1
|
Mina A, McGraw KL, Cunningham L, Kim N, Jen EY, Calvo KR, Ehrlich LA, Aplan PD, Garcia-Manero G, Foran JM, Garcia JS, Zeidan AM, DeZern AE, Komrokji R, Sekeres MA, Scott B, Buckstein R, Tinsley-Vance S, Verma A, Wroblewski T, Pavletic S, Norsworthy K. Advancing drug development in myelodysplastic syndromes. Blood Adv 2025; 9:1095-1104. [PMID: 39786387 PMCID: PMC11914162 DOI: 10.1182/bloodadvances.2024014865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Myelodysplastic syndromes/neoplasms (MDSs) are heterogeneous stem cell malignancies characterized by poor prognosis and no curative therapies outside of allogeneic hematopoietic stem cell transplantation. Despite some recent approvals by the US Food and Drug Administration, (eg, luspatercept, ivosidenib, decitabine/cedazuridine, and imetelstat), there has been little progress in the development of truly transformative therapies for the treatment of patients with MDS. Challenges to advancing drug development in MDS are multifold but may be grouped into specific categories, including criteria for risk stratification and eligibility, response definitions, time-to-event end points, transfusion end points, functional assessments, and biomarker development. Strategies to address these challenges and optimize future clinical trial design for patients with MDS are presented here.
Collapse
Affiliation(s)
- Alain Mina
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Kathy L. McGraw
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lea Cunningham
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Nina Kim
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Emily Y. Jen
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Katherine R. Calvo
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Lori A. Ehrlich
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Peter D. Aplan
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Comprehensive Cancer Center, Yale University, New Haven, CT
| | - Amy E. DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Mikkael A. Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Bart Scott
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Rena Buckstein
- Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sara Tinsley-Vance
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, New York, NY
| | - Tanya Wroblewski
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Steven Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Kelly Norsworthy
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
2
|
Lu X, Chen Y, Shi Y, Shi Y, Su X, Chen P, Wu D, Shi H. Exercise and exerkines: Mechanisms and roles in anti-aging and disease prevention. Exp Gerontol 2025; 200:112685. [PMID: 39818278 DOI: 10.1016/j.exger.2025.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Aging is a complex biological process characterized by increased inflammation and susceptibility to various age-related diseases, including cognitive decline, osteoporosis, and type 2 diabetes. Exercise has been shown to modulate mitochondrial function, immune responses, and inflammatory pathways, thereby attenuating aging through the regulation of exerkines secreted by diverse tissues and organs. These bioactive molecules, which include hepatokines, myokines, adipokines, osteokines, and neurokines, act both locally and systemically to exert protective effects against the detrimental aspects of aging. This review provides a comprehensive summary of different forms of exercise for older adults and the multifaceted role of exercise in anti-aging, focusing on the biological functions and sources of these exerkines. We further explore how exerkines combat aging-related diseases, such as type 2 diabetes and osteoporosis. By stimulating the secretion of these exerkines, exercise supports healthy longevity by promoting tissue homeostasis and metabolic balance. Additionally, the integration of exercise-induced exerkines into therapeutic strategies represents a promising approach to mitigating age-related pathologies at the molecular level. As our understanding deepens, it may pave the way for personalized interventions leveraging physical activity to enhance healthspan and improve quality of life.
Collapse
Affiliation(s)
- Xuan Lu
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China
| | - Ying Chen
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China
| | - Yue Shi
- School of Athletic, Shanghai University of Sport, Shanghai 200438, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peijie Chen
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China.
| | - Die Wu
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China.
| | - Hui Shi
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Della Porta MG, Bewersdorf JP, Wang YH, Hasserjian RP. Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology. Histopathology 2025; 86:158-170. [PMID: 39450427 DOI: 10.1111/his.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
Collapse
Affiliation(s)
- Matteo G Della Porta
- Comprehensive Cancer Center, IRCCS Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Cancer Center, New Haven, CT, USA
| | - Yu-Hung Wang
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Division of Hematology, National Taiwan University Hospital, Taipei, Taiwan
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Tan S, Kim S, Kim Y. Targeting mitochondrial RNAs enhances the efficacy of the DNA-demethylating agents. Sci Rep 2024; 14:30767. [PMID: 39730484 DOI: 10.1038/s41598-024-80834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs. Here we show that targeting mitochondrial RNAs (mtRNAs) can enhance the HMA-mediated cell death in lung adenocarcinoma cells. We find that HMA treatment accompanies increased mtRNA levels and subsequent enhancement of metabolic activity, resulting in higher ATP production. Compromising the mitochondrial function by downregulating mature mtRNA expression increased cell death by HMAs. We further perform a CRISPR screening on mtRNA processing factors and find that mtRNA polymerase (POLRMT) and ElaC Ribonuclease Z 2 (ELAC2) depleted cells show increased sensitivity to HMAs by suppressing decitabine-triggered enhancement of ATP production. Moreover, we show that a small molecular inhibitor of POLRMT compromises the metabolic activity and synergistically enhances the cytotoxicity of HMAs. Our study unveils the insensitivity to HMAs through the elevation of mtRNAs and suggests mtRNA regulatory factors as potential synergistic targets to improve the therapeutic benefit of HMAs.
Collapse
Affiliation(s)
- Stephanie Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, 34141, Korea.
- KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
5
|
Hidaoui D, Porquet A, Chelbi R, Bohm M, Polyzou A, Alcazer V, Depil S, Imanci A, Morabito M, Renneville A, Selimoglu-Buet D, Thépot S, Itzykson R, Laplane L, Droin N, Trompouki E, Elvira-Matelot E, Solary E, Porteu F. Targeting heterochromatin eliminates chronic myelomonocytic leukemia malignant stem cells through reactivation of retroelements and immune pathways. Commun Biol 2024; 7:1555. [PMID: 39578583 PMCID: PMC11584673 DOI: 10.1038/s42003-024-07214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy affecting the elderly, for which therapeutic options are limited. DNA hypomethylating agents (HMAs) provide transient responses, failing to eradicate the malignant clone. Hematopoietic stem cell (HSC) aging involves heterochromatin reorganization, evidenced by alterations in histone marks H3K9me2 and H3K9me3. These repressive marks together with DNA methylation are essential for suppressing transposable elements (TEs). In solid cancers, the antitumor efficacy of HMAs involves the derepression of TEs, mimicking a state of viral infection. In this study, we demonstrate a significant disorganization of heterochromatin in CMML HSCs and progenitors (HSPCs) characterized by an increase in the repressive mark H3K9me2, mainly at the level of TEs, and a repression of immune and age-associated transcripts. Combining HMAs with G9A/GLP H3K9me2 methyltransferase inhibitors reactivates these pathways, selectively targeting mutated cells while preserving wild-type HSCs, thus offering new therapeutic avenues for this severe myeloid malignancy.
Collapse
MESH Headings
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/immunology
- Leukemia, Myelomonocytic, Chronic/pathology
- Heterochromatin/metabolism
- Heterochromatin/genetics
- Humans
- Neoplastic Stem Cells/metabolism
- Retroelements/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Hematopoietic Stem Cells/metabolism
- DNA Methylation
- Animals
- Mice
- Male
- Histones/metabolism
Collapse
Affiliation(s)
- Donia Hidaoui
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Audrey Porquet
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Rabie Chelbi
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Inovarion, 75005, Paris, France
| | - Mathieu Bohm
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Inovarion, 75005, Paris, France
| | - Aikaterini Polyzou
- IRCAN Institute for Research on Cancer and Aging, INSERM U1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Vincent Alcazer
- Centre International de Recherche en Infectiologie, INSERM U1111 CNRS UMR530, Lyon, France
- Service d'hématologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Aygun Imanci
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Margot Morabito
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Aline Renneville
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Dorothée Selimoglu-Buet
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Sylvain Thépot
- Clinical Hematology Department, University Hospital, Angers, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Lucie Laplane
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nathalie Droin
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM U1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Emilie Elvira-Matelot
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
| | - Eric Solary
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France
- Clinical Hematology Department, Gustave Roussy Cancer Center, Villejuif, France
| | - Françoise Porteu
- INSERM UMR1287, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
6
|
Jajula S, Naik V, Kalita B, Yanamandra U, Sharma S, Chatterjee T, Bhanuse S, Bhavsar PP, Taunk K, Rapole S. Integrative proteome analysis of bone marrow interstitial fluid and serum reveals candidate signature for acute myeloid leukemia. J Proteomics 2024; 303:105224. [PMID: 38866132 DOI: 10.1016/j.jprot.2024.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive form of blood cancer and clinically highly heterogeneous characterized by the accumulation of clonally proliferative immature precursors of myeloid lineage leading to bone marrow failure. Although, the current diagnostic methods for AML consist of cytogenetic and molecular assessment, there is a need for new markers that can serve as useful candidates in diagnosis, prognosis and understanding the pathophysiology of the disease. This study involves the investigation of alterations in the bone marrow interstitial fluid and serum proteome of AML patients compared to controls using label-free quantitative proteomic approach. A total of 201 differentially abundant proteins were identified in AML BMIF, while in the case of serum 123 differentially abundant proteins were identified. The bioinformatics analysis performed using IPA revealed several altered pathways including FAK signalling, IL-12 signalling and production of macrophages etc. Verification experiments were performed in a fresh independent cohort of samples using MRM assays led to the identification of a panel of three proteins viz., PPBP, APOH, ENOA which were further validated in a new cohort of serum samples by ELISA. The three-protein panel could be helpful in the diagnosis, prognosis and understanding of the pathophysiology of AML in the future. BIOLOGICAL SIGNIFICANCE: Acute Myeloid Leukemia (AML) is a type haematological malignancy which constitute one third of total leukemias and it is the most common acute leukemia in adults. In the current clinical practice, the evaluation of diagnosis and progression of AML is largely based on morphologic, immunophenotypic, cytogenetic and molecular assessment. There is a need for new markers/signatures which can serve as useful candidates in diagnosis and prognosis. The present study aims to identify and validate candidate biosignature for AML which can be useful in diagnosis, prognosis and understand the pathophysiology of the disease. Here, we identified 201 altered proteins in AML BMIF and 123 in serum. Among these altered proteins, a set of three proteins viz., pro-platelet basic protein (CXCL7), enolase 1 (ENO1) and beta-2-glycoprotein 1 (APOH) were significantly increased in AML BMIF and serum suggest that this panel of proteins could help in future AML disease management and thereby improving the survival expectancy of AML patients.
Collapse
Affiliation(s)
- Saikiran Jajula
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Venkateshwarlu Naik
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India; Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana, 121002, India
| | - Uday Yanamandra
- Armed Forces Medical College, Pune 411007, Maharashtra, India
| | | | | | - Sadananad Bhanuse
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Praneeta Pradip Bhavsar
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India; Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia 741249, West Bengal, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India.
| |
Collapse
|
7
|
Kim DY, Shin DY, Oh S, Kim I, Kim EJ. Gene Expression and DNA Methylation Profiling Suggest Potential Biomarkers for Azacitidine Resistance in Myelodysplastic Syndrome. Int J Mol Sci 2024; 25:4723. [PMID: 38731939 PMCID: PMC11083267 DOI: 10.3390/ijms25094723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myelodysplastic syndrome/neoplasm (MDS) comprises a group of heterogeneous hematopoietic disorders that present with genetic mutations and/or cytogenetic changes and, in the advanced stage, exhibit wide-ranging gene hypermethylation. Patients with higher-risk MDS are typically treated with repeated cycles of hypomethylating agents, such as azacitidine. However, some patients fail to respond to this therapy, and fewer than 50% show hematologic improvement. In this context, we focused on the potential use of epigenetic data in clinical management to aid in diagnostic and therapeutic decision-making. First, we used the F-36P MDS cell line to establish an azacitidine-resistant F-36P cell line. We performed expression profiling of azacitidine-resistant and parental F-36P cells and used biological and bioinformatics approaches to analyze candidate azacitidine-resistance-related genes and pathways. Eighty candidate genes were identified and found to encode proteins previously linked to cancer, chronic myeloid leukemia, and transcriptional misregulation in cancer. Interestingly, 24 of the candidate genes had promoter methylation patterns that were inversely correlated with azacitidine resistance, suggesting that DNA methylation status may contribute to azacitidine resistance. In particular, the DNA methylation status and/or mRNA expression levels of the four genes (AMER1, HSPA2, NCX1, and TNFRSF10C) may contribute to the clinical effects of azacitidine in MDS. Our study provides information on azacitidine resistance diagnostic genes in MDS patients, which can be of great help in monitoring the effectiveness of treatment in progressing azacitidine treatment for newly diagnosed MDS patients.
Collapse
Affiliation(s)
- Da Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.-Y.S.); (S.O.)
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Somi Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.-Y.S.); (S.O.)
| | - Inho Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.-Y.S.); (S.O.)
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Eun Ju Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
- Department of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Institute for Molecular Bioscience, The University of Queensland, Carmody Rd., St Lucia, Brisbane, QLD 4072, Australia
- Genomics and Machine Learning Lab, QIMR Berghofer Medical Research Institute, Herston Rd., Herston, Brisbane, QLD 4006, Australia
| |
Collapse
|
8
|
Seminati D, L'Imperio V, Casati G, Ceku J, Pilla D, Scalia CR, Gragnano G, Pepe F, Pisapia P, Sala L, Cortinovis DL, Bono F, Malapelle U, Troncone G, Novello S, Pagni F. Economic assessment of NGS testing workflow for NSCLC in a healthcare setting. Heliyon 2024; 10:e29272. [PMID: 38617925 PMCID: PMC11015456 DOI: 10.1016/j.heliyon.2024.e29272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Background The molecular diagnostic and therapeutic pathway of Non-Small Cell Lung Cancer (NSCLC) stands as a successful example of precision medicine. The scarcity of material and the increasing number of biomarkers to be tested have prompted the routine application of next-generation-sequencing (NGS) techniques. Despite its undeniable advantages, NGS involves high costs that may impede its broad adoption in laboratories. This study aims to assess the detailed costs linked to the integration of NGS diagnostics in NSCLC to comprehend their financial impact. Materials and methods The retrospective analysis encompasses 210 cases of early and advanced stages NSCLC, analyzed with NGS and collected at the IRCCS San Gerardo dei Tintori Foundation (Monza, Italy). Molecular analyses were conducted on FFPE samples, with an hotspot panel capable of detecting DNA and RNA variants in 50 clinically relevant genes. The economic analysis employed a full-cost approach, encompassing direct and indirect costs, overheads, VAT (Value Added Tax). Results We estimate a comprehensive cost for each sample of €1048.32. This cost represents a crucial investment in terms of NSCLC patients survival, despite constituting only around 1% of the expenses incurred in their molecular diagnostic and therapeutic pathway. Conclusions The cost comparison between NGS test and the notably higher therapeutic costs highlights that the diagnostic phase is not the limiting economic factor. Developing NGS facilities structured in pathology networks may ensure appropriate technical expertise and efficient workflows.
Collapse
Affiliation(s)
- Davide Seminati
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Gabriele Casati
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Joranda Ceku
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Daniela Pilla
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Carla Rossana Scalia
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Gianluca Gragnano
- Department of Public Health, Pathology, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, Pathology, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, Pathology, University of Naples Federico II, Naples, Italy
| | - Luca Sala
- Department of Medicine and Surgery, Oncology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Diego Luigi Cortinovis
- Department of Medicine and Surgery, Oncology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Francesca Bono
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Umberto Malapelle
- Department of Public Health, Pathology, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Pathology, University of Naples Federico II, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, Azienda Ospedaliero Universitaria San Luigi, Turin, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
9
|
He S, Li Y, Wang L, Li Y, Xu L, Cai D, Zhou J, Yu L. DNA methylation landscape reveals GNAS as a decitabine-responsive marker in patients with acute myeloid leukemia. Neoplasia 2024; 49:100965. [PMID: 38245923 PMCID: PMC10830847 DOI: 10.1016/j.neo.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The demethylation agent decitabine (DAC) is a pivotal non-intensive alternative treatment for acute myeloid leukemia (AML). However, patient responses to DAC are highly variable, and predictive biomarkers are warranted. Herein, the DNA methylation landscape of patients treated with a DAC-based combination regimen was compared with that of patients treated with standard chemotherapy to develop a molecular approach for predicting clinical response to DAC. METHODS Twenty-five non-M3 AML patients were enrolled and subjected to DNA methylation sequencing and profiling to identify differentially methylated regions (DMRs) and genes of interest. Moreover, the effects of a DAC-based regimen on apoptosis and gene expression were explored using Kasumi-1 and K562 cells. RESULTS Overall, we identified 541 DMRs that were specifically responsive to DAC, among which 172 DMRs showed hypomethylation patterns upon treatment and were aligned with the promoter regions of 182 genes. In particular, GNAS was identified as a critical DAC-responsive gene, with in vitro GNAS downregulation leading to reduced cell apoptosis induced by DAC and cytarabine combo treatment. CONCLUSIONS We found that GNAS is a DAC-sensitive gene in AML and may serve as a prognostic biomarker to assess the responsiveness of patients with AML to DAC-based therapy.
Collapse
Affiliation(s)
- Shujiao He
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Yan Li
- Department of Hematology, Peking Third Hospital, 49 North Garden Road, Beijing 100191, China; Department of Haematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lei Wang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, 155 Hong Tian Rd, Baoan District, Shenzhen 518125, China; Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Rd, Baoan District, Shenzhen 518125, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Diya Cai
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Jingfeng Zhou
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China.
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China.
| |
Collapse
|
10
|
Schmutz M, Zucknick M, Schlenk RF, Mertens D, Benner A, Weichenhan D, Mücke O, Döhner K, Plass C, Bullinger L, Claus R. Predictive value of DNA methylation patterns in AML patients treated with an azacytidine containing induction regimen. Clin Epigenetics 2023; 15:171. [PMID: 37885041 PMCID: PMC10601277 DOI: 10.1186/s13148-023-01580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. Dysregulation of the epigenetic machinery is a significant contributor to disease development. Some AML patients benefit from treatment with hypomethylating agents (HMAs), but no predictive biomarkers for therapy response exist. Here, we investigated whether unbiased genome-wide assessment of pre-treatment DNA-methylation profiles in AML bone marrow blasts can help to identify patients who will achieve a remission after an azacytidine-containing induction regimen. RESULTS A total of n = 155 patients with newly diagnosed AML treated in the AMLSG 12-09 trial were randomly assigned to a screening and a refinement and validation cohort. The cohorts were divided according to azacytidine-containing induction regimens and response status. Methylation status was assessed for 664,227 500-bp-regions using methyl-CpG immunoprecipitation-seq, resulting in 1755 differentially methylated regions (DMRs). Top regions were distilled and included genes such as WNT10A and GATA3. 80% of regions identified as a hit were represented on HumanMethlyation 450k Bead Chips. Quantitative methylation analysis confirmed 90% of these regions (36 of 40 DMRs). A classifier was trained using penalized logistic regression and fivefold cross validation containing 17 CpGs. Validation based on mass spectra generated by MALDI-TOF failed (AUC 0.59). However, discriminative ability was maintained by adding neighboring CpGs. A recomposed classifier with 12 CpGs resulted in an AUC of 0.77. When evaluated in the non-azacytidine containing group, the AUC was 0.76. CONCLUSIONS Our analysis evaluated the value of a whole genome methyl-CpG screening assay for the identification of informative methylation changes. We also compared the informative content and discriminatory power of regions and single CpGs for predicting response to therapy. The relevance of the identified DMRs is supported by their association with key regulatory processes of oncogenic transformation and support the idea of relevant DMRs being enriched at distinct loci rather than evenly distribution across the genome. Predictive response to therapy could be established but lacked specificity for treatment with azacytidine. Our results suggest that a predictive epigenotype carries its methylation information at a complex, genome-wide level, that is confined to regions, rather than to single CpGs. With increasing application of combinatorial regimens, response prediction may become even more complicated.
Collapse
Affiliation(s)
- Maximilian Schmutz
- Hematology and Oncology, Medical Faculty, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Zucknick
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Richard F Schlenk
- NCT-Trial Center, National Center of Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Mertens
- Cooperation Unit "Mechanisms of Leukemogenesis", German Cancer Research Center, Heidelberg, Germany
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Mücke
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Bullinger
- German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rainer Claus
- Hematology and Oncology, Medical Faculty, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
11
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Yuan H, Lu Y, Feng Y, Wang N. Epigenetic inhibitors for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:89-144. [PMID: 38359972 DOI: 10.1016/bs.ircmb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Epigenetics is a heritable and reversible modification that occurs independent of the alteration of primary DNA sequence but remarkably affects genetic expression. Aberrant epigenetic regulators are frequently observed in cancer progression not only influencing the behavior of tumor cells but also the tumor-associated microenvironment (TME). Increasing evidence has shown their great potential as biomarkers to predict clinical outcomes and chemoresistance. Hence, targeting the deregulated epigenetic regulators would be a compelling strategy for cancer treatment. So far, current epigenetic drugs have shown promising efficacy in both preclinical trials and clinical treatment of cancer, which encourages research discoveries on the development of novel epigenetic inhibitors either from natural compounds or artificial synthesis. However, only a few have been approved by the FDA, and more effort needs to be put into the related research. This chapter will update the applications and latest progress of epigenetic inhibitors in cancer treatment and provide prospects for the future development of epigenetic drugs.
Collapse
Affiliation(s)
- Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
13
|
Bewersdorf JP, Xie Z, Bejar R, Borate U, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, Porta MGD, DeZern AE, Fenaux P, Figueroa ME, Gore SD, Griffiths EA, Halene S, Hasserjian RP, Hourigan CS, Kim TK, Komrokji R, Kuchroo VK, List AF, Loghavi S, Majeti R, Odenike O, Patnaik MM, Platzbecker U, Roboz GJ, Sallman DA, Santini V, Sanz G, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Xu ML, Savona MR, Wei AH, Zeidan AM. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS): Proceedings from the 1 st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev 2023; 60:101072. [PMID: 36934059 DOI: 10.1016/j.blre.2023.101072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Biological events that contribute to the pathogenesis of myelodysplastic syndromes/neoplasms (MDS) are becoming increasingly characterized and are being translated into rationally designed therapeutic strategies. Herein, we provide updates from the first International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS) detailing recent advances in understanding the genetic landscape of MDS, including germline predisposition, epigenetic and immune dysregulation, the complexities of clonal hematopoiesis progression to MDS, as well as novel animal models of the disease. Connected to this progress is the development of novel therapies targeting specific molecular alterations, the innate immune system, and immune checkpoint inhibitors. While some of these agents have entered clinical trials (e.g., splicing modulators, IRAK1/4 inhibitors, anti-CD47 and anti-TIM3 antibodies, and cellular therapies), none have been approved for MDS. Additional preclinical and clinical work is needed to develop a truly individualized approach to the care of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Uma Borate
- Ohio State University Comprehensive Cancer/ James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew M Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rena Buckstein
- Department of Medical Oncology/Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jane E Churpek
- Department of Hematology, Oncology, and Palliative Care, Carbone Cancer Center, The University of Wisconsin-Madison, Madison, WI, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Clinical and Research Center & Humanitas University, Department of Biomedical Sciences, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Amy E DeZern
- Division of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pierre Fenaux
- Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris and Paris Cité University, Paris, France
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven D Gore
- National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | | | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, and Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alan F List
- Precision BioSciences, Inc., Durham, NC, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Olatoyosi Odenike
- Leukemia Program, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gail J Roboz
- Weill Cornell Medical College, New York, NY, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Mikkael A Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Michael R Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research and University of Melbourne, Victoria, Australia
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
14
|
Greve G, Andrieux G, Schlosser P, Blagitko-Dorfs N, Rehman UU, Ma T, Pfeifer D, Heil G, Neubauer A, Krauter J, Heuser M, Salih HR, Döhner K, Döhner H, Hackanson B, Boerries M, Lübbert M. In vivo kinetics of early, non-random methylome and transcriptome changes induced by DNA-hypomethylating treatment in primary AML blasts. Leukemia 2023; 37:1018-1027. [PMID: 37024521 PMCID: PMC10169639 DOI: 10.1038/s41375-023-01876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
Despite routine use of DNA-hypomethylating agents (HMAs) in AML/MDS therapy, their mechanisms of action are not yet unraveled. Pleiotropic effects of HMAs include global methylome and transcriptome changes. We asked whether in blasts and T-cells from AML patients HMA-induced in vivo demethylation and remethylation occur randomly or non-randomly, and whether gene demethylation is associated with gene induction. Peripheral blood AML blasts from patients receiving decitabine (20 mg/m2 day 1-5) were serially isolated for methylome analyses (days 0, 8 and 15, n = 28) and methylome-plus-transcriptome analyses (days 0 and 8, n = 23), respectively. T-cells were isolated for methylome analyses (days 0 and 8; n = 16). We noted massive, non-random demethylation at day 8, which was variable between patients. In contrast, T-cells disclosed a thousand-fold lesser, random demethylation, indicating selectivity of the demethylation for the malignant blasts. The integrative analysis of DNA demethylation and transcript induction revealed 87 genes displaying a significant inverse correlation, e.g. the tumor suppressor gene IFI27, whose derepression was validated in two AML cell lines. These results support HMA-induced, non-random early in vivo demethylation events in AML blasts associated with gene induction. Larger patient cohorts are needed to determine whether a demethylation signature may be predictive for response to this treatment.
Collapse
Affiliation(s)
- Gabriele Greve
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nadja Blagitko-Dorfs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Usama-Ur Rehman
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Ma
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerhard Heil
- Department of Internal Medicine V, Klinikum Lüdenscheid, Lüdenscheid, Germany
| | - Andreas Neubauer
- Philipps University Marburg, and University Hospital Giessen and Marburg, Marburg, Germany
| | - Jürgen Krauter
- Department of Hematology and Oncology, Klinikum Braunschweig, Braunschweig, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625, Hannover, Germany
| | - Helmut R Salih
- Department of Hematology and Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Björn Hackanson
- Department of Hematology/Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Reiser J, Geissler K. Treatment options and survival in real life during the past three decades in patients with chronic myelomonocytic leukemia. Wien Med Wochenschr 2023; 173:34-40. [PMID: 36282401 PMCID: PMC9877071 DOI: 10.1007/s10354-022-00976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/27/2022] [Indexed: 01/29/2023]
Abstract
The impact of treatment on the outcome of chronic myelomonocytic leukemia (CMML) patients over a longer period of time and the potential role of predictive factors are not well defined. In a retrospective observational study, we analyzed 168 CMML patients regarding treatment options and survival during the past three decades. The proportion of patients treated with hydroxyurea (HU), intensive chemotherapy, and azacitidine (AZA) was 65/19/0% before 2000, 51/25/32% from 2000-2010, and 36/12/53% after 2010, respectively. Median overall survival (OS) increased from 10 months before 2000 to 23 months thereafter (p = 0.021). AZA-treated patients but not patients treated with other treatment options had improved survival as compared to CMML patients without AZA therapy (19 vs. 25 months, p = 0.041). When looking at subgroups, the following patient cohorts had a significant survival benefit in association with AZA therapy: patients with Hb > 10 g/dL, patients with monocytosis > 10 G/L, and patients with mutations in RASopathy genes.
Collapse
Affiliation(s)
- Julia Reiser
- Medical School, Sigmund Freud University, Vienna, Austria
| | - Klaus Geissler
- Medical School, Sigmund Freud University, Vienna, Austria.
- Department of Internal Medicine V with Hematology, Oncology and Palliative Care, Hospital Hietzing, Wolkersbergenstraße 1, 1130, Vienna, Austria.
| |
Collapse
|
16
|
Itzykson R, Santini V, Thepot S, Ades L, Chaffaut C, Giagounidis A, Morabito M, Droin N, Lübbert M, Sapena R, Nimubona S, Goasguen J, Wattel E, Zini G, Torregrosa Diaz JM, Germing U, Pelizzari AM, Park S, Jaekel N, Metzgeroth G, Onida F, Navarro R, Patriarca A, Stamatoullas A, Götze K, Puttrich M, Mossuto S, Solary E, Gloaguen S, Chevret S, Chermat F, Platzbecker U, Fenaux P. Decitabine Versus Hydroxyurea for Advanced Proliferative Chronic Myelomonocytic Leukemia: Results of a Randomized Phase III Trial Within the EMSCO Network. J Clin Oncol 2022; 41:1888-1897. [PMID: 36455187 DOI: 10.1200/jco.22.00437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Hydroxyurea (HY) is a reference treatment of advanced myeloproliferative neoplasms. We conducted a randomized phase III trial comparing decitabine (DAC) and HY in advanced myeloproliferative chronic myelomonocytic leukemias (CMML). PATIENTS AND METHODS Newly diagnosed myeloproliferative CMML patients with advanced disease were randomly assigned 1:1 to intravenous DAC (20 mg/m2/d days 1-5) or HY (1-4 g/d) in 28-day cycles. The primary end point was event-free survival (EFS), events being death and acute myelomonocytic leukemia (AML) transformation or progression. RESULTS One-hundred seventy patients received DAC (n = 84) or HY (n = 86). Median age was 72 and 74 years, and median WBC count 32.5 × 109/L and 31.2 × 109/L in the DAC and HY arms, respectively. Thirty-three percent of DAC and 31% of HY patients had CMML-2. Patients received a median of five DAC and six HY cycles. With a median follow-up of 17.5 months, median EFS was 12.1 months in the DAC arm and 10.3 months in the HY arm (hazard ratio [HR], 0.83; 95% CI, 0.59 to 1.16; P = .27). There was no significant interaction between treatment effect and blast or platelet count, anemia, CMML Prognostic Scoring System, Groupe Francophone des Myelodysplasies, or CMML Prognostic Scoring System–mol risk. Fifty-three (63%) DAC patients achieved a response compared with 30 (35%) HY patients ( P = .0004). Median duration of response was similar in both arms (DAC, 16.3 months; HY, 17.4 months; P = .90). Median overall survival was 18.4 months in the DAC arm and 21.9 months in the HY arm ( P = .67). Compared with HY, DAC significantly reduced the risk of CMML progression or transformation to acute myelomonocytic leukemia (cause-specific HR, 0.62; 95% CI, 0.41 to 0.94; P = .005) at the expense of death without progression or transformation (cause-specific HR, 1.55; 95% CI, 0.82 to 2.9; P = .04). CONCLUSION Compared with HY, frontline treatment with DAC did not improve EFS in patients with advanced myeloproliferative CMML (ClinicalTrials.gov identifier: NCT02214407 ).
Collapse
Affiliation(s)
- Raphael Itzykson
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université de Paris, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Groupe Francophone des Myélodysplasies, Paris, France
| | - Valeria Santini
- MDS Unit, DMSC; AOU Careggi, University of Florence, Florence, Italy
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM-ets), Bologna, Italy
| | - Sylvain Thepot
- Groupe Francophone des Myélodysplasies, Paris, France
- Hematology Department CHU Angers, Université Angers, Angers, France
| | - Lionel Ades
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Groupe Francophone des Myélodysplasies, Paris, France
- Service Hématologie Seniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cendrine Chaffaut
- SBIM, APHP, Hôpital Saint-Louis, INSERM, UMR-1153, ECSTRA Team, Paris, France
| | - Aristoteles Giagounidis
- Marien Hospital, Klinik für Hämatologie, Onkologie und klinische Immunologie, D-Düsseldorf, Germany
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
| | - Margot Morabito
- Université Paris Saclay, INSERM U1287, Gustave Roussy Cancer Center, Villejuif, France
| | - Nathalie Droin
- Université Paris Saclay, INSERM U1287, Gustave Roussy Cancer Center, Villejuif, France
| | - Michael Lübbert
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine—University Medical Center Freiburg, Freiburg, Germany
| | - Rosa Sapena
- Groupe Francophone des Myélodysplasies, Paris, France
| | - Stanislas Nimubona
- Groupe Francophone des Myélodysplasies, Paris, France
- Service Hématologie Clinique adulte, CHU de Rennes, Rennes, France
| | | | - Eric Wattel
- Groupe Francophone des Myélodysplasies, Paris, France
- Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Gina Zini
- Hematology, Università Cattolica del S. Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jose Miguel Torregrosa Diaz
- Groupe Francophone des Myélodysplasies, Paris, France
- Service d’Hématologie Oncologique et Thérapie Cellulaire, CIC INSERM 1402, University Hospital of Poitiers, Poitiers, France
| | - Ulrich Germing
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
- Heinrich-Heine University Düsseldorf, Universitätsklinik Düsseldorf, Klinik für Hämatologie, Onkologie und Klinische Immunologie, Düsseldorf, Germany
| | - Anna Maria Pelizzari
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM-ets), Bologna, Italy
- Hematology Unit, ASST Spedali Civili, Brescia, Italy
| | - Sophie Park
- Groupe Francophone des Myélodysplasies, Paris, France
- Université Grenoble Alpes, Hematology Department, CHU Grenoble Alpes, Grenoble, France
| | - Nadja Jaekel
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
- University Hospital Halle, Halle, Germany
| | - Georgia Metzgeroth
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesco Onida
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM-ets), Bologna, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico - University of Milan, Hematology-BMT Unit, Milan, Italy
| | - Robert Navarro
- Groupe Francophone des Myélodysplasies, Paris, France
- Service d’Hématologie, CHU Montpellier, Montpellier, France
| | - Andrea Patriarca
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM-ets), Bologna, Italy
- Hematology Unit, AOU «Maggiore della Carità» and University of Eastern Piedmont, I-28100, Novara, Italy
| | - Aspasia Stamatoullas
- Groupe Francophone des Myélodysplasies, Paris, France
- Centre Henri Becquerel, Rouen, France
| | - Katharina Götze
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
- Technical University of Munich, Department of Medicine III, Munich, Germany
| | - Martin Puttrich
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
- GWT-TUD GmbH, Dresden, Germany
| | - Sandra Mossuto
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM-ets), Bologna, Italy
| | - Eric Solary
- Groupe Francophone des Myélodysplasies, Paris, France
- Université Paris Saclay, INSERM U1287, Gustave Roussy Cancer Center, Villejuif, France
- Department of Hematology, Gustave Roussy Cancer Center, Villejuif, France
| | - Silke Gloaguen
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
- Clinic and Polyclinic for Hematology, Cellular Therapy and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Sylvie Chevret
- SBIM, APHP, Hôpital Saint-Louis, INSERM, UMR-1153, ECSTRA Team, Paris, France
| | | | - Uwe Platzbecker
- Deutsche MDS-Studiengruppe, D-04103 Leipzig, Germany
- Clinic and Polyclinic for Hematology, Cellular Therapy and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Pierre Fenaux
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Groupe Francophone des Myélodysplasies, Paris, France
- Service Hématologie Seniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
17
|
Park S, Park SY, Lee JH, Choi EJ, Lee KH, Yoon SS, Hong J, Shin DY, Kim YJ. Five-day versus 7-day treatment regimen with azacitidine in lower risk myelodysplastic syndrome: A phase 2, multicenter, randomized trial. Cancer 2022; 128:4095-4108. [PMID: 36208097 DOI: 10.1002/cncr.34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Low-dose azacitidine (AZA) regimens, primarily 5-day AZA, have been used in lower risk myelodysplastic syndrome (LrMDS) but they have yet to be directly compared to the standard 7-day, uninterrupted dosing schedule. METHOD In this phase 2, multicenter, randomized trial, 55 patients with adult LrMDS (low and intermediate-1 risk by international prognostic scoring system [IPSS]) were randomly assigned and received either 5-day (n = 26) or 7-day (n = 29) AZA between March 2012 and August 2020. The trial was stopped prematurely because of the slow accrual of patients. The primary end point was the overall response rate (ORR) of the 5-day AZA as compared to that of the 7-day regimen. RESULTS Median patient age was 59 years, and IPSS intermediate-1 risk comprised the majority (81.8%). The median number of cycles in both arms was six. In the ITT subset (n = 53), in each of the 5-day and 7-day arms, the ORR of 48.0% and 39.3%, hematologic improvement of 44.0% and 39.3%, and RBC transfusion independence of 35.3% and 40.0% were observed respectively, and none of these findings were significantly different between the two arms. A cytogenetic response rate was significantly higher in the 7-day arm (8.3% and 53.8%, p = .027). Survival and adverse events were similar between the groups, although gastrointestinal toxicities, grade ≥3 thrombocytopenia, and febrile neutropenia were less frequent in the 5-day arm. CONCLUSION The 5-day AZA in LrMDS showed comparable efficacy to a 7-day regimen in terms of similar overall response and other outcomes, despite significantly higher rates of cytogenetic responses in the 7-day regimen. LAY SUMMARY Azacitidine (75 mg/m2 /day for 7 consecutive days per 28-day cycle) has shown survival benefit in patients with higher risk myelodysplastic syndrome (MDS). Although the use of azacitidine is less-well studied for lower risk MDS, it is generally accepted as a feasible option for lower risk MDS (LrMDS).
Collapse
Affiliation(s)
- Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - So Yeon Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, College of Medicine, Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Zhao G, Li S, Wang Q, Wu W, Fu X, Zhu C, Wang W, Wang X. ABAT gene expression associated with the sensitivity of hypomethylating agents in myelodysplastic syndrome through CXCR4/mTOR signaling. Cell Death Dis 2022; 8:398. [PMID: 36163180 PMCID: PMC9512903 DOI: 10.1038/s41420-022-01170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
The factors that affect hypomethylating agents (HMAs) sensitivity in myelodysplastic syndrome (MDS) are complex and multifaceted. They include DNA methylation, gene expression, mutation, etc. However, the underlying mechanisms are still not clearly illustrated. In the present work, ABAT gene expression was associated with HMAs sensitivity. It was found that ABAT gene interference increased the sensitivity of HL-60 and THP-1 cells to HMAs treatment, while ABAT overexpression decreased its sensitivity. RNA-sequencing analysis showed that ABAT knockdown activated both interferon I and interferon-gamma signaling while inhibiting the secondary metabolic synthesis and arginine metabolic process. Gas chromatography-mass spectrometry (GC-MS) based metabolic profiling also demonstrated that ABAT gene knockdown affected arginine, alanine, aspartate, and glutamate metabolism, in addition to the biosynthesis of valine, leucine, and isoleucine, and the metabolism of beta-alanine. The ABAT gene expression downregulation could activate the CXCR4/mTOR signaling pathway, which was related to HMAs sensitivity. CXCR4 expression was regulated by mTOR activity and vice versa. In vivo, mice injected with ABAT gene knockdown cells lived longer than control mice after HMAs treatment. Overall, this study elucidates the novel regulatory mechanisms of HMAs sensitivity and provides a potential therapeutic target in MDS.
Collapse
Affiliation(s)
- Guangjie Zhao
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Shuang Li
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University, No.85 Wujin Road, Shanghai, China
| | - Qian Wang
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Wanlin Wu
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Xuewei Fu
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Chen Zhu
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China
| | - Wei Wang
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China.
| | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, No.12 Wulumuqi Middle Road, Shanghai, China.
| |
Collapse
|
19
|
Moyo TK, Mendler JH, Itzykson R, Kishtagari A, Solary E, Seegmiller AC, Gerds AT, Ayers GD, Dezern AE, Nazha A, Valent P, van de Loosdrecht AA, Onida F, Pleyer L, Cirici BX, Tibes R, Geissler K, Komrokji RS, Zhang J, Germing U, Steensma DP, Wiseman DH, Pfeilstöecker M, Elena C, Cross NCP, Kiladjian JJ, Luebbert M, Mesa RA, Montalban-Bravo G, Sanz GF, Platzbecker U, Patnaik MM, Padron E, Santini V, Fenaux P, Savona MR. The ABNL-MARRO 001 study: a phase 1-2 study of randomly allocated active myeloid target compound combinations in MDS/MPN overlap syndromes. BMC Cancer 2022; 22:1013. [PMID: 36153475 PMCID: PMC9509596 DOI: 10.1186/s12885-022-10073-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) comprise several rare hematologic malignancies with shared concomitant dysplastic and proliferative clinicopathologic features of bone marrow failure and propensity of acute leukemic transformation, and have significant impact on patient quality of life. The only approved disease-modifying therapies for any of the MDS/MPN are DNA methyltransferase inhibitors (DNMTi) for patients with dysplastic CMML, and still, outcomes are generally poor, making this an important area of unmet clinical need. Due to both the rarity and the heterogeneous nature of MDS/MPN, they have been challenging to study in dedicated prospective studies. Thus, refining first-line treatment strategies has been difficult, and optimal salvage treatments following DNMTi failure have also not been rigorously studied. ABNL-MARRO (A Basket study of Novel therapy for untreated MDS/MPN and Relapsed/Refractory Overlap Syndromes) is an international cooperation that leverages the expertise of the MDS/MPN International Working Group (IWG) and provides the framework for collaborative studies to advance treatment of MDS/MPN and to explore clinical and pathologic markers of disease severity, prognosis, and treatment response. METHODS ABNL MARRO 001 (AM-001) is an open label, randomly allocated phase 1/2 study that will test novel treatment combinations in MDS/MPNs, beginning with the novel targeted agent itacitinib, a selective JAK1 inhibitor, combined with ASTX727, a fixed dose oral combination of the DNMTi decitabine and the cytidine deaminase inhibitor cedazuridine to improve decitabine bioavailability. DISCUSSION Beyond the primary objectives of the study to evaluate the safety and efficacy of novel treatment combinations in MDS/MPN, the study will (i) Establish the ABNL MARRO infrastructure for future prospective studies, (ii) Forge innovative scientific research that will improve our understanding of pathogenetic mechanisms of disease, and (iii) Inform the clinical application of diagnostic criteria, risk stratification and prognostication tools, as well as response assessments in this heterogeneous patient population. TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov on August 19, 2019 (Registration No. NCT04061421).
Collapse
Affiliation(s)
- Tamara K Moyo
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
- Levine Cancer Institute, Charlotte, NC, USA
| | - Jason H Mendler
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Ashwin Kishtagari
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | - Eric Solary
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Adam C Seegmiller
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | | | - Gregory D Ayers
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | | | | | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Francesco Onida
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Lisa Pleyer
- Third Medical Department With Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria
- Salzburg Cancer Research Institute Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
| | - Blanca Xicoy Cirici
- Institut Català d'Oncologia-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Bellaterr, Spain
| | | | | | | | - Jing Zhang
- University of Wisconsin-Madison, Madison, WI, USA
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, University of Duesseldorf, Duesseldorf, Germany
| | | | | | - Michael Pfeilstöecker
- Hanusch Hospital and Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | | | | | - Jean-Jacques Kiladjian
- Université de Paris, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | | | - Ruben A Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | | | | | | | | | - Eric Padron
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - Michael R Savona
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA.
| |
Collapse
|
20
|
Darbaniyan F, Zheng H, Kanagal-Shamanna R, Lockyer P, Montalban-Bravo G, Estecio M, Lu Y, Soltysiak KA, Chien KS, Yang H, Sasaki K, Class C, Ganan-Gomez I, Do KA, Garcia-Manero G, Wei Y. Transcriptomic Signatures of Hypomethylating Agent Failure in Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia. Exp Hematol 2022; 115:44-53. [PMID: 36150563 DOI: 10.1016/j.exphem.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Hypomethylating agents (HMAs) are the standard of care for myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). HMA treatment failure is a major clinical problem and its mechanisms are poorly characterized. We performed RNA sequencing in CD34+ bone marrow stem hematopoietic stem and progenitor cells (BM-HSPCs) from 51 patients with CMML and MDS before HMA treatment and compared transcriptomic signatures between responders and nonresponders. We observed very few genes with significant differential expression in HMA non-responders versus responders, and the commonly altered genes in non-responders to both azacitidine (AZA) and decitabine (DAC) treatments were immunoglobulin genes. Gene set analysis identified 78 biological pathways commonly altered in non-responders to both treatments. Among these, we determined that the γ-aminobutyric acid (GABA) receptor signaling significantly affected hematopoiesis in both human BM-HSPCs and mice, indicating that the transcriptomic signatures identified here could serve as candidate biomarkers and therapeutic targets for HMA failure in MDS and CMML.
Collapse
Affiliation(s)
- Faezeh Darbaniyan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hong Zheng
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Pamela Lockyer
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Marcos Estecio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, X
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, X
| | - Kelly A Soltysiak
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kelly S Chien
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hui Yang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koji Sasaki
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Caleb Class
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN
| | - Irene Ganan-Gomez
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kim-Anh Do
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Yue Wei
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
21
|
Stein A, Platzbecker U, Cross M. How Azanucleosides Affect Myeloid Cell Fate. Cells 2022; 11:cells11162589. [PMID: 36010665 PMCID: PMC9406747 DOI: 10.3390/cells11162589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The azanucleosides decitabine and azacytidine are used widely in the treatment of myeloid neoplasia and increasingly in the context of combination therapies. Although they were long regarded as being largely interchangeable in their function as hypomethylating agents, the azanucleosides actually have different mechanisms of action; decitabine interferes primarily with the methylation of DNA and azacytidine with that of RNA. Here, we examine the role of DNA methylation in the lineage commitment of stem cells during normal hematopoiesis and consider how mutations in epigenetic regulators such as DNMT3A and TET2 can lead to clonal expansion and subsequent neoplastic progression. We also consider why the efficacy of azanucleoside treatment is not limited to neoplasias carrying mutations in epigenetic regulators. Finally, we summarise recent data describing a role for azacytidine-sensitive RNA methylation in lineage commitment and in the cellular response to stress. By summarising and interpreting evidence for azanucleoside involvement in a range of cellular processes, our review is intended to illustrate the need to consider multiple modes of action in the design and stratification of future combination therapies.
Collapse
|
22
|
Karantanos T, Tsai HL, Gondek LP, DeZern AE, Ghiaur G, Dalton WB, Gojo I, Prince GT, Webster J, Ambinder A, Smith BD, Levis MJ, Varadhan R, Jones RJ, Jain T. Genomic landscape of myelodysplastic/myeloproliferative neoplasm can predict response to hypomethylating agent therapy. Leuk Lymphoma 2022; 63:1942-1948. [PMID: 35379077 PMCID: PMC9847567 DOI: 10.1080/10428194.2022.2057488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There are currently no known predictors of myelodysplastic syndrome (MDS)/myeloproliferative overlap neoplasm (MPN) patients' response to hypomethylating agents (HMA). Forty-three patients with MDS/MPN who were treated with HMA during chronic phase and had next-generation sequencing using the established 63-genes panel were identified. Complete and partial remission and marrow response were assessed based on the MDS/MPN International Working Group response criteria. On univariate analysis, younger age, higher number of mutations, and mutations in SETBP1, RUNX1, or EZH2 were associated with no response. Multivariable analysis for modeling response were conducted via least absolute shrinkage and selection operator logistic regression approach, and showed that mutations in SETBP1, RUNX1, or EZH2 predict lack of HMA response. While limited by sample size, our findings suggest that genomic landscape can potentially identify MDS/MPN patients with lower likelihood of response to HMA.
Collapse
Affiliation(s)
- Theodoras Karantanos
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hua-Ling Tsai
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Lukasz P. Gondek
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Amy E. DeZern
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriel Ghiaur
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - W. Brian Dalton
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ivana Gojo
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Gabrielis T. Prince
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan Webster
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander Ambinder
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - B. Douglas Smith
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Mark J Levis
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Richard J. Jones
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimrnel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Wu Q, Tu H, Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol 2022; 13:914730. [PMID: 35837284 PMCID: PMC9273993 DOI: 10.3389/fphar.2022.914730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over recent years, C-X-C motif ligand 7 (CXCL7) has received widespread attention as a chemokine involved in inflammatory responses. Abnormal production of the chemokine CXCL7 has been identified in different inflammatory diseases; nevertheless, the exact role of CXCL7 in the pathogenesis of inflammatory diseases is not fully understood. Persistent infection or chronic inflammation can induce tumorigenesis and progression. Previous studies have shown that the pro-inflammatory chemokine CXCL7 is also expressed by malignant tumor cells and that binding of CXCL7 to its cognate receptors C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2) can influence tumor biological behavior (proliferation, invasion, metastasis, and tumor angiogenesis) in an autocrine and paracrine manner. CXCL7 and its receptor CXCR1/CXCR2, which are aberrantly expressed in tumors, may represent new targets for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Qianmiao Wu
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medicine, Nanchang University, Nanchang, China
| | - Huaijun Tu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Li
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Lee P, Yim R, Miu KK, Fung SH, Liao JJ, Wang Z, Li J, Yung Y, Chu HT, Yip PK, Lee E, Tse E, Kwong YL, Gill H. Epigenetic Silencing of PTEN and Epi-Transcriptional Silencing of MDM2 Underlied Progression to Secondary Acute Myeloid Leukemia in Myelodysplastic Syndrome Treated with Hypomethylating Agents. Int J Mol Sci 2022; 23:5670. [PMID: 35628480 PMCID: PMC9144309 DOI: 10.3390/ijms23105670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
In myelodysplastic syndrome (MDS), resistance to hypomethylating agents (HMA) portends a poor prognosis, underscoring the importance of understanding the molecular mechanisms leading to HMA-resistance. In this study, P39 and Kasumi-1 cells and their azacitidine-resistant and decitabine-resistant sublines were evaluated comparatively with transcriptomic and methylomic analyses. Expression profiling and genome-wide methylation microarray showed downregulation of PTEN associated with DNA hypermethylation in P39 cell lines resistant to azacitidine and decitabine. This pattern of PTEN dysregulation was also confirmed in a cohort of patients failing treatment with HMA. DNA hypomethylation of MDM2 was detected with downregulation of MDM2 in HMA resistant cell lines. Long-read sequencing revealed significant RNA hypomethylation of MDM2 resulting in alternative splicing and production of a truncated MDM2 transcript in azacitidine-resistant P39 cells. The expression of this MDM2 truncated transcript was also significantly increased in HMA-resistant patients compared with HMA-responsive patients. In conclusion, epigenetic and epi-transcriptomic dysregulation of PTEN and MDM2 were associated with resistance to hypomethylating agents.
Collapse
Affiliation(s)
- Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Jason Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Jun Li
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, China;
| | - Yammy Yung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Hiu-Tung Chu
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Pui-Kwan Yip
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Emily Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Eric Tse
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| |
Collapse
|
25
|
Lee P, Yim R, Fung SH, Miu KK, Wang Z, Wu KC, Au L, Leung GMK, Lee VHF, Gill H. Single-Nucleotide Variations, Insertions/Deletions and Copy Number Variations in Myelodysplastic Syndrome during Disease Progression Revealed by a Single-Cell DNA Sequencing Platform. Int J Mol Sci 2022; 23:4647. [PMID: 35563039 PMCID: PMC9100947 DOI: 10.3390/ijms23094647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal myeloid neoplasm characterized by ineffective hematopoiesis, cytopenia, dysplasia, and clonal instability, leading to leukemic transformation. Hypomethylating agents are the mainstay of treatment in higher-risk MDS. However, treatment resistance and disease transformation into acute myeloid leukemia (AML) is observed in the majority of patients and is indicative of a dismal outcome. The residual cell clones resistant to therapy or cell clones acquiring new genetic aberrations are two of the key events responsible for drug resistance. Bulk tumor sequencing often fails to detect these rare subclones that confer resistance to therapy. In this study, we employed a single-cell DNA (sc-DNA) sequencing approach to study the clonal heterogeneity and clonal evolution in two MDS patients refractory to HMA. In both patients, different single nucleotide variations (SNVs) or insertions and deletions (INDELs) were detected with bulk tumor sequencing. Rare cell clones with mutations that are undetectable by bulk tumor sequencing were detected by sc-DNA sequencing. In addition to SNVs and short INDELs, this study also revealed the presence of a clonal copy number loss of DNMT3A, TET2, and GATA2 as standalone events or in association with the small SNVs or INDELs detected during HMA resistance and disease progression.
Collapse
Affiliation(s)
- Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (L.A.); (G.M.-K.L.)
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (L.A.); (G.M.-K.L.)
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; (S.-H.F.); (K.-K.M.); (Z.W.)
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; (S.-H.F.); (K.-K.M.); (Z.W.)
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; (S.-H.F.); (K.-K.M.); (Z.W.)
| | - Ka-Chun Wu
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; (K.-C.W.); (V.H.-F.L.)
| | - Lester Au
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (L.A.); (G.M.-K.L.)
| | - Garret Man-Kit Leung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (L.A.); (G.M.-K.L.)
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; (K.-C.W.); (V.H.-F.L.)
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (L.A.); (G.M.-K.L.)
| |
Collapse
|
26
|
Binder M, Carr RM, Lasho TL, Finke CM, Mangaonkar AA, Pin CL, Berger KR, Mazzone A, Potluri S, Ordog T, Robertson KD, Marks DL, Fernandez-Zapico ME, Gaspar-Maia A, Patnaik MM. Oncogenic gene expression and epigenetic remodeling of cis-regulatory elements in ASXL1-mutant chronic myelomonocytic leukemia. Nat Commun 2022; 13:1434. [PMID: 35301312 PMCID: PMC8931048 DOI: 10.1038/s41467-022-29142-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Myeloid neoplasms are clonal hematopoietic stem cell disorders driven by the sequential acquisition of recurrent genetic lesions. Truncating mutations in the chromatin remodeler ASXL1 (ASXL1MT) are associated with a high-risk disease phenotype with increased proliferation, epigenetic therapeutic resistance, and poor survival outcomes. We performed a multi-omics interrogation to define gene expression and chromatin remodeling associated with ASXL1MT in chronic myelomonocytic leukemia (CMML). ASXL1MT are associated with a loss of repressive histone methylation and increase in permissive histone methylation and acetylation in promoter regions. ASXL1MT are further associated with de novo accessibility of distal enhancers binding ETS transcription factors, targeting important leukemogenic driver genes. Chromatin remodeling of promoters and enhancers is strongly associated with gene expression and heterogenous among overexpressed genes. These results provide a comprehensive map of the transcriptome and chromatin landscape of ASXL1MT CMML, forming an important framework for the development of novel therapeutic strategies targeting oncogenic cis interactions.
Collapse
Affiliation(s)
- Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Carr
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Terra L Lasho
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Christopher L Pin
- Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Kurt R Berger
- Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Amelia Mazzone
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Keith D Robertson
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Alexandre Gaspar-Maia
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma. Commun Biol 2022; 5:213. [PMID: 35260776 PMCID: PMC8904843 DOI: 10.1038/s42003-022-03117-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant methylation of genomic DNA has been reported in many cancers. Specific DNA methylation patterns have been shown to provide clinically useful prognostic information and define molecular disease subtypes with different response to therapy and long-term outcome. Osteosarcoma is an aggressive malignancy for which approximately half of tumors recur following standard combined surgical resection and chemotherapy. No accepted prognostic factor save tumor necrosis in response to adjuvant therapy currently exists, and traditional genomic studies have thus far failed to identify meaningful clinical associations. We studied the genome-wide methylation state of primary tumors and tested how they predict patient outcomes. We discovered relative genomic hypomethylation to be strongly predictive of response to standard chemotherapy. Recurrence and survival were also associated with genomic methylation, but through more site-specific patterns. Furthermore, the methylation patterns were reproducible in three small independent clinical datasets. Downstream transcriptional, in vitro, and pharmacogenomic analysis provides insight into the clinical translation of the methylation patterns. Our findings suggest the assessment of genomic methylation may represent a strategy for stratifying patients for the application of alternative therapies.
Collapse
|
28
|
Makowka P, Stolp V, Stoschek K, Serve H. Molecular determinants of therapy response of venetoclax-based combinations in acute myeloid leukemia. Biol Chem 2021; 402:1547-1564. [PMID: 34700366 DOI: 10.1515/hsz-2021-0288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, highly malignant disease of the bone marrow. After decades of slow progress, recent years saw a surge of novel agents for its treatment. The most recent advancement is the registration of the Bcl-2 inhibitor ventoclax in combination with a hypomethylating agent (HMA) in the US and Europe for AML patients not eligible for intensive chemotherapy. Treatment of newly diagnosed AML patients with this combination results in remission rates that so far could only be achieved with intensive treatment. However, not all AML patients respond equally well, and some patients relapse early, while other patients experience longer periods of complete remission. A hallmark of AML is its remarkable genetic, molecular and clinical heterogeneity. Here, we review the current knowledge about molecular features of AML that help estimate the probability of response to venetoclax-containing therapies. In contrast to other newly developed AML therapies that target specific recurrent molecular alterations, it seems so far that responses are not specific for a certain subgroup. One exception is spliceosome mutations, where good response has been observed in clinical trials with venetoclax/azacitidine. These mutations are rather associated with a more unfavorable outcome with chemotherapy. In summary, venetoclax in combination with hypomethylating agents represents a significant novel option for AML patients with various molecular aberrations. Mechanisms of primary and secondary resistance seem to overlap with those towards chemotherapy.
Collapse
Affiliation(s)
- Philipp Makowka
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
| | - Verena Stolp
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
| | - Karoline Stoschek
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), D-60590 Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), D-60590 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Schlosser P, Knaus J, Schmutz M, Dohner K, Plass C, Bullinger L, Claus R, Binder H, Lubbert M, Schumacher M. Netboost: Boosting-Supported Network Analysis Improves High-Dimensional Omics Prediction in Acute Myeloid Leukemia and Huntington's Disease. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2635-2648. [PMID: 32365034 DOI: 10.1109/tcbb.2020.2983010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
State-of-the art selection methods fail to identify weak but cumulative effects of features found in many high-dimensional omics datasets. Nevertheless, these features play an important role in certain diseases. We present Netboost, a three-step dimension reduction technique. First, a boosting-based filter is combined with the topological overlap measure to identify the essential edges of the network. Second, sparse hierarchical clustering is applied on the selected edges to identify modules and finally module information is aggregated by the first principal components. We demonstrate the application of the newly developed Netboost in combination with CoxBoost for survival prediction of DNA methylation and gene expression data from 180 acute myeloid leukemia (AML) patients and show, based on cross-validated prediction error curve estimates, its prediction superiority over variable selection on the full dataset as well as over an alternative clustering approach. The identified signature related to chromatin modifying enzymes was replicated in an independent dataset, the phase II AMLSG 12-09 study. In a second application we combine Netboost with Random Forest classification and improve the disease classification error in RNA-sequencing data of Huntington's disease mice. Netboost is a freely available Bioconductor R package for dimension reduction and hypothesis generation in high-dimensional omics applications.
Collapse
|
30
|
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare and challenging type of myeloproliferative neoplasm. Poor prognosis and high mortality, associated predominantly with progression to secondary acute myeloid leukemia (sAML), is still an unsolved problem. Despite a growing body of knowledge about the molecular repertoire of this disease, at present, the prognostic significance of CMML-associated mutations is controversial. The absence of available CMML cell lines and the small number of patients with CMML make pre-clinical testing and clinical trials complicated. Currently, specific therapy for CMML has not been approved; most of the currently available therapeutic approaches are based on myelodysplastic syndrome (MDS) and other myeloproliferative neoplasm (MNP) studies. In this regard, the development of the robust CMML animal models is currently the focus of interest. This review describes important studies concerning animal models of CMML, examples of methodological approaches, and the obtained hematologic phenotypes.
Collapse
|
31
|
Geissler K. Molecular Pathogenesis of Chronic Myelomonocytic Leukemia and Potential Molecular Targets for Treatment Approaches. Front Oncol 2021; 11:751668. [PMID: 34660314 PMCID: PMC8514979 DOI: 10.3389/fonc.2021.751668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Numerous examples in oncology have shown that better understanding the pathophysiology of a malignancy may be followed by the development of targeted treatment concepts with higher efficacy and lower toxicity as compared to unspecific treatment. The pathophysiology of chronic myelomonocytic leukemia (CMML) is heterogenous and complex but applying different research technologies have yielded a better and more comprehensive understanding of this disease. At the moment treatment for CMML is largely restricted to the unspecific use of cytotoxic drugs and hypomethylating agents (HMA). Numerous potential molecular targets have been recently detected by preclinical research which may ultimately lead to treatment concepts that will provide meaningful benefits for certain subgroups of patients.
Collapse
Affiliation(s)
- Klaus Geissler
- Medical School, Sigmund Freud University, Vienna, Austria.,Department of Internal Medicine V with Hematology, Oncology and Palliative Care, Hospital Hietzing, Vienna, Austria
| |
Collapse
|
32
|
5-Azacytidine depletes HSCs and synergizes with an anti-CD117 antibody to augment donor engraftment in immunocompetent mice. Blood Adv 2021; 5:3900-3912. [PMID: 34448832 DOI: 10.1182/bloodadvances.2020003841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/29/2021] [Indexed: 11/20/2022] Open
Abstract
Depletion of hematopoietic stem cells (HSCs) is used therapeutically in many malignant and nonmalignant blood disorders in the setting of a hematopoietic cell transplantation (HCT) to eradicate diseased HSCs, thus allowing donor HSCs to engraft. Current treatments to eliminate HSCs rely on modalities that cause DNA strand breakage (ie, alkylators, radiation) resulting in multiple short-term and long-term toxicities and sometimes even death. These risks have severely limited the use of HCT to patients with few to no comorbidities and excluded many others with diseases that could be cured with an HCT. 5-Azacytidine (AZA) is a widely used hypomethylating agent that is thought to preferentially target leukemic cells in myeloid malignancies. Here, we reveal a previously unknown effect of AZA on HSCs. We show that AZA induces early HSC proliferation in vivo and exerts a direct cytotoxic effect on proliferating HSCs in vitro. When used to pretreat recipient mice for transplantation, AZA permitted low-level donor HSC engraftment. Moreover, by combining AZA with a monoclonal antibody (mAb) targeting CD117 (c-Kit) (a molecule expressed on HSCs), more robust HSC depletion and substantially higher levels of multilineage donor cell engraftment were achieved in immunocompetent mice. The enhanced effectiveness of this combined regimen correlated with increased apoptotic cell death in hematopoietic stem and progenitor cells. Together, these findings highlight a previously unknown therapeutic mechanism for AZA which may broaden its use in clinical practice. Moreover, the synergy we show between AZA and anti-CD117 mAb is a novel strategy to eradicate abnormal HSCs that can be rapidly tested in the clinical setting.
Collapse
|
33
|
Renneville A, Patnaik MM, Chan O, Padron E, Solary E. Increasing recognition and emerging therapies argue for dedicated clinical trials in chronic myelomonocytic leukemia. Leukemia 2021; 35:2739-2751. [PMID: 34175902 DOI: 10.1038/s41375-021-01330-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). Median overall survival of this aggressive myeloid malignancy is only 2-3 years, with a 15-30% risk of acute leukemic transformation. The paucity of clinical trials specifically designed for CMML has made therapeutic management of CMML patients challenging. As a result, treatment paradigms for CMML patients are largely borrowed from MDS and MPN. The standard of care still relies on hydroxyurea, hypomethylating agents (HMA), and allogeneic stem cell transplantation, this latter option remaining the only potentially curative therapy. To date, approved drugs for CMML treatment are HMA, including azacitidine, decitabine, and more recently the oral combination of decitabine and cedazuridine. However, HMA treatment does not meaningfully alter the natural course of this disease. New treatment approaches for improving CMML-associated cytopenias or targeting the CMML malignant clone are emerging. More than 25 therapeutic agents are currently being evaluated in phase 1 or phase 2 clinical trials for CMML and other myeloid malignancies, often in combination with a HMA backbone. Several novel agents, such as sotatercept, ruxolitinib, lenzilumab, and tagraxofusp have shown promising clinical efficacy in CMML. Current evidence supports the idea that effective treatment in CMML will likely require combination therapy targeting multiple pathways, which emphasizes the need for additional new therapeutic options. This review focuses on recent therapeutic advances and innovative treatment strategies in CMML, including global and molecularly targeted approaches. We also discuss what may help to make progress in the design of rationally derived and disease-modifying therapies for CMML.
Collapse
Affiliation(s)
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France. .,Faculty of Medicine, Université Paris-Sud, Le Kremlin-Bicêtre, France. .,Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
34
|
Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol 2021; 11:706030. [PMID: 34650913 PMCID: PMC8505973 DOI: 10.3389/fonc.2021.706030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleoside analogs decitabine (5-AZA-dC) and azacitidine (5-AZA) have been developed as targeted therapies to reverse DNA methylation in different cancer types, and they significantly improve the survival of patients who are not suitable for traditional intensive chemotherapies or other treatment regimens. However, approximately 50% of patients have a response to hypomethylating agents (HMAs), and many patients have no response originally or in the process of treatment. Even though new combination regimens have been tested to overcome the resistance to 5-AZA-dC or 5-AZA, only a small proportion of patients benefited from these strategies, and the outcome was very poor. However, the mechanisms of the resistance remain unknown. Some studies only partially described management after failure and the mechanisms of resistance. Herein, we will review the clinical and molecular signatures of the HMA response, alternative treatment after failure, and the causes of resistance in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Straube J, Lane SW, Vu T. Optimizing DNA hypomethylating therapy in acute myeloid leukemia and myelodysplastic syndromes. Bioessays 2021; 43:e2100125. [PMID: 34463368 DOI: 10.1002/bies.202100125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
The DNA hypomethylating agents (HMA) azacitidine (AZA) and decitabine (DAC) improve survival and transfusion independence in myelodysplastic syndrome (MDS) and enable a low intensity cytotoxic treatment for aged AML patients unsuitable for intensive chemotherapy, particularly in combination with novel agents. The proposed mechanism of AZA and DAC relies on active DNA replication and therefore patient responses are only observed after multiple cycles of treatment. Although extended dosing may provide the optimal scheduling, the reliance of injectable formulation of the drug limits it to intermittent treatment. Recently, an oral formulation of AZA demonstrated significantly improved patient relapse free survival (RFS) and overall survival (OS) when used as maintenance after chemotherapy for AML. In addition, both DAC and AZA were found to be highly effective to improve survival in elderly patients with AML through combination with other drugs. These recent exciting results have changed the therapeutic paradigm for elderly patients with AML. In light of this, we review current knowledge on HMA mechanism of action, clinical trials exploring dosing and scheduling, and recent HMA combination therapies to enhance efficacy.
Collapse
Affiliation(s)
- Jasmin Straube
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The University of Queensland, Brisbane, Queensland, Australia
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The University of Queensland, Brisbane, Queensland, Australia.,Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Therese Vu
- Department of Pediatrics, Section Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
36
|
Hochman MJ, Savani BN, Jain T. Examining disease boundaries: Genetics of myelodysplastic/myeloproliferative neoplasms. EJHAEM 2021; 2:607-615. [PMID: 35844680 PMCID: PMC9175746 DOI: 10.1002/jha2.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid malignancies that are characterized by dysplasia resulting in cytopenias as well as proliferative features such as thrombocytosis or splenomegaly. Recent studies have better defined the genetics underlying this diverse group of disorders. Trisomy 8, monosomy 7, and loss of Y chromosome are the most common cytogenetic abnormalities seen. Chronic myelomonocytic leukemia (CMML) likely develops from early clones with TET2 mutations that drive granulomonocytic differentiation. Mutations in SRSF2 are common and those in the RAS-MAPK pathway are typically implicated in disease with a proliferative phenotype. Several prognostic systems have incorporated genetic features, with ASXL1 most consistently demonstrating worse prognosis. Atypical chronic myeloid leukemia (aCML) is most known for granulocytosis with marked dysplasia and often harbors ASXL1 mutations, but SETBP1 and ETNK1 are more specific to this disease. MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) most commonly involves spliceosome mutations (namely SF3B1) and mutations in the JAK-STAT pathway. Finally, MDS/MPN-unclassifiable (MDS/MPN-U) is least characterized but a significant fraction carries mutations in TP53. The remaining patients have clinical and/or genetic features similar to the other MDS/MPNs, suggesting there is room to better characterize this entity. Evolution from age-related clonal hematopoiesis to MDS/MPN likely depends on the order of mutation acquisition and interactions between various biologic factors. Genetics will continue to play a critical role in our understanding of these illnesses and advancing patient care.
Collapse
Affiliation(s)
- Michael J. Hochman
- Division of Hematological Malignancies and Bone Marrow TransplantationSidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bipin N. Savani
- Division of Hematology and OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow TransplantationSidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
37
|
Lassen UN, Makaroff LE, Stenzinger A, Italiano A, Vassal G, Garcia-Foncillas J, Avouac B. Precision oncology: a clinical and patient perspective. Future Oncol 2021; 17:3995-4009. [PMID: 34278817 DOI: 10.2217/fon-2021-0688] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Molecular characterization of tumors has shifted cancer treatment strategies away from nonspecific cytotoxic treatment of histology-specific tumors toward targeting of actionable mutations that can be found across multiple cancer types. The development of high-throughput technologies such as next-generation sequencing, combined with decision support applications and availability of patient databases, has provided tools that optimize disease management. Precision oncology has proven success in improving outcomes and quality of life, as well as identifying and overcoming mechanisms of drug resistance and relapse. Addressing challenges that impede its use will improve matching of therapies to patients. Here we review the current status of precision oncology medicine, emphasizing its impact on patients - what they understand about precision oncology medicine and their hopes for the future.
Collapse
Affiliation(s)
| | - Lydia E Makaroff
- Fight Bladder Cancer, Oxfordshire, OX39 4DJ, UK.,World Bladder Cancer Patient Coalition, Brussels, Belgium
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | | | - Gilles Vassal
- Gustave Roussy Comprehensive Cancer Center, & Unversity Paris-Saclay, Villejuif, 94805, France
| | - Jesus Garcia-Foncillas
- University Cancer Institute & The Department of Oncology, University Hospital Fundacion Jimenez Diaz, Autonomous University, Madrid, 28033, Spain
| | | |
Collapse
|
38
|
Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia 2021; 35:1873-1889. [PMID: 33958699 PMCID: PMC8257497 DOI: 10.1038/s41375-021-01218-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Aberrant DNA methylation plays a pivotal role in tumor development and progression. DNA hypomethylating agents (HMA) constitute a class of drugs which are able to reverse DNA methylation, thereby triggering the re-programming of tumor cells. The first-generation HMA azacitidine and decitabine have now been in standard clinical use for some time, offering a valuable alternative to previous treatments in acute myeloid leukemia and myelodysplastic syndromes, so far particularly in older, medically non-fit patients. However, the longer we use these drugs, the more we are confronted with the (almost inevitable) development of resistance. This review provides insights into the mode of action of HMA, mechanisms of resistance to this treatment, and strategies to overcome HMA resistance including next-generation HMA and HMA-based combination therapies.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Charles Rotondo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriele Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Research Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Research Consortium (DKTK), Freiburg, Germany.
| |
Collapse
|
39
|
Epigenetic dysregulation in myeloid malignancies. Blood 2021; 138:613-624. [PMID: 34157099 DOI: 10.1182/blood.2019004262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic deregulation is now a well-recognized -though not yet fully understood- mechanism that contributes to the development and progression of myeloid malignancies. In the past 15 years, next generation sequencing studies have revealed patterns of aberrant DNA methylation, altered chromatin states, and mutations in chromatin modifiers across the spectrum of myeloid malignancies. Studies into the mechanisms that drive these diseases through mouse modeling have helped identify new avenues for therapeutic interventions, from initial treatment to resistant, relapsed disease. This is particularly significant when chemotherapy with cytotoxic agents remains the general standard of care. In this review, we will discuss some of the recent findings of epigenetic mechanisms and how these are informing the development of more targeted strategies for therapeutic intervention in myeloid malignancies.
Collapse
|
40
|
Chan O, Renneville A, Padron E. Chronic myelomonocytic leukemia diagnosis and management. Leukemia 2021; 35:1552-1562. [PMID: 33714974 DOI: 10.1038/s41375-021-01207-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare, heterogeneous myeloid malignancy classified as a myelodysplastic syndromes/myeloproliferative neoplasm (MDS/MPN) overlap syndrome by the World Health Organization (WHO). Its initial presentation can be incidental or associated with myelodysplastic or myeloproliferative symptoms and up to 20% of patients harbor a concurrent inflammatory or autoimmune condition. Persistent monocytosis is the hallmark of CMML but diagnosis can be challenging. Increased understanding of human monocyte subsets, chromosomal abnormalities, and somatic gene mutations have led to more accurate diagnosis and improved prognostication. A number of risk stratification systems have been developed and validated but using those that incorporate molecular information such as CMML Prognostic Scoring System (CPSS)-Mol, Mayo Molecular, and Groupe Francophone des Myelodysplasies (GFM) are preferred. Symptom-directed approaches forms the basis of CMML management. Outcomes vary substantially depending on risk ranging from observation for a number of years to rapidly progressive disease and acute myeloid leukemia (AML) transformation. Patients who are low risk but with symptoms from cytopenias or proliferative features such as splenomegaly may be treated with hypomethylating agents (HMAs) or cytoreductive therapy, respectively, with the goal of durable symptoms control. Allogeneic hematopoietic cell transplantation should be considered for intermediate to high risk patients. The lack of effective pharmaceutical options has generated interest in novel therapeutics for this disease, and early phase clinical trial results are promising.
Collapse
Affiliation(s)
- Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
41
|
Oligomonocytic and overt chronic myelomonocytic leukemia show similar clinical, genomic, and immunophenotypic features. Blood Adv 2021; 4:5285-5296. [PMID: 33108455 DOI: 10.1182/bloodadvances.2020002206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022] Open
Abstract
Oligomonocytic chronic myelomonocytic leukemia (OM-CMML) is defined as those myelodysplastic syndromes (MDSs) or myelodysplastic/myeloproliferative neoplasms, unclassifiable with relative monocytosis (≥10% monocytes) and a monocyte count of 0.5 to <1 × 109/L. These patients show clinical and genomic features similar to those of overt chronic myelomonocytic leukemia (CMML), although most of them are currently categorized as MDS, according to the World Health Organization 2017 classification. We analyzed the clinicopathologic features of 40 patients with OM-CMML with well-annotated immunophenotypic and molecular data and compared them to those of 56 patients with overt CMML. We found similar clinical, morphological, and cytogenetic features. In addition, OM-CMML mirrored the well-known complex molecular profile of CMML, except for the presence of a lower percentage of RAS pathway mutations. In this regard, of the different genes assessed, only CBL was found to be mutated at a significantly lower frequency. Likewise, the OM-CMML immunophenotypic profile, assessed by the presence of >94% classical monocytes (MO1s) and CD56 and/or CD2 positivity in peripheral blood monocytes, was similar to overt CMML. The MO1 percentage >94% method showed high accuracy for predicting CMML diagnosis (sensitivity, 90.7%; specificity, 92.2%), even when considering OM-CMML as a subtype of CMML (sensitivity, 84.9%; specificity, 92.1%) in our series of 233 patients (39 OM-CMML, 54 CMML, 23 MDS, and 15 myeloproliferative neoplasms with monocytosis and 102 reactive monocytosis). These results support the consideration of OM-CMML as a distinctive subtype of CMML.
Collapse
|
42
|
Tian X, Wang X, Cui Z, Liu J, Huang X, Shi C, Zhang M, Liu T, Du X, Li R, Huang L, Gong D, Tian R, Cao C, Jin P, Zeng Z, Pan G, Xia M, Zhang H, Luo B, Xie Y, Li X, Li T, Wu J, Zhang Q, Chen G, Hu Z. A Fifteen-Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001978. [PMID: 34026427 PMCID: PMC8132153 DOI: 10.1002/advs.202001978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/01/2021] [Indexed: 05/09/2023]
Abstract
Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15-34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB-IIB cervical cancer are included in 2 research centers from the discovery cohort. Patient-specific somatic mutations led to NACT non-responsiveness are identified by whole-exome sequencing. Next, CRISPR/Cas9-based library screenings are performed based on these genes to confirm their biological contribution to drug resistance. A 15-gene classifier is developed by generalized linear regression analysis combined with the logistic regression model. In an independent validation cohort of 102 patients, the classifier showed good predictive ability with an area under the curve of 0.80 (95% confidence interval (CI), 0.69-0.91). Furthermore, the 15-gene classifier is significantly associated with patient responsiveness to NACT in both univariate (odds ratio, 10.8; 95% CI, 3.55-32.86; p = 2.8 × 10-5) and multivariate analysis (odds ratio, 17.34; 95% CI, 4.04-74.40; p = 1.23 × 10-4) in the validation set. In conclusion, the 15-gene classifier can accurately predict the clinical response to NACT before treatment, representing a promising approach for guiding the selection of appropriate treatment strategies for locally advanced cervical cancer.
Collapse
Affiliation(s)
- Xun Tian
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xin Wang
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zifeng Cui
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| | - Jia Liu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xiaoyuan Huang
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Caixia Shi
- Department of Gynecological and OncologyHunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityJiefang Avenue 1095#WuhanHubei430030China
| | - Min Zhang
- NGS Research CenterNovogene Co, LtdBuilding 301, Zone A10 JiuxianqiaoBeijing100015China
| | - Ting Liu
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xiaofang Du
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Rui Li
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Lei Huang
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Danni Gong
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Rui Tian
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| | - Chen Cao
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Ping Jin
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zhen Zeng
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Guangxin Pan
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Meng Xia
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Hongfeng Zhang
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Bo Luo
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Yonghui Xie
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Xiaoming Li
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Tianye Li
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Jun Wu
- NGS Research CenterNovogene Co, LtdBuilding 301, Zone A10 JiuxianqiaoBeijing100015China
| | - Qinghua Zhang
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Gang Chen
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zheng Hu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| |
Collapse
|
43
|
Cabezón M, Malinverni R, Bargay J, Xicoy B, Marcé S, Garrido A, Tormo M, Arenillas L, Coll R, Borras J, Jiménez MJ, Hoyos M, Valcárcel D, Escoda L, Vall-Llovera F, Garcia A, Font LL, Rámila E, Buschbeck M, Zamora L. Different methylation signatures at diagnosis in patients with high-risk myelodysplastic syndromes and secondary acute myeloid leukemia predict azacitidine response and longer survival. Clin Epigenetics 2021; 13:9. [PMID: 33446256 PMCID: PMC7809812 DOI: 10.1186/s13148-021-01002-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epigenetic therapy, using hypomethylating agents (HMA), is known to be effective in the treatment of high-risk myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients who are not suitable for intensive chemotherapy and/or allogeneic stem cell transplantation. However, response rates to HMA are low and there is an unmet need in finding prognostic and predictive biomarkers of treatment response and overall survival. We performed global methylation analysis of 75 patients with high-risk MDS and secondary AML who were included in CETLAM SMD-09 protocol, in which patients received HMA or intensive treatment according to age, comorbidities and cytogenetic. RESULTS Unsupervised analysis of global methylation pattern at diagnosis did not allow patients to be differentiated according to the cytological subtype, cytogenetic groups, treatment response or patient outcome. However, after a supervised analysis we found a methylation signature defined by 200 probes, which allowed differentiating between patients responding and non-responding to azacitidine (AZA) treatment and a different methylation pattern also defined by 200 probes that allowed to differentiate patients according to their survival. On studying follow-up samples, we confirmed that AZA decreases global DNA methylation, but in our cohort the degree of methylation decrease did not correlate with the type of response. The methylation signature detected at diagnosis was not useful in treated samples to distinguish patients who were going to relapse or progress. CONCLUSIONS Our findings suggest that in a subset of specific CpGs, altered DNA methylation patterns at diagnosis may be useful as a biomarker for predicting AZA response and survival.
Collapse
Affiliation(s)
- M Cabezón
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Badalona, Spain
| | - R Malinverni
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Spain
| | - J Bargay
- Hematology Service, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - B Xicoy
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Badalona, Spain
| | - S Marcé
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain
| | - A Garrido
- Hematology Service, Hospital de Sant Pau, Barcelona, Spain
| | - M Tormo
- Hematology Service, Hospital Clínico de Valencia, Valencia, Spain
| | - L Arenillas
- Hematology Service, Hospital del Mar, Barcelona, Spain
| | - R Coll
- Hematology Service, ICO Girona - Hospital Josep Trueta, Girona, Spain
| | - J Borras
- Hematology Service, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - M J Jiménez
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain
| | - M Hoyos
- Hematology Service, Hospital de Sant Pau, Barcelona, Spain
| | - D Valcárcel
- Hematology Service, Hospital Vall D'Hebron, Barcelona, Spain
| | - L Escoda
- Hematology Service, Hospital Joan XXIII, Tarragona, Spain
| | - F Vall-Llovera
- Hematology Service, Hospital Mútua de Terrassa, Terrassa, Spain
| | - A Garcia
- Hematology Service, Hospital Arnau de Vilanova, Lleida, Spain
| | - L L Font
- Hematology Service, Hospital Verge de La Cinta, Tortosa, Spain
| | - E Rámila
- Hematology Service, Hospital Parc Taulí, Sabadell, Spain
| | - M Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias I Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - L Zamora
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.
| | | |
Collapse
|
44
|
Thomopoulos TP, Bouhla A, Papageorgiou SG, Pappa V. Chronic myelomonocytic leukemia - a review. Expert Rev Hematol 2020; 14:59-77. [PMID: 33275852 DOI: 10.1080/17474086.2021.1860004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Chronic myelomonocytic leukemia (CMML) is a clonal myeloid neoplasm, denoted by overlapping myelodysplastic and myeloproliferative features, with poor overall survival and high transformation rate to acute myeloid leukemia. AREAS COVERED This review, following a thorough Medline search of pertinent published literature, discusses the diagnostic criteria, the pathogenesis, and the complex genetic landscape of the disease. Prognostication, response criteria, therapeutic management of patients, efficacy of established and novel treatment modalities are thoroughly reviewed. EXPERT OPINION Cytogenetic abnormalities and mutations in genes involved in epigenetic and transcriptional regulation, and cell-signaling are abundant in CMML and implicated in its complex pathogenesis. As presence of these mutations carry a prognostic impact, they are increasingly incorporated in risk-stratification schemes. Novel response criteria have been proposed, considering the unique features of the disease. Although allogeneic hematopoietic stem cell transplantation remains the only treatment with curative intent, it is reserved for a minority of patients; therefore, there is an unmet need for optimizing treatment modalities, such as hypomethylating agents, and introducing novel agents, which could substantially improve survival and quality of life of CMML patients. Clinical trials dedicated specifically to CMML are needed to explore the efficacy and safety of novel treatment modalities.
Collapse
Affiliation(s)
- Thomas P Thomopoulos
- 2 Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon" , Athens, Greece
| | - Anthi Bouhla
- 2 Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon" , Athens, Greece
| | - Sotirios G Papageorgiou
- 2 Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon" , Athens, Greece
| | - Vasiliki Pappa
- 2 Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon" , Athens, Greece
| |
Collapse
|
45
|
Tanaka TN, Ferrari V, Tarke A, Fields H, Ferrari L, Ferrari F, McCarthy CL, Sanchez AP, Vitiello A, Lane TA, Bejar R. Adoptive transfer of neoantigen-specific T-cell therapy is feasible in older patients with higher-risk myelodysplastic syndrome. Cytotherapy 2020; 23:236-241. [PMID: 33279399 DOI: 10.1016/j.jcyt.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) represent the most common type of acquired bone marrow failure in adults and is characterized by ineffective maturation of myeloid precursor cells and peripheral cytopenias associated with higher rates of infection, bleeding and transfusion dependence. In higher-risk patients with MDS who relapse or do not respond after standard hypomethylating agent (HMA) therapy, the 2-year survival rate is 15%. METHODS Here the authors report the feasibility and safety of a novel experimental T-cell therapy called personalized adoptive cell therapy, which selects, immunizes and expands T cells against MDS-specific mutations and is targeted to patient-specific tumor cell neoantigens. Somatic mutations serve as the pathogenic drivers of cancer, including MDS, as these transformative genetic mutations may generate novel immunogenic proteins (i.e., neopeptides and possible neoantigens) that may be targeted therapeutically. RESULTS The authors demonstrate that the adaptive immune system can be trained ex vivo to recognize neopeptides as neoantigens and that the infusion of culture-expanded, neoantigen-immunized autologous T cells has been feasible and safe in the three patients treated to date. DISCUSSION The authors report on early results from their first-in-human phase 1 clinical trial that aims to assess the safety and tolerability of this novel form of adoptive T-cell immunotherapy for HMA-refractory patients with higher-risk MDS.
Collapse
Affiliation(s)
- Tiffany N Tanaka
- University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | | | | | | | | | - Franco Ferrari
- University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Colin L McCarthy
- University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Amber P Sanchez
- University of California San Diego Apheresis Program and Division of Nephrology, La Jolla, California, USA
| | | | | | - Rafael Bejar
- University of California San Diego Moores Cancer Center, La Jolla, California, USA.
| |
Collapse
|
46
|
Gene expression signatures associated with sensitivity to azacitidine in myelodysplastic syndromes. Sci Rep 2020; 10:19555. [PMID: 33177628 PMCID: PMC7658235 DOI: 10.1038/s41598-020-76510-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic stem cell transplantation is currently the only curative treatment option for myelodysplastic syndromes (MDS). Pre-transplant debulking treatment have been employed for advanced MDS and we previously reported that marrow response (blast ≤ 5%) following the bridging therapy with hypomethylating agent was an independent favorable factor for survival; however, it is still not clear which patients will respond to hypomethylating agent and which genomic features can predict the response. In this study, we performed RNAseq for 23 MDS patients among which 14 (61%) and 9 (39%) patients showed marrow complete remission and primary resistance to azacitidine, respectively. Differential expression-based analyses of treatment-naive, baseline gene expression profiles revealed that molecular functions representing mitochondria and apoptosis were up-regulated in responders. In contrast, we identified genes involved in the Wnt pathway were relatively up-regulated in non-responders. In independent validation cohorts of MDS patients, the expression of gene sets specific to non-responders and responders distinguished the patients with favorable prognosis and those responded to azacitidine highlighting the prognostic and predictive implication. In addition, a systems biology approach identified genes involved in ubiquitination, such as UBC and PFDN2, which may be key players in the regulation of differential gene expression in treatment responders and non-responders. Taken together, identifying the gene expression signature may advance our understanding of the molecular mechanisms of azacitidine and may also serve to predict patient responses to drug treatment.
Collapse
|
47
|
Sill M, Plass C, Pfister SM, Lipka DB. Molecular tumor classification using DNA methylome analysis. Hum Mol Genet 2020; 29:R205-R213. [PMID: 32657331 DOI: 10.1093/hmg/ddaa147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor classifiers based on molecular patterns promise to define and reliably classify tumor entities. The high tissue- and cell type-specificity of DNA methylation, as well as its high stability, makes DNA methylation an ideal choice for the development of tumor classifiers. Herein, we review existing tumor classifiers using DNA methylome analysis and will provide an overview on their emerging impact on cancer classification, the detection of novel cancer subentities and patient stratification with a focus on brain tumors, sarcomas and hematopoietic malignancies. Furthermore, we provide an outlook on the enormous potential of DNA methylome analysis to complement classical histopathological and genetic diagnostics, including the emerging field of epigenomic analysis in liquid biopsies.
Collapse
Affiliation(s)
- Martin Sill
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniel B Lipka
- Division of Translational Medical Oncology, Section Translational Cancer Epigenomics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
48
|
Li S, Chen X, Wang J, Meydan C, Glass JL, Shih AH, Delwel R, Levine RL, Mason CE, Melnick AM. Somatic Mutations Drive Specific, but Reversible, Epigenetic Heterogeneity States in AML. Cancer Discov 2020; 10:1934-1949. [PMID: 32938585 DOI: 10.1158/2159-8290.cd-19-0897] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/09/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic allele diversity is linked to inferior prognosis in acute myeloid leukemia (AML). However, the source of epiallele heterogeneity in AML is unknown. Herein we analyzed epiallele diversity in a genetically and clinically annotated AML cohort. Notably, AML driver mutations linked to transcription factors and favorable outcome are associated with epigenetic destabilization in a defined set of susceptible loci. In contrast, AML subtypes linked to inferior prognosis manifest greater abundance and highly stochastic epiallele patterning. We report an epiallele outcome classifier supporting the link between epigenetic diversity and treatment failure. Mouse models with TET2 or IDH2 mutations show that epiallele diversity is especially strongly induced by IDH mutations, precedes transformation to AML, and is enhanced by cooperation between somatic mutations. Furthermore, epiallele complexity was partially reversed by epigenetic therapies in AML driven by TET2/IDH2, suggesting that epigenetic therapy might function in part by reducing population complexity and fitness of AMLs. SIGNIFICANCE: We show for the first time that epigenetic clonality is directly linked to specific mutations and that epigenetic allele diversity precedes and potentially contributes to malignant transformation. Furthermore, epigenetic clonality is reversible with epigenetic therapy agents.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
Affiliation(s)
- Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.
- The Jackson Laboratory Cancer Center, Bar Harbor, Maine
- The Department of Genetics and Genomic Sciences, The University of Connecticut Health Center, Farmington, Connecticut
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut
| | - Xiaowen Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jiahui Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Jacob L Glass
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan H Shih
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center and Oncode Institute, Rotterdam, the Netherlands
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
49
|
DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Adv 2020; 3:2845-2858. [PMID: 31582393 DOI: 10.1182/bloodadvances.2019000192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Recurrent mutations implicate several epigenetic regulators in the early molecular pathobiology of myelodysplastic syndromes (MDS). We hypothesized that MDS subtypes defined by DNA methylation (DNAm) patterns could enhance our understanding of MDS disease biology and identify patients with convergent epigenetic profiles. Bisulfite padlock probe sequencing was used to measure DNAm of ∼500 000 unique cytosine guanine dinucleotides covering 140 749 nonoverlapping regulatory regions across the genome in bone marrow DNA samples from 141 patients with MDS. Application of a nonnegative matrix factorization (NMF)-based decomposition of DNAm profiles identified 5 consensus clusters described by 5 NMF components as the most stable grouping solution. Each of the 5 NMF components identified by this approach correlated with specific genetic abnormalities and categorized patients into 5 distinct methylation clusters, each largely defined by a single NMF component. Methylation clusters displayed unique differentially methylated regulatory loci enriched for active and bivalent promoters and enhancers. Two clusters were enriched for samples with complex karyotypes, although only one had an increased number of TP53 mutations. Each of the 3 most frequently mutated splicing factors, SF3B1, U2AF1, and SRSF2, was enriched in different clusters. Mutations of ASXL1, EZH2, and RUNX1 were coenriched in the SRSF2-containing cluster. In multivariate analysis, methylation cluster membership remained independently associated with overall survival. Targeted DNAm profiles identify clinically relevant subtypes of MDS not otherwise distinguished by mutations or clinical features. Patients with diverse genetic lesions can converge on common DNAm states with shared pathogenic mechanisms and clinical outcomes.
Collapse
|
50
|
The transcriptome of CMML monocytes is highly inflammatory and reflects leukemia-specific and age-related alterations. Blood Adv 2020; 3:2949-2961. [PMID: 31648319 DOI: 10.1182/bloodadvances.2019000585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is an aggressive myeloid neoplasm of older individuals characterized by persistent monocytosis. Somatic mutations in CMML are heterogeneous and only partially explain the variability in clinical outcomes. Recent data suggest that cardiovascular morbidity is increased in CMML and contributes to reduced survival. Clonal hematopoiesis of indeterminate potential (CHIP), the presence of mutated blood cells in hematologically normal individuals, is a precursor of age-related myeloid neoplasms and associated with increased cardiovascular risk. To isolate CMML-specific alterations from those related to aging, we performed RNA sequencing and DNA methylation profiling on purified monocytes from CMML patients and from age-matched (old) and young healthy controls. We found that the transcriptional signature of CMML monocytes is highly proinflammatory, with upregulation of multiple inflammatory pathways, including tumor necrosis factor and interleukin (IL)-6 and -17 signaling, whereas age per se does not significantly contribute to this pattern. We observed no consistent correlations between aberrant gene expression and CpG island methylation, suggesting that proinflammatory signaling in CMML monocytes is governed by multiple and complex regulatory mechanisms. We propose that proinflammatory monocytes contribute to cardiovascular morbidity in CMML patients and promote progression by selection of mutated cell clones. Our data raise questions of whether asymptomatic patients with CMML benefit from monocyte-depleting or anti-inflammatory therapies.
Collapse
|