pulmonary vascular resistance or hypoxic pulmonary vasoconstriction (HPV) leading to increased microvascular pressures. The resultant hydrostatic stress causes dynamic changes in the permeability of the alveolar capillary barrier and mechanical injurious damage leading to leakage of large proteins and erythrocytes into the alveolar space in the absence of inflammation. Bronchoalveolar lavage and hemodynamic pressure measurements in humans confirm that elevated capillary pressure induces a high-permeability noninflammatory lung edema. Reduced nitric oxide availability and increased endothelin in hypoxia are the major determinants of excessive HPV in HAPE-susceptible individuals. Other hypoxia-dependent differences in ventilatory control, sympathetic nervous system activation, endothelial function, and alveolar epithelial active fluid reabsorption likely contribute additionally to HAPE susceptibility. Recent studies strongly suggest nonuniform regional hypoxic arteriolar vasoconstriction as an explanation for how HPV occurring predominantly at the arteriolar level causes leakage. In areas of high blood flow due to lesser HPV, edema develops due to pressures that exceed the dynamic and structural capacity of the alveolar capillary barrier to maintain normal fluid balance. This article will review the pathophysiology of the vasculature, alveolar epithelium, innervation, immune response, and genetics of the lung at high altitude, as well as therapeutic and prophylactic strategies to reduce the morbidity and mortality of HAPE.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
45
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
46
|
Bhattacharya J, Matthay MA. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Physiol 2013; 75:593-615. [PMID: 23398155 DOI: 10.1146/annurev-physiol-030212-183756] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considerable progress has been made in understanding the basic mechanisms that regulate fluid and protein exchange across the endothelial and epithelial barriers of the lung under both normal and pathological conditions. Clinically relevant lung injury occurs most commonly from severe viral and bacterial infections, aspiration syndromes, and severe shock. The mechanisms of lung injury have been identified in both experimental and clinical studies. Recovery from lung injury requires the reestablishment of an intact endothelial barrier and a functional alveolar epithelial barrier capable of secreting surfactant and removing alveolar edema fluid. Repair mechanisms include the participation of endogenous progenitor cells in strategically located niches in the lung. Novel treatment strategies include the possibility of cell-based therapy that may reduce the severity of lung injury and enhance lung repair.
Collapse
Affiliation(s)
- Jahar Bhattacharya
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
47
|
Wang L, Yin J, Nickles HT, Ranke H, Tabuchi A, Hoffmann J, Tabeling C, Barbosa-Sicard E, Chanson M, Kwak BR, Shin HS, Wu S, Isakson BE, Witzenrath M, de Wit C, Fleming I, Kuppe H, Kuebler WM. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 2012; 122:4218-30. [PMID: 23093775 PMCID: PMC3484430 DOI: 10.1172/jci59176] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/30/2012] [Indexed: 12/21/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a physiological mechanism by which pulmonary arteries constrict in hypoxic lung areas in order to redirect blood flow to areas with greater oxygen supply. Both oxygen sensing and the contractile response are thought to be intrinsic to pulmonary arterial smooth muscle cells. Here we speculated that the ideal site for oxygen sensing might instead be at the alveolocapillary level, with subsequent retrograde propagation to upstream arterioles via connexin 40 (Cx40) endothelial gap junctions. HPV was largely attenuated by Cx40-specific and nonspecific gap junction uncouplers in the lungs of wild-type mice and in lungs from mice lacking Cx40 (Cx40-/-). In vivo, hypoxemia was more severe in Cx40-/- mice than in wild-type mice. Real-time fluorescence imaging revealed that hypoxia caused endothelial membrane depolarization in alveolar capillaries that propagated to upstream arterioles in wild-type, but not Cx40-/-, mice. Transformation of endothelial depolarization into vasoconstriction involved endothelial voltage-dependent α1G subtype Ca2+ channels, cytosolic phospholipase A2, and epoxyeicosatrienoic acids. Based on these data, we propose that HPV originates at the alveolocapillary level, from which the hypoxic signal is propagated as endothelial membrane depolarization to upstream arterioles in a Cx40-dependent manner.
Collapse
MESH Headings
- Animals
- Calcium Channels/metabolism
- Connexins/genetics
- Connexins/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Lung/blood supply
- Lung/metabolism
- Lung/pathology
- Lung/physiopathology
- Mice
- Mice, Knockout
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phospholipases A2, Cytosolic/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Signal Transduction
- Vasoconstriction
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Liming Wang
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jun Yin
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Hannah T. Nickles
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Hannes Ranke
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Arata Tabuchi
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Hoffmann
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Christoph Tabeling
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Eduardo Barbosa-Sicard
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Marc Chanson
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brenda R. Kwak
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Hee-Sup Shin
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Songwei Wu
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brant E. Isakson
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Witzenrath
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Cor de Wit
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ingrid Fleming
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Hermann Kuppe
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- The Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
Institute of Physiology, Department of Internal Medicine, Charité-Universitätsmedizin, Berlin, Germany.
Department of Cardiothoracic Surgery, Affiliated People′s Hospital of Jiangsu University, Zhenjiang, China.
German Heart Institute, Berlin, Germany.
Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, Charité-Universitätsmedizin Berlin, Germany.
Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Laboratory of Clinical Investigation III, Hôpitaux Universitaires de Genève (HUG), and
Department of Pathology and Immunology, Université de Genève, Genève, Switzerland.
Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA.
Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Institute of Physiology, University of Lübeck, Lübeck, Germany.
Department of Surgery and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Thornton EE, Krummel MF, Looney MR. Live imaging of the lung. CURRENT PROTOCOLS IN CYTOMETRY 2012; Chapter 12:12.28.1-12.28.12. [PMID: 22470155 DOI: 10.1002/0471142956.cy1228s60] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Live imaging is critical to determining the dynamics and spatial interactions of cells within the tissue environment. In the lung, this has proven to be difficult due to the motion incurred by ventilation and cardiac contractions. In this chapter, we report protocols for imaging ex vivo live lung slices and the intact mouse lung.
Collapse
Affiliation(s)
- Emily E Thornton
- Department of Pathology, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
49
|
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122:2731-40. [PMID: 22850883 DOI: 10.1172/jci60331] [Citation(s) in RCA: 1368] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is an important cause of acute respiratory failure that is often associated with multiple organ failure. Several clinical disorders can precipitate ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. Physiologically, ARDS is characterized by increased permeability pulmonary edema, severe arterial hypoxemia, and impaired carbon dioxide excretion. Based on both experimental and clinical studies, progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors. Improved survival has been achieved with the use of lung-protective ventilation. Future progress will depend on developing novel therapeutics that can facilitate and enhance lung repair.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Departments of Medicine and Anesthesia, UCSF, San Francisco, CA, USA.
| | | | | |
Collapse
|
50
|
Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med 2012; 40:1731-7. [PMID: 22610178 DOI: 10.1097/ccm.0b013e3182451c87] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Angiopoietin-2 is a proinflammatory mediator of endothelial injury in animal models, and increased plasma angiopoietin-2 levels are associated with poor outcomes in patients with sepsis-associated acute lung injury. Whether angiopoietin-2 levels are modified by treatment strategies in patients with acute lung injury is unknown. OBJECTIVES To determine whether plasma angiopoietin-2 levels are associated with clinical outcomes and affected by fluid management strategy in a broad cohort of patients with acute lung injury. DESIGN, SETTING, AND PARTICIPANTS Plasma levels of angiopoietin-2 and von Willebrand factor (a traditional marker of endothelial injury) were measured in 931 subjects with acute lung injury enrolled in a randomized trial of fluid liberal vs. fluid conservative management. MEASUREMENTS AND MAIN RESULTS The presence of infection (sepsis or pneumonia) as the primary acute lung injury risk factor significantly modified the relationship between baseline angiopoietin-2 levels and mortality (p = .01 for interaction). In noninfection-related acute lung injury, higher baseline angiopoietin-2 levels were strongly associated with increased mortality (odds ratio, 2.43 per 1-log increase in angiopoietin-2; 95% confidence interval, 1.57-3.75; p < .001). In infection-related acute lung injury, baseline angiopoietin-2 levels were similarly elevated in survivors and nonsurvivors; however, patients whose plasma angiopoietin-2 levels increased from day 0 to day 3 had more than double the odds of death compared with patients whose angiopoietin-2 levels declined over the same period of time (odds ratio, 2.29; 95% confidence interval, 1.54-3.43; p < .001). Fluid-conservative therapy led to a 15% greater decline in angiopoietin-2 levels from day 0 to day 3 (95% confidence interval, 4.6-24.8%; p = .006) compared with fluid-liberal therapy in patients with infection-related acute lung injury. In contrast, plasma levels of von Willebrand factor were significantly associated with mortality in both infection-related and noninfection-related acute lung injury and were not affected by fluid therapy. CONCLUSIONS Unlike von Willebrand factor, plasma angiopoietin-2 has differential prognostic value for mortality depending on the presence or absence of infection as an acute lung injury risk factor. Fluid conservative therapy preferentially lowers plasma angiopoietin-2 levels over time and thus may be beneficial in part by decreasing endothelial inflammation.
Collapse
|