1
|
Alamia A, Gordillo D, Chkonia E, Roinishvili M, Cappe C, Herzog MH. Oscillatory Traveling Waves Provide Evidence for Predictive Coding Abnormalities in Schizophrenia. Biol Psychiatry 2024:S0006-3223(24)01782-7. [PMID: 39615776 DOI: 10.1016/j.biopsych.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The computational mechanisms underlying psychiatric disorders are hotly debated. One hypothesis, grounded in the Bayesian predictive coding framework, proposes that patients with schizophrenia have abnormalities in encoding prior beliefs about the environment, resulting in abnormal sensory inference, which can explain core aspects of the psychopathology, such as some of its symptoms. METHODS Here, we tested this hypothesis by identifying oscillatory traveling waves as neural signatures of predictive coding. We analyzed an electroencephalography dataset comprising 146 patients with schizophrenia and 96 age-matched healthy control participants during resting states and a visual backward masking task. RESULTS We found that patients with schizophrenia had stronger top-down alpha-band traveling waves compared with healthy control participants during resting state, supposedly reflecting overly precise priors at higher levels of the predictive processing hierarchy. We also found stronger bottom-up alpha-band waves in patients with schizophrenia during a visual task, consistent with the notion of enhanced signaling of sensory precision errors. CONCLUSIONS Our results yield a novel spatial-based characterization of oscillatory dynamics in schizophrenia, considering brain rhythms as traveling waves and providing a unique framework to study the different components involved in a predictive coding scheme. All together, our findings significantly advance our understanding of the mechanisms involved in fundamental pathophysiological aspects of schizophrenia, promoting a more comprehensive and hypothesis-driven approach to psychiatric disorders.
Collapse
Affiliation(s)
- Andrea Alamia
- Cerco, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France; Artificial and Natural Intelligence Toulouse Institute, Toulouse, France.
| | - Dario Gordillo
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eka Chkonia
- Department of Psychiatry, Tbilisi State Medical University, Tbilisi, Georgia; Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | - Maya Roinishvili
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia; Laboratory of Vision Physiology, Ivane Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| | - Celine Cappe
- Cerco, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Li X, Xu J, Chen M, Zhuang W, Ouyang H, Xu W, Qin Y, Wu L, Hu C, Gao Q, Shao Y, Jin G, Zhou D. Association of EEG and cognitive impairment in overweight and non-overweight patients with schizophrenia. J Psychiatr Res 2024; 178:243-249. [PMID: 39163663 DOI: 10.1016/j.jpsychires.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE Schizophrenia (SCZ) is a globally prevalent, severe chronic mental disorder, with cognitive dysfunction being one of its core symptoms. Notably, overweight is exceedingly common among individuals with SCZ, and overweight can also impact cognitive function. Therefore, the relationship between overweight and cognition in SCZ is a clinical issue that is in need of research attention. METHODS This study enrolled 77 patients with SCZ, including 36 overweight and 41 non-overweight patients. The Positive and Negative Syndrome Scale (PANSS) was used to assess symptom severity, while cognitive functions were evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Electroencephalography (EEG) testing was performed, with power spectral analysis conducted across various frequency bands (δ, θ, α, β, low γ, and high γ). RESULTS Compared to non-overweight SCZ patients, those overweight exhibited significantly lower RBANS total and index scores in immediate memory, visuospatial/constructional abilities, and delayed memory. EEG spectral analysis revealed that overweight SCZ patients demonstrated significantly lower oscillation power ratios in the β, low γ, and high γ frequency bands compared to their non-overweight counterparts. Correlation analyses indicated a significant positive relationship between β wave activity and RBANS total scores among overweight SCZ patients, suggesting that reduced β power correlates with more severe cognitive dysfunction. CONCLUSION Our findings indicate that overweight SCZ patients experience more severe cognitive impairments in a resting state than those who are not overweight, with significant differences in EEG spectrum observed in the β and γ frequency bands. Additionally, our study establishes a correlation between various EEG spectrum dimensions and cognition. This research highlights the effects of overweight on cognition in individuals with SCZ. Additionally, employing EEG technology to study cognitive function in overweight SCZ patients can offer valuable electrophysiological insights.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, 315201, Zhejiang, China
| | - Jiaming Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Meng Chen
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, 315201, Zhejiang, China
| | - Wenhao Zhuang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, 315201, Zhejiang, China
| | - Houxian Ouyang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, 315201, Zhejiang, China
| | - Weijie Xu
- Department of Psychiatry, Second People's Hospital of Lishui, Lishui, 323050, Zhejiang, China
| | - Yuchun Qin
- Department of Psychiatry, Second People's Hospital of Lishui, Lishui, 323050, Zhejiang, China
| | - Lei Wu
- Department of Psychiatry, Second People's Hospital of Lishui, Lishui, 323050, Zhejiang, China
| | - Changzhou Hu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, 315201, Zhejiang, China
| | - Qian Gao
- Department of Psychiatry, Second People's Hospital of Lishui, Lishui, 323050, Zhejiang, China
| | - Yaqing Shao
- Department of Psychiatry, Yu Yao Third People's Hospital, Ningbo, 315599, Zhejiang, China
| | - Guolin Jin
- Department of Psychiatry, Second People's Hospital of Lishui, Lishui, 323050, Zhejiang, China.
| | - Dongsheng Zhou
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, 315201, Zhejiang, China.
| |
Collapse
|
3
|
Tsui HKH, Luk SL, Hsiao J, Chan SKW. Facial emotion perception in individuals with clinical high risk for psychosis compared with healthy controls, first-episode psychosis, and in predicting psychosis transition: A systematic review and meta-analysis. Psychiatry Res 2024; 340:116143. [PMID: 39167864 DOI: 10.1016/j.psychres.2024.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Facial emotion perception deficits, a possible indicator of illness progression and transdiagnostic phenotype, were examined in high-risk psychosis (CHR) patients through a systematic review and meta-analysis of 35 studies (2567 CHR individuals, 1103 non-transitioned [CHR-NT], 212 transitioned [CHR-T], 512 first-episode psychosis [FEP], and 1936 healthy controls [HC]). CHR showed overall (g = -0.369 [95 % CI, -0.485 to -0.253]) and specific impairments in detecting anger, disgust, fear, happiness, neutrality, and sadness compared to HC, except for surprise. FEP revealed a general deficit than CHR (g = -0.378 [95 % CI, -0.509 to -0.247]), and CHR-T displayed more pronounced baseline impairments than CHR-NT (g = -0.217 [95 % CI, -0.365 to -0.068]). FEP only exhibited a poorer ability to perceive fear, but not other individual emotions, compared to CHR. Similar performances in perceiving individual emotions were observed regardless of transition status (CHR-NT and CHR-T). However, literature comparing the perception of individual emotions among FEP, CHR-T, and CHR is limited. This study primarily characterized the general and overall impairments of facial emotion perception in CHR which could predict transition risk, emphasizing the need for future research on multimodal parameters of emotion perception and associations with other psychiatric outcomes.
Collapse
Affiliation(s)
- Harry Kam Hung Tsui
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Siu Lee Luk
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Janet Hsiao
- Division of Social Science, Hong Kong University of Science & Technology, Hong Kong SAR, China
| | - Sherry Kit Wa Chan
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
4
|
Torrens WA, Pablo JN, Berryhill ME, Haigh SM. Pattern glare sensitivity distinguishes subclinical autism and schizotypy. Cogn Neuropsychiatry 2024; 29:155-172. [PMID: 38551240 PMCID: PMC11296901 DOI: 10.1080/13546805.2024.2335103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 03/20/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Schizophrenia and autism spectrum disorder are distinct neurodevelopmental disorders sharing clinically relevant behaviours. However, early sensory responses show divergent responses. Individuals with schizophrenia typically exhibit cortical hypo-excitability whereas individuals with autism show cortical hyperexcitability. Identifying reliable neurobiological differences between the disorders can diminish misdiagnosis and optimise treatments. METHODS The pattern glare test (PGT) is a simple measure of behavioural hyperexcitability. It measures the number of illusions seen in a static horizontal grating. We collected PGT data from non-clinical adults varying in traits of autism and schizophrenia (schizotypy). 576 undergraduate students completed an online survey consisting of the Schizotypal Personality Questionnaire - Brief Revised, the Autism Spectrum Quotient, and the PGT. RESULTS Subclinical autism and schizotypy traits were highly positively correlated. However, only schizotypy scores were significantly predictive of reporting more pattern glare (PG) illusions. When assessing the subcomponents of the schizotypy and autism scores, positive and disorganised schizotypy traits were predictive of reporting more PG illusions. Whereas, subclinical autism factors were not predictive of PG illusions. CONCLUSIONS High schizotypy performed the PGT in a manner consistent with behavioural hyperexcitability. The PGT distinguished subclinical autistic traits from schizotypy, suggesting potential clinical application.
Collapse
Affiliation(s)
- Wendy A Torrens
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Jenna N Pablo
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Marian E Berryhill
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Sarah M Haigh
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| |
Collapse
|
5
|
Molho W, Raymond N, Reinhart RMG, Trotti R, Grover S, Keshavan M, Lizano P. Lesion network guided delta frequency neuromodulation improves cognition in patients with psychosis spectrum disorders: A pilot study. Asian J Psychiatr 2024; 92:103887. [PMID: 38183737 PMCID: PMC11890081 DOI: 10.1016/j.ajp.2023.103887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Transcranial electric stimulation (tES) may improve cognition in psychosis spectrum disorders. However, few studies have used novel tES approaches, such as high definition tES (HD-tES) to target specific brain circuits. Recently, the extrastriate visual cortex (V5/MT) has been causally linked to visual hallucinations through lesion network mapping and this may be a promising approach for improving cognition. OBJECTIVE We aim to determine if causal lesion network guided HD-tES to V5/MT improves cognitive performance as measured by the Brief Assessment of Cognition in Schizophrenia (BACS). METHODS A single-blind pilot study with a within-subjects crossover design was performed to characterize the effect of cathodal HD-transcranial direct current stimulation (tDCS) and 2 Hz HD-transcranial alternating current stimulation (tACS) on cognition. Enrolled patients received 20 mins of HD-tES twice daily for 5 consecutive days applied bilaterally to V5/MT with a washout between conditions. BACS assessments were performed at baseline, day-5, and 1-month. RESULTS 6 participants with psychosis spectrum disorder were enrolled. 6 individuals received cathodal HD-tDCS. 4 individuals received 2 Hz HD-tACS. HD-tACS resulted in significant (p < 0.1 baseline to 1-month improvements for Digit Sequencing, Verbal Fluency, and Tower of London. HD-tDCS did not result in significant improvement on any task. CONCLUSIONS HD-tACS targeting V5/MT may be a promising treatment to improve cognitive abilities in individuals with psychosis. By promoting delta oscillations, tACS may enhance cortico-cortico communications across brain networks to improve verbal working memory, processing speed, and executive function. Large-scale investigations are needed to replicate these results.
Collapse
Affiliation(s)
- Willa Molho
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Nicolas Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Robert M G Reinhart
- Department of Psychological and Brain Science, Boston University, Boston, MA, USA
| | - Rebekah Trotti
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shrey Grover
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration. Trends Neurosci 2024; 47:120-134. [PMID: 38143202 DOI: 10.1016/j.tins.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
The pulvinar nucleus of the thalamus is a crucial component of the visual system and plays significant roles in sensory processing and cognitive integration. The pulvinar's extensive connectivity with cortical regions allows for bidirectional communication, contributing to the integration of sensory information across the visual hierarchy. Recent findings underscore the pulvinar's involvement in attentional modulation, feature binding, and predictive coding. In this review, we highlight recent advances in clarifying the pulvinar's circuitry and function. We discuss the contributions of the pulvinar to signal modulation across the global cortical network and place these findings within theoretical frameworks of cortical processing, particularly the global neuronal workspace (GNW) theory and predictive coding.
Collapse
Affiliation(s)
- Nelson Cortes
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Hugo J Ladret
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, 13005, France
| | - Reza Abbas-Farishta
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Ibrahim K, Iturmendi-Sabater I, Vasishth M, Barron DS, Guardavaccaro M, Funaro MC, Holmes A, McCarthy G, Eickhoff SB, Sukhodolsky DG. Neural circuit disruptions of eye gaze processing in autism spectrum disorder and schizophrenia: An activation likelihood estimation meta-analysis. Schizophr Res 2024; 264:298-313. [PMID: 38215566 PMCID: PMC10922721 DOI: 10.1016/j.schres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Impairment in social cognition, particularly eye gaze processing, is a shared feature common to autism spectrum disorder (ASD) and schizophrenia. However, it is unclear if a convergent neural mechanism also underlies gaze dysfunction in these conditions. The present study examined whether this shared eye gaze phenotype is reflected in a profile of convergent neurobiological dysfunction in ASD and schizophrenia. METHODS Activation likelihood estimation (ALE) meta-analyses were conducted on peak voxel coordinates across the whole brain to identify spatial convergence. Functional coactivation with regions emerging as significant was assessed using meta-analytic connectivity modeling. Functional decoding was also conducted. RESULTS Fifty-six experiments (n = 30 with schizophrenia and n = 26 with ASD) from 36 articles met inclusion criteria, which comprised 354 participants with ASD, 275 with schizophrenia and 613 healthy controls (1242 participants in total). In ASD, aberrant activation was found in the left amygdala relative to unaffected controls during gaze processing. In schizophrenia, aberrant activation was found in the right inferior frontal gyrus and supplementary motor area. Across ASD and schizophrenia, aberrant activation was found in the right inferior frontal gyrus and right fusiform gyrus during gaze processing. Functional decoding mapped the left amygdala to domains related to emotion processing and cognition, the right inferior frontal gyrus to cognition and perception, and the right fusiform gyrus to visual perception, spatial cognition, and emotion perception. These regions also showed meta-analytic connectivity to frontoparietal and frontotemporal circuitry. CONCLUSION Alterations in frontoparietal and frontotemporal circuitry emerged as neural markers of gaze impairments in ASD and schizophrenia. These findings have implications for advancing transdiagnostic biomarkers to inform targeted treatments for ASD and schizophrenia.
Collapse
Affiliation(s)
- Karim Ibrahim
- Yale University School of Medicine, Child Study Center, United States of America.
| | | | - Maya Vasishth
- Yale University School of Medicine, Child Study Center, United States of America
| | - Daniel S Barron
- Brigham and Women's Hospital, Department of Psychiatry, Anesthesiology and Pain Medicine, United States of America; Harvard Medical School, Department of Psychiatry, United States of America
| | | | - Melissa C Funaro
- Yale University, Harvey Cushing/John Hay Whitney Medical Library, United States of America
| | - Avram Holmes
- Yale University, Department of Psychology, United States of America; Yale University, Department of Psychiatry, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Gregory McCarthy
- Yale University, Department of Psychology, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Denis G Sukhodolsky
- Yale University School of Medicine, Child Study Center, United States of America
| |
Collapse
|
8
|
Martínez A, Gaspar PA, Bermudez DH, Belen Aburto-Ponce M, Beggel O, Javitt DC. Disrupted third visual pathway function in schizophrenia: Evidence from real and implied motion processing. Neuroimage Clin 2024; 41:103570. [PMID: 38309185 PMCID: PMC10847789 DOI: 10.1016/j.nicl.2024.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Impaired motion perception in schizophrenia has been associated with deficits in social-cognitive processes and with reduced activation of visual sensory regions, including the middle temporal area (MT+) and posterior superior temporal sulcus (pSTS). These findings are consistent with the recent proposal of the existence of a specific 'third visual pathway' specialized for social perception in which motion is a fundamental component. The third visual pathway transmits visual information from early sensory visual processing areas to the STS, with MT+ acting as a critical intermediary. We used functional magnetic resonance imaging to investigate functioning of this pathway during processing of naturalistic videos with explicit (real) motion and static images with implied motion cues. These measures were related to face emotion recognition and motion-perception, as measured behaviorally. Participants were 28 individuals with schizophrenia (Sz) and 20 neurotypical controls. Compared to controls, individuals with Sz showed reduced activation of third visual pathway regions (MT+, pSTS) in response to both real- and implied-motion stimuli. Dysfunction of early visual cortex and pulvinar were also associated with aberrant real-motion processing. Implied-motion stimuli additionally engaged a wide network of brain areas including parietal, motor and frontal nodes of the human mirror neuron system. The findings support concepts of MT+ as a mediator between visual sensory areas and higher-order brain and argue for greater focus on MT+ contributions to social-cognitive processing, in addition to its well-documented role in visual motion processing.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Pablo A Gaspar
- Department of Psychiatry, Biomedical Neurosciences Institute, IMHAY, University of Chile, Santiago, Chile
| | - Dalton H Bermudez
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - M Belen Aburto-Ponce
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Odeta Beggel
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Martínez A, Hillyard SA, Javitt DC. Visual Neurophysiological Biomarkers for Patient Stratification and Treatment Development Across Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 40:757-799. [PMID: 39562463 DOI: 10.1007/978-3-031-69491-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The human visual system begins in the retina and projects to cortex through both the thalamocortical and retinotectal visual pathways. The thalamocortical system is divided into separate magnocellular and parvocellular divisions, which engage separate layers of the lateral geniculate nucleus (LGN) and project preferentially to the dorsal and ventral visual streams, respectively. The retinotectal system, in contrast, projects to the superior colliculus, pulvinar nucleus of the thalamus and amygdala. The pulvinar nucleus also plays a critical role in the integration of information processing across early visual regions.The functions of the visual system can be assessed using convergent EEG- and functional brain imaging approaches, increasingly supplemented by simultaneously collected eye-tracking information. These approaches may be used for tracing the flow of information from retina through early visual regions, as well as the contribution of these regions to higher-order cognitive processing. A pathway of increasing interest in relationship to neuropsychiatric disorders is the primate-specific "third visual pathway" that relies extensively on motion-related input and contributes preferentially to social information processing. Thus, disturbances in the brain's responsiveness to motion stimuli may be especially useful as biomarkers for early visual dysfunction related to impaired social cognition.Visual event-related potentials (ERPs) can be collected with high-fidelity and have proven effective for the study of neuropsychiatric disorders such as schizophrenia and Alzheimer's disease, in which alterations in visual processing may occur early in the disorder, andautism-spectrum disorder (ASD), in which abnormal persistence of early childhood patterns may persist into adulthood, leading to impaired functioning of visual social pathways. The utility of visual ERPs as biomarkers for larger clinical studies is limited at present by the need for standardization of visual stimuli across laboratories, which requires specialized protocols and equipment. The development of optimized stimulation protocols as well as newer headset-based systems may increase the clinical utility of present stimulation approaches.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Steven A Hillyard
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
10
|
Sehatpour P, Javitt DC. Advanced Methodology for Neurophysiological Analysis and Biomarker Development: Time-Frequency and Source-Localization Approaches. ADVANCES IN NEUROBIOLOGY 2024; 40:119-141. [PMID: 39562443 DOI: 10.1007/978-3-031-69491-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The development of new treatments for neuropsychiatric disorders requires the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Neurophysiological measures, especially event-related potentials (ERP), provide effective physiological read-outs of the flow of information from primary sensory through higher-order associative brain regions and thus can be used to investigate mechanisms underlying cognitive impairments across neuropsychiatric disorders. Traditional "time-domain" event-related potentials (ERP) such as auditory P300 and mismatch negativity or visual P1 and face N170 are increasingly being used in clinical studies for patient stratification, outcome prediction, or target engagement. Nevertheless, time-domain approaches use only a small portion of the information inherent within the event-related EEG signal. Newer, time-frequency (TF-ERP) approaches provide additional information along with improved translational utility and may be especially useful in differentiating activity related to thalamocortical driver versus modulatory inputs, as well as detecting event-related modulations of ongoing EEG power. The utility of the TF-ERP approach may be further enhanced by using source-space analytic approaches, including newer Beamformer approaches which are sensitive to both power within identified brain regions and coherence between brain regions. In addition to supporting the development of novel pharmacological agents, such methods may be guiding personalized, high-definition neuro-modulatory intervention approaches.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
- Division of Experimental Therapeutics, Columbia University Medical Center, New York, NY, USA.
| | - Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
11
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
12
|
Raymond N, Reinhart RMG, Trotti R, Parker D, Grover S, Turkozer B, Sabatinelli D, Hegde R, Bannai D, Hoang D, Gandu S, Clementz B, Keshavan M, Lizano P. A pilot study to investigate the efficacy and tolerability of lesion network guided transcranial electrical stimulation in outpatients with psychosis spectrum illness. Asian J Psychiatr 2023; 88:103750. [PMID: 37633159 PMCID: PMC10591953 DOI: 10.1016/j.ajp.2023.103750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Transcranial electrical stimulation (tES) may improve psychosis symptoms, but few investigations have targeted brain regions causally linked to psychosis symptoms. We implemented a novel montage targeting the extrastriate visual cortex (eVC) previously identified by lesion network mapping in the manifestation of visual hallucinations. OBJECTIVE To determine if lesion network guided High Definition-tES (HD-tES) to the eVC is safe and efficacious in reducing symptoms related to psychosis. METHODS We conducted a single-blind crossover pilot study (NCT04870710) in patients with psychosis spectrum disorders. Participants first received HD-tDCS (direct current), followed by 4 weeks of wash out, then 2 Hz HD-tACS (alternating current). Participants received 5 days of daily (2×20 min) stimulation bilaterally to the eVC. Primary outcomes included the Positive and Negative Syndrome Scale (PANSS), biological motion task, and Event Related Potentials (ERP) from a steady state visual evoked potential (SSVEP) paradigm. Secondary outcomes included the Montgomery-Asperg Depression Rating Scale, Global Assessment of Functioning (GAF), velocity discrimination and visual working memory task, and emotional ERP. RESULTS HD-tDCS improved PANSS general psychopathology in the short-term (d=0.47; pfdr=0.03), with long-term improvements in general psychopathology (d=0.62; pfdr=0.05) and GAF (d=-0.56; pfdr=0.04) with HD-tACS. HD-tDCS reduced SSVEP P1 (d=0.25; pfdr=0.005), which correlated with general psychopathology (β = 0.274, t = 3.59, p = 0.04). No significant differences in safety or tolerability measures were identified. CONCLUSION Lesion network guided HD-tES to the eVC is a safe, efficacious, and promising approach for reducing general psychopathology via changes in neuroplasticity. These results highlight the need for larger clinical trials implementing novel targeting methodologies for the treatments of psychosis.
Collapse
Affiliation(s)
- Nicolas Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert M G Reinhart
- Department of Psychological and Brain Science, Boston University, Boston, MA, USA
| | - Rebekah Trotti
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David Parker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shrey Grover
- Department of Psychological and Brain Science, Boston University, Boston, MA, USA
| | - Bilge Turkozer
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Massachusetts General Hospital and McLean Hospital, MA, USA
| | - Dean Sabatinelli
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Swetha Gandu
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brett Clementz
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
13
|
Zhang Y, Lu Z, Sun Y, Zhang X, Li Q, Li M, Liao Y, Kang Z, Feng X, Zhao G, Sun J, Yang Y, Yan H, Zhang D, Yue W. Predictive role of pulvinar in social functional outcome of schizophrenia. Psychiatry Res 2023; 327:115419. [PMID: 37598626 DOI: 10.1016/j.psychres.2023.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Identifying objective biological subtypes that predict long-term functional outcomes is crucial for understanding neurobiological mechanisms and identifying potential targets. Using resting-state functional magnetic resonance imaging data from 178 patients and 70 controls, we explored social function patterns using latent profile analysis. Long-term outcomes were compared among the biological subtypes using K-means clustering. Partial least squares regression (PLSR) was used to identify gene expression profiles associated with alterations in activity by leveraging transcriptional data from the Allen Human Brain Atlas. In patients with more functional impairment, left medial pulvinar (PM) exhibited significantly lower regional homogeneity of brain activity (ReHo, [95% CI (0.06-0.27), P = 0.002), a finding validated in the independent cohort. Functional connectivity between PM and secondary visual cortex displayed a suggestive decrease. Patients belonging to "higher pulvinar ReHo - better information processing" demonstrated better long-term outcomes and acute treatment response [95% CI (11.2-34.4), P < 0.001]. The PLSR component of imaging-transcriptomic associations partly explained the ReHo differences among patients with varying levels of functional impairment. It revealed enrichment of genes in the synaptic signaling pathway. Pathological changes in the pulvinar may affect social functioning. Higher pulvinar ReHo and better information processing, two objective biomarkers, have a predictive value for better long-term functional outcomes.
Collapse
Affiliation(s)
- Yuyanan Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Zhe Lu
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yaoyao Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Xiao Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Qianqian Li
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Mingzhu Li
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yundan Liao
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Zhewei Kang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Xiaoyang Feng
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Guorui Zhao
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Junyuan Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yang Yang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Hao Yan
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Dai Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Weihua Yue
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing 100191, China.
| |
Collapse
|
14
|
Raymond N, Reinhart RMG, Trotti R, Parker D, Grover S, Turkozer B, Sabatinelli D, Hegde R, Bannai D, Gandu S, Clementz B, Keshavan M, Lizano P. Efficacy and Tolerability of Lesion Network Guided Transcranial Electrical Stimulation in Outpatients with Psychosis Spectrum Illness: A Nonrandomized Controlled Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.31.23287980. [PMID: 37066217 PMCID: PMC10104217 DOI: 10.1101/2023.03.31.23287980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Importance Transcranial electrical stimulation (tES) may improve psychosis symptoms, but few investigations have targeted brain regions causally linked to psychosis symptoms. We implemented a novel montage targeting the extrastriate visual cortex (eVC) previously identified by lesion network mapping in the manifestation of visual hallucinations. Objective To determine if lesion network guided HD-tES to the eVC is safe and efficacious in reducing symptoms related to psychosis. Design Setting and Participants Single-center, nonrandomized, single-blind trial using a crossover design conducted in two 4-week phases beginning November 2020, and ending January 2022. Participants were adults 18-55 years of age with a diagnosis of schizophrenia, schizoaffective or psychotic bipolar disorder as confirmed by the Structured Clinical Interview for DSM-V, without an antipsychotic medication change for at least 4 weeks. A total of 8 participants consented and 6 participants enrolled. Significance threshold set to <0.1 due to small sample size. Interventions 6 Participants first received HD-tDCS (direct current), followed by 4 weeks of wash out, then 4 received 2Hz HD-tACS (alternating current). Participants received 5 consecutive days of daily (2 × 20min) stimulation applied bilaterally to the eVC. Main Outcomes and Measures Primary outcomes included the Positive and Negative Syndrome Scale (PANSS) total, positive, negative, and general scores, biological motion task, and Event Related Potential (ERP) measures obtained from a steady state visual evoked potential (SSVEP) task across each 4-week phase. Secondary outcomes included the Montgomery-Asperg Depression Rating Scale (MADRS), Global Assessment of Functioning (GAF), velocity discrimination task, visual working memory task, and emotional ERP across each 4-week phase. Results HD-tDCS improved general psychopathology in the short-term (d=0.47; p fdr =0.03), with long-term improvements in general psychopathology (d=0.62; p fdr =0.05) and GAF (d=-0.56; p fdr =0.04) with HD-tACS. HD-tDCS reduced SSVEP P1 (d=0.25; p fdr =0.005), which correlated with general psychopathology (β=0.274, t=3.59, p=0.04). No significant differences in safety or tolerability measures were identified. Conclusions and Relevance Lesion network guided HD-tES to the eVC is a safe, efficacious, and promising approach for reducing general psychopathology via changes in neuroplasticity. These results highlight the need for larger clinical trials implementing novel targeting methodologies for the treatments of psychosis. Trial Registration ClinicalTrials.gov Identifier: NCT04870710. Key Points Question: Is lesion network guided neurostimulation an efficacious, safe, and targeted approach for treating psychosis?Findings: In this single-center, nonrandomized, crossover, single-blind trial of 6 outpatients with psychosis, improvement in general psychopathology was seen in the short-term with HD-tDCS (high-definition transcranial direct current stimulation) and long-term with HD-tACS (alternating current) targeting the extrastriate visual cortex (eVC). HD-tDCS reduced early visual evoked responses which linked to general psychopathology improvements. Overall, both stimulations were well tolerated.Meaning: Study findings suggest that lesion network guided HD-tES to the eVC is a safe, efficacious, and promising approach for reducing general psychopathology via neuroplastic changes.
Collapse
|
15
|
Javitt DC, Martinez A, Sehatpour P, Beloborodova A, Habeck C, Gazes Y, Bermudez D, Razlighi QR, Devanand DP, Stern Y. Disruption of early visual processing in amyloid-positive healthy individuals and mild cognitive impairment. Alzheimers Res Ther 2023; 15:42. [PMID: 36855162 PMCID: PMC9972790 DOI: 10.1186/s13195-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Amyloid deposition is a primary predictor of Alzheimer's disease (AD) and related neurodegenerative disorders. Retinal changes involving the structure and function of the ganglion cell layer are increasingly documented in both established and prodromal AD. Visual event-related potentials (vERP) are sensitive to dysfunction in the magno- and parvocellular visual systems, which originate within the retinal ganglion cell layer. The present study evaluates vERP as a function of amyloid deposition in aging, and in mild cognitive impairment (MCI). METHODS vERP to stimulus-onset, motion-onset, and alpha-frequency steady-state (ssVEP) stimuli were obtained from 16 amyloid-positive and 41 amyloid-negative healthy elders and 15 MCI individuals and analyzed using time-frequency approaches. Social cognition was assessed in a subset of individuals using The Awareness of Social Inference Test (TASIT). RESULTS Neurocognitively intact but amyloid-positive participants and MCI individuals showed significant deficits in stimulus-onset (theta) and motion-onset (delta) vERP generation relative to amyloid-negative participants (all p < .01). Across healthy elders, a composite index of these measures correlated highly (r = - .52, p < .001) with amyloid standardized uptake value ratios (SUVR) and TASIT performance. A composite index composed of vERP measures significant differentiated amyloid-positive and amyloid-negative groups with an overall classification accuracy of > 70%. DISCUSSION vERP may assist in the early detection of amyloid deposition among older individuals without observable neurocognitive impairments and in linking previously documented retinal deficits in both prodromal AD and MCI to behavioral impairments in social cognition.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, Unit 21, New York, NY, 10032, USA.
- Division of Schizophrenia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
| | - Antigona Martinez
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, Unit 21, New York, NY, 10032, USA
- Division of Schizophrenia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Pejman Sehatpour
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, Unit 21, New York, NY, 10032, USA
- Division of Schizophrenia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Anna Beloborodova
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, Unit 21, New York, NY, 10032, USA
| | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Dalton Bermudez
- Division of Schizophrenia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Qolamreza R Razlighi
- Quantitative Neuroimaging Laboratory, Department of Radiology, Weill Cornell Medicine, Brain Health Image Institute, New York, NY, 10065, USA
| | - D P Devanand
- Area Brain Aging and Mental Health, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Area Brain Aging and Mental Health, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, NY, 10032, USA
| |
Collapse
|
16
|
Javitt DC. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment. Annu Rev Pharmacol Toxicol 2023; 63:119-141. [PMID: 36151052 DOI: 10.1146/annurev-pharmtox-051921-093250] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cognitive impairment is a core feature of schizophrenia and a major contributor to poor functional outcomes. Methods for assessment of cognitive dysfunction in schizophrenia are now well established. In addition, there has been increasing appreciation in recent years of the additional role of social cognitive impairment in driving functional outcomes and of the contributions of sensory-level dysfunction to higher-order impairments. At the neurochemical level, acute administration of N-methyl-d-aspartate receptor (NMDAR) antagonists reproduces the pattern of neurocognitive dysfunction associated with schizophrenia, encouraging the development of treatments targeted at both NMDAR and its interactome. At the local-circuit level, an auditory neurophysiological measure, mismatch negativity, has emerged both as a veridical index of NMDAR dysfunction and excitatory/inhibitory imbalance in schizophrenia and as a critical biomarker for early-stage translational drug development. Although no compounds have yet been approved for treatment of cognitive impairment associated with schizophrenia, several candidates are showing promise in early-phase testing.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; .,Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
17
|
Torrens WA, Pablo JN, Shires J, Haigh SM, Berryhill ME. People with high schizotypy experience more illusions in the Pattern Glare Test: Consistent with the hyperexcitability hypothesis. Eur J Neurosci 2023; 57:388-399. [PMID: 36484768 PMCID: PMC9847329 DOI: 10.1111/ejn.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Individuals diagnosed with schizophrenia spectrum disorders (SSD) exhibit a constellation of sensory and perceptual impairments, including hyporeactivity to external input. However, individuals with SSD also report subjective experiences of sensory flooding, suggesting sensory hyperexcitability. To identify the extent to which behavioural indices of hyperexcitability are related to non-psychotic symptoms of schizophrenia, we tested a non-clinical population measured for schizophrenia-like traits (schizotypy), and a behavioural measure of sensory hyperexcitability, specifically the number of illusions seen in the Pattern Glare Test. Two samples totaling 913 individuals completed an online version of the Schizotypal Personality Questionnaire - Brief Revised (SPQ-BR) and the Pattern Glare Test. Individuals with higher schizotypy traits reported more illusions in the Pattern Glare Test. Additionally, one of the three SPQ-BR factors, the disorganized factor, significantly predicted the number of illusions reported. These data illustrate the potential for research in non-clinical samples to inform clinically relevant research.
Collapse
Affiliation(s)
- Wendy A Torrens
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Jenna N Pablo
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Jorja Shires
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Sarah M Haigh
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | | |
Collapse
|
18
|
Scheliga S, Schwank R, Scholle R, Habel U, Kellermann T. A neural mechanism underlying predictive visual motion processing in patients with schizophrenia. Psychiatry Res 2022; 318:114934. [PMID: 36347125 DOI: 10.1016/j.psychres.2022.114934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Psychotic symptoms may be traced back to sensory sensitivity. Thereby, visual motion (VM) processing particularly has been suggested to be impaired in schizophrenia (SCZ). In healthy brains, VM underlies predictive processing within hierarchically structured systems. However, less is known about predictive VM processing in SCZ. Therefore, we performed fMRI during a VM paradigm with three conditions of varying predictability, i.e., Predictable-, Random-, and Arbitrary motion. The study sample comprised 17 SCZ patients and 23 healthy controls. We calculated general linear model (GLM) analysis to assess group differences in VM processing across motion conditions. Here, we identified significantly lower activity in right temporoparietal junction (TPJ) for SCZ patients. Therefore, right TPJ was set as seed for connectivity analyses. For patients, across conditions we identified increased connections to higher regions, namely medial prefrontal cortex, or paracingulate gyrus. Healthy subjects activated sensory regions as area V5, or superior parietal lobule. Reduced TPJ activity may reflect both a failure in the bottom-up flow of visual information and a decrease of signal processing as consequence of increased top-down input from frontal areas. In sum, these altered neural patterns provide a framework for future studies focusing on predictive VM processing to identify potential biomarkers of psychosis.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Rosalie Schwank
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ruben Scholle
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
19
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Pezzella P, Mucci A, Galderisi S. Unveiling the Associations between EEG Indices and Cognitive Deficits in Schizophrenia-Spectrum Disorders: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12092193. [PMID: 36140594 PMCID: PMC9498272 DOI: 10.3390/diagnostics12092193] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive dysfunctions represent a core feature of schizophrenia-spectrum disorders due to their presence throughout different illness stages and their impact on functioning. Abnormalities in electrophysiology (EEG) measures are highly related to these impairments, but the use of EEG indices in clinical practice is still limited. A systematic review of articles using Pubmed, Scopus and PsychINFO was undertaken in November 2021 to provide an overview of the relationships between EEG indices and cognitive impairment in schizophrenia-spectrum disorders. Out of 2433 screened records, 135 studies were included in a qualitative review. Although the results were heterogeneous, some significant correlations were identified. In particular, abnormalities in alpha, theta and gamma activity, as well as in MMN and P300, were associated with impairments in cognitive domains such as attention, working memory, visual and verbal learning and executive functioning during at-risk mental states, early and chronic stages of schizophrenia-spectrum disorders. The review suggests that machine learning approaches together with a careful selection of validated EEG and cognitive indices and characterization of clinical phenotypes might contribute to increase the use of EEG-based measures in clinical settings.
Collapse
|
20
|
Szeszko PR, Gohel S, Vaccaro DH, Chu KW, Tang CY, Goldstein KE, New AS, Siever LJ, McClure M, Perez-Rodriguez MM, Haznedar MM, Byne W, Hazlett EA. Frontotemporal thalamic connectivity in schizophrenia and schizotypal personality disorder. Psychiatry Res Neuroimaging 2022; 322:111463. [PMID: 35240516 PMCID: PMC9018622 DOI: 10.1016/j.pscychresns.2022.111463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Schizotypal personality disorder (SPD) resembles schizophrenia, but with attenuated brain abnormalities and the absence of psychosis. The thalamus is integral for processing and transmitting information across cortical regions and widely implicated in the neurobiology of schizophrenia. Comparing thalamic connectivity in SPD and schizophrenia could reveal an intermediate schizophrenia-spectrum phenotype to elucidate neurobiological risk and protective factors in psychosis. We used rsfMRI to investigate functional connectivity between the mediodorsal nucleus (MDN) and pulvinar, and their connectivity with frontal and temporal cortical regions, respectively in 43 healthy controls (HCs), and individuals in the schizophrenia-spectrum including 45 psychotropic drug-free individuals with SPD, and 20 individuals with schizophrenia-related disorders [(schizophrenia (n = 10), schizoaffective disorder (n = 8), schizophreniform disorder (n = 1) and psychosis NOS (n = 1)]. Individuals with SPD had greater functional connectivity between the MDN and pulvinar compared to individuals with schizophrenia. Thalamo-frontal (i.e., between the MDN and rostral middle frontal cortex) connectivity was comparable in SPD and HCs; in SPD greater connectivity was associated with less symptom severity. Individuals with schizophrenia had less thalamo-frontal connectivity and thalamo-temporal (i.e., pulvinar to the transverse temporal cortex) connectivity compared with HCs. Thalamo-frontal functional connectivity may be comparable in SPD and HCs, but abnormal in schizophrenia, and that this may be protective against psychosis in SPD.
Collapse
Affiliation(s)
- Philip R Szeszko
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Suril Gohel
- Department of Health Informatics, Rutgers University, Newark, NJ, USA
| | - Daniel H Vaccaro
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheuk Y Tang
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kim E Goldstein
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Antonia S New
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larry J Siever
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret McClure
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychology, Fairfield University, Fairfield, CT, USA
| | | | - M Mehmet Haznedar
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Byne
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Erin A Hazlett
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
The glutamate/N-methyl-d-aspartate receptor (NMDAR) model of schizophrenia at 35: On the path from syndrome to disease. Schizophr Res 2022; 242:56-61. [PMID: 35125283 DOI: 10.1016/j.schres.2022.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
|
22
|
Martínez A, Tobe RH, Gaspar PA, Malinsky D, Dias EC, Sehatpour P, Lakatos P, Patel GH, Bermudez DH, Silipo G, Javitt DC. Disease-Specific Contribution of Pulvinar Dysfunction to Impaired Emotion Recognition in Schizophrenia. Front Behav Neurosci 2022; 15:787383. [PMID: 35237135 PMCID: PMC8883821 DOI: 10.3389/fnbeh.2021.787383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
One important aspect for managing social interactions is the ability to perceive and respond to facial expressions rapidly and accurately. This ability is highly dependent upon intact processing within both cortical and subcortical components of the early visual pathways. Social cognitive deficits, including face emotion recognition (FER) deficits, are characteristic of several neuropsychiatric disorders including schizophrenia (Sz) and autism spectrum disorders (ASD). Here, we investigated potential visual sensory contributions to FER deficits in Sz (n = 28, 8/20 female/male; age 21–54 years) and adult ASD (n = 20, 4/16 female/male; age 19–43 years) participants compared to neurotypical (n = 30, 8/22 female/male; age 19–54 years) controls using task-based fMRI during an implicit static/dynamic FER task. Compared to neurotypical controls, both Sz (d = 1.97) and ASD (d = 1.13) participants had significantly lower FER scores which interrelated with diminished activation of the superior temporal sulcus (STS). In Sz, STS deficits were predicted by reduced activation of early visual regions (d = 0.85, p = 0.002) and of the pulvinar nucleus of the thalamus (d = 0.44, p = 0.042), along with impaired cortico-pulvinar interaction. By contrast, ASD participants showed patterns of increased early visual cortical (d = 1.03, p = 0.001) and pulvinar (d = 0.71, p = 0.015) activation. Large effect-size structural and histological abnormalities of pulvinar have previously been documented in Sz. Moreover, we have recently demonstrated impaired pulvinar activation to simple visual stimuli in Sz. Here, we provide the first demonstration of a disease-specific contribution of impaired pulvinar activation to social cognitive impairment in Sz.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- *Correspondence: Antígona Martínez,
| | - Russell H. Tobe
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Pablo A. Gaspar
- Department of Psychiatry, Biomedical Neurosciences Institute, IMHAY, University of Chile, Santiago, Chile
| | - Daniel Malinsky
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Elisa C. Dias
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Pejman Sehatpour
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Peter Lakatos
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Gaurav H. Patel
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Dalton H. Bermudez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Gail Silipo
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Daniel C. Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
23
|
An Integrated Neuroimaging Approach to Inform Transcranial Electrical Stimulation Targeting in Visual Hallucinations. Harv Rev Psychiatry 2022; 30:181-190. [PMID: 35576449 PMCID: PMC9179829 DOI: 10.1097/hrp.0000000000000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For decades, noninvasive brain stimulation (NIBS), such as transcranial electrical stimulation (tES), has been used to directly modulate human brain mechanisms of visual perception, setting the groundwork for the development of novel circuit-based therapies. While the field of NIBS has grown considerably over recent years, few studies have used these technologies to treat visual hallucinations (VH). Here, we review the NIBS-VH literature and find mixed results due to shortcomings that may potentially be addressed with a unique multimodal neuroimaging-NIBS approach. We highlight methodological advances in NIBS research that have provided researchers with more precise anatomical measurements that may improve our ability to influence brain activity. Specifically, we propose a methodology that combines neuroimaging advances, clinical neuroscience developments such as the identification of brain regions causally involved in VH, and personalized NIBS approaches that improve anatomical targeting. This methodology may enable us to reconcile existing discrepancies in tES-VH research and pave the way for more effective, VH-specific protocols for treating a number of neuropsychiatric disorders with VH as a core symptom.
Collapse
|
24
|
Patel GH, Arkin SC, Ruiz-Betancourt D, DeBaun H, Strauss NE, Bartel LP, Grinband J, Martinez A, Berman RA, Leopold DA, Javitt DC. What you see is what you get: visual scanning failures of naturalistic social scenes in schizophrenia. Psychol Med 2021; 51:2923-2932. [PMID: 32498743 PMCID: PMC7751380 DOI: 10.1017/s0033291720001646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Impairments in social cognition contribute significantly to disability in schizophrenia patients (SzP). Perception of facial expressions is critical for social cognition. Intact perception requires an individual to visually scan a complex dynamic social scene for transiently moving facial expressions that may be relevant for understanding the scene. The relationship of visual scanning for these facial expressions and social cognition remains unknown. METHODS In 39 SzP and 27 healthy controls (HC), we used eye-tracking to examine the relationship between performance on The Awareness of Social Inference Test (TASIT), which tests social cognition using naturalistic video clips of social situations, and visual scanning, measuring each individual's relative to the mean of HC. We then examined the relationship of visual scanning to the specific visual features (motion, contrast, luminance, faces) within the video clips. RESULTS TASIT performance was significantly impaired in SzP for trials involving sarcasm (p < 10-5). Visual scanning was significantly more variable in SzP than HC (p < 10-6), and predicted TASIT performance in HC (p = 0.02) but not SzP (p = 0.91), differing significantly between groups (p = 0.04). During the visual scanning, SzP were less likely to be viewing faces (p = 0.0001) and less likely to saccade to facial motion in peripheral vision (p = 0.008). CONCLUSIONS SzP show highly significant deficits in the use of visual scanning of naturalistic social scenes to inform social cognition. Alterations in visual scanning patterns may originate from impaired processing of facial motion within peripheral vision. Overall, these results highlight the utility of naturalistic stimuli in the study of social cognition deficits in schizophrenia.
Collapse
Affiliation(s)
- Gaurav H. Patel
- Columbia University Medical Center
- New York State Psychiatric Institute
| | | | | | | | | | - Laura P. Bartel
- Columbia University Medical Center
- New York State Psychiatric Institute
| | - Jack Grinband
- Columbia University Medical Center
- New York State Psychiatric Institute
| | | | | | | | - Daniel C. Javitt
- Columbia University Medical Center
- New York State Psychiatric Institute
- Nathan Kline Institute
| |
Collapse
|
25
|
Dias EC, Van Voorhis AC, Braga F, Todd J, Lopez-Calderon J, Martinez A, Javitt DC. Impaired Fixation-Related Theta Modulation Predicts Reduced Visual Span and Guided Search Deficits in Schizophrenia. Cereb Cortex 2021; 30:2823-2833. [PMID: 32030407 DOI: 10.1093/cercor/bhz277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During normal visual behavior, individuals scan the environment through a series of saccades and fixations. At each fixation, the phase of ongoing rhythmic neural oscillations is reset, thereby increasing efficiency of subsequent visual processing. This phase-reset is reflected in the generation of a fixation-related potential (FRP). Here, we evaluate the integrity of theta phase-reset/FRP generation and Guided Visual Search task in schizophrenia. Subjects performed serial and parallel versions of the task. An initial study (15 healthy controls (HC)/15 schizophrenia patients (SCZ)) investigated behavioral performance parametrically across stimulus features and set-sizes. A subsequent study (25-HC/25-SCZ) evaluated integrity of search-related FRP generation relative to search performance and evaluated visual span size as an index of parafoveal processing. Search times were significantly increased for patients versus controls across all conditions. Furthermore, significantly, deficits were observed for fixation-related theta phase-reset across conditions, that fully predicted impaired reduced visual span and search performance and correlated with impaired visual components of neurocognitive processing. By contrast, overall search strategy was similar between groups. Deficits in theta phase-reset mechanisms are increasingly documented across sensory modalities in schizophrenia. Here, we demonstrate that deficits in fixation-related theta phase-reset during naturalistic visual processing underlie impaired efficiency of early visual function in schizophrenia.
Collapse
Affiliation(s)
- Elisa C Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA.,Department of Psychiatry, New York University School of Medicine, New York, NY 10016 USA
| | - Abraham C Van Voorhis
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA
| | - Filipe Braga
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA
| | - Julianne Todd
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA
| | - Javier Lopez-Calderon
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA
| | - Antigona Martinez
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA.,Department of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032 USA
| | - Daniel C Javitt
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA.,Department of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032 USA
| |
Collapse
|
26
|
Associations between long-term psychosis risk, probabilistic category learning, and attenuated psychotic symptoms with cortical surface morphometry. Brain Imaging Behav 2021; 16:91-106. [PMID: 34218406 DOI: 10.1007/s11682-021-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Neuroimaging studies have consistently found structural cortical abnormalities in individuals with schizophrenia, especially in structural hubs. However, it is unclear what abnormalities predate psychosis onset and whether abnormalities are related to behavioral performance and symptoms associated with psychosis risk. Using surface-based morphometry, we examined cortical volume, gyrification, and thickness in a psychosis risk group at long-term risk for developing a psychotic disorder (n = 18; i.e., extreme positive schizotypy plus interview-rated attenuated psychotic symptoms [APS]) and control group (n = 19). Overall, the psychosis risk group exhibited cortical abnormalities in multiple structural hub regions, with abnormalities associated with poorer probabilistic category learning, a behavioral measure strongly associated with psychosis risk. For instance, the psychosis risk group had hypogyria in a right posterior midcingulate cortical hub and left superior parietal cortical hub, as well as decreased volume in a right pericalcarine hub. Morphometric measures in all of these regions were also associated with poorer probabilistic category learning. In addition to decreased right pericalcarine volume, the psychosis risk group exhibited a number of other structural abnormalities in visual network structural hub regions, consistent with previous evidence of visual perception deficits in psychosis risk. Further, severity of APS hallucinations, delusional ideation, and suspiciousness/persecutory ideas were associated with gyrification abnormalities, with all domains associated with hypogyria of the right lateral orbitofrontal cortex. Thus, current results suggest that structural abnormalities, especially in structural hubs, are present in psychosis risk and are associated both with poor learning on a psychosis risk-related task and with APS severity.
Collapse
|
27
|
Fortea A, Batalla A, Radua J, van Eijndhoven P, Baeza I, Albajes-Eizagirre A, Fusar-Poli P, Castro-Fornieles J, De la Serna E, Luna LP, Carvalho AF, Vieta E, Sugranyes G. Cortical gray matter reduction precedes transition to psychosis in individuals at clinical high-risk for psychosis: A voxel-based meta-analysis. Schizophr Res 2021; 232:98-106. [PMID: 34029948 DOI: 10.1016/j.schres.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/10/2023]
Abstract
Gray matter and cortical thickness reductions have been documented in individuals at clinical high-risk for psychosis and may be more pronounced in those who transition to psychosis. However, these findings rely on small samples and are inconsistent across studies. In this review and meta-analysis we aimed to investigate neuroanatomical correlates of clinical high-risk for psychosis and potential predictors of transition, using a novel meta-analytic method (Seed-based d Mapping with Permutation of Subject Images) and cortical mask, combining data from surface-based and voxel-based morphometry studies. Individuals at clinical high-risk for psychosis who later transitioned to psychosis were compared to those who did not and to controls, and included three statistical maps. Overall, individuals at clinical high-risk for psychosis did not differ from controls, however, within the clinical high-risk for psychosis group, transition to psychosis was associated with less cortical gray matter in the right temporal lobe (Hedges' g = -0.377), anterior cingulate and paracingulate (Hedges' g = -0.391). These findings have the potential to help refine prognostic and etiopathological research in early psychosis.
Collapse
Affiliation(s)
- Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica (FCRB), Esther Koplowitz Centre, Rosselló 153, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain.
| | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Center for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behavior, Center for Cognitive Neuroimaging, Nijmegen, the Netherlands.
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Anton Albajes-Eizagirre
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Elena De la Serna
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Licia P Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Division of Neuroradiology, 600 N Wolfe Street Phipps B100F, 21287 Baltimore, MD, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Center of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica (FCRB), Esther Koplowitz Centre, Rosselló 153, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| |
Collapse
|
28
|
Patel GH, Arkin SC, Ruiz-Betancourt DR, Plaza FI, Mirza SA, Vieira DJ, Strauss NE, Klim CC, Sanchez-Peña JP, Bartel LP, Grinband J, Martinez A, Berman RA, Ochsner KN, Leopold DA, Javitt DC. Failure to engage the temporoparietal junction/posterior superior temporal sulcus predicts impaired naturalistic social cognition in schizophrenia. Brain 2021; 144:1898-1910. [PMID: 33710282 DOI: 10.1093/brain/awab081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia is associated with marked impairments in social cognition. However, the neural correlates of these deficits remain unclear. Here we use naturalistic stimuli to examine the role of the right temporoparietal junction/posterior superior temporal sulcus (TPJ-pSTS)-an integrative hub for the cortical networks pertinent to the understanding complex social situations-in social inference, a key component of social cognition, in schizophrenia. Twenty-seven schizophrenia participants and 21 healthy control subjects watched a clip of the film The Good, the Bad and the Ugly while high resolution multiband functional MRI images were collected. We used inter-subject correlation to measure the evoked activity, which we then compared to social cognition as measured by The Awareness of Social Inference Test (TASIT). We also compared between groups the TPJ-pSTS blood oxygen level-dependent activity (i) relationship with the motion content in the film; (ii) synchronization with other cortical areas involved in the viewing of the movie; and (iii) relationship with the frequency of saccades made during the movie. Activation deficits were greatest in middle TPJ (TPJm) and correlated significantly with impaired TASIT performance across groups. Follow-up analyses of the TPJ-pSTS revealed decreased synchronization with other cortical areas, decreased correlation with the motion content of the movie, and decreased correlation with the saccades made during the movie. The functional impairment of the TPJm, a hub area in the middle of the TPJ-pSTS, predicts deficits in social inference in schizophrenia participants by disrupting the integration of visual motion processing into the TPJ. This disrupted integration then affects the use of the TPJ to guide saccades during the visual scanning of the movie clip. These findings suggest that the TPJ may be a treatment target for improving deficits in a key component of social cognition in schizophrenia participants.
Collapse
Affiliation(s)
- Gaurav H Patel
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Sophie C Arkin
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | | | - Fabiola I Plaza
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Safia A Mirza
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Daniel J Vieira
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Casimir C Klim
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Juan P Sanchez-Peña
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Laura P Bartel
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jack Grinband
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Antigona Martinez
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Rebecca A Berman
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.,Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY 10962, USA
| |
Collapse
|
29
|
Sehatpour P, Avissar M, Kantrowitz JT, Corcoran CM, De Baun HM, Patel GH, Girgis RR, Brucato G, Lopez-Calderon J, Silipo G, Dias E, Martinez A, Javitt DC. Deficits in Pre-attentive Processing of Spatial Location and Negative Symptoms in Subjects at Clinical High Risk for Schizophrenia. Front Psychiatry 2021; 11:629144. [PMID: 33603682 PMCID: PMC7884473 DOI: 10.3389/fpsyt.2020.629144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Deficits in mismatch negativity (MMN) generation are among the best-established biomarkers for cognitive dysfunction in schizophrenia and predict conversion to schizophrenia (Sz) among individuals at symptomatic clinical high risk (CHR). Impairments in MMN index dysfunction at both subcortical and cortical components of the early auditory system. To date, the large majority of studies have been conducted using deviants that differ from preceding standards in either tonal frequency (pitch) or duration. By contrast, MMN to sound location deviation has been studied to only a limited degree in Sz and has not previously been examined in CHR populations. Here, we evaluated location MMN across Sz and CHR using an optimized, multi-deviant pattern that included a location-deviant, as defined using interaural time delay (ITD) stimuli along with pitch, duration, frequency modulation (FM) and intensity deviants in a sample of 42 Sz, 33 CHR and 28 healthy control (HC) subjects. In addition, we obtained resting state functional connectivity (rsfMRI) on CHR subjects. Sz showed impaired MMN performance across all deviant types, along with strong correlation between MMN deficits and impaired neurocognitive function. In this sample of largely non-converting CHR subjects, no deficits were observed in either pitch or duration MMN. By contrast, CHR subjects showed significant impairments in location MMN generation particularly over right hemisphere and significant correlation between impaired location MMN and negative symptoms including deterioration of role function. In addition, significant correlations were observed between location MMN and rsfMRI involving brainstem circuits. In general, location detection using ITD stimuli depends upon precise processing within midbrain regions and provides a rapid and robust reorientation of attention. Present findings reinforce the utility of MMN as a pre-attentive index of auditory cognitive dysfunction in Sz and suggest that location MMN may index brain circuits distinct from those indexed by other deviant types.
Collapse
Affiliation(s)
- Pejman Sehatpour
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Michael Avissar
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Joshua T. Kantrowitz
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | | | - Heloise M. De Baun
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Gaurav H. Patel
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Ragy R. Girgis
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Gary Brucato
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Javier Lopez-Calderon
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Elisa Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Antigona Martinez
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Daniel C. Javitt
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
30
|
Arafune-Mishima A, Abe H, Tani T, Mashiko H, Watanabe S, Sakai K, Suzuki W, Mizukami H, Watakabe A, Yamamori T, Ichinohe N. Axonal Projections from Middle Temporal Area to the Pulvinar in the Common Marmoset. Neuroscience 2020; 446:145-156. [PMID: 32866602 DOI: 10.1016/j.neuroscience.2020.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
The pulvinar, the largest thalamic nucleus in the primate brain, has connections with a variety of cortical areas and is involved in many aspects of higher brain functions. Among cortico-pulvino-cortical systems, the connection between the middle temporal area (MT) and the pulvinar has been thought to contribute significantly to complex motion recognition. Recently, the common marmoset (Callithrix jacchus), has become a valuable model for a variety of neuroscience studies, including visual neuroscience and translational research of neurological and psychiatric disorders. However, information on projections from MT to the pulvinar in the marmoset brain is scant. We addressed this deficiency by injecting sensitive anterograde viral tracers into MT to examine the distribution of labeled terminations in the pulvinar. The injection sites were placed retinotopically according to visual field coordinates mapped by optical intrinsic imaging. All injections produced anterograde terminal labeling, which was densest in the medial nucleus of the inferior pulvinar (PIm), sparser in the central nucleus of the inferior pulvinar, and weakest in the lateral pulvinar. Within each subnucleus, terminations formed separate retinotopic fields. Most labeled terminals were small but these comingled with a few large terminals, distributed mainly in the dorsomedial part of the PIm. Our results further delineate the organization of projections from MT to the pulvinar in the marmoset as forming parallel complex networks, which may differentially contribute to motion processing. It is interesting that the densest projections from MT target the PIm, the subnucleus recently reported to preferentially receive direct retinal projections.
Collapse
Affiliation(s)
- Akira Arafune-Mishima
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Hiroshi Abe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Toshiki Tani
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Hiromi Mashiko
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Satoshi Watanabe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Wataru Suzuki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Ichinohe Group, Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan.
| |
Collapse
|
31
|
Hamilton HK, Boos AK, Mathalon DH. Electroencephalography and Event-Related Potential Biomarkers in Individuals at Clinical High Risk for Psychosis. Biol Psychiatry 2020; 88:294-303. [PMID: 32507388 PMCID: PMC8300573 DOI: 10.1016/j.biopsych.2020.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023]
Abstract
Clinical outcomes vary among youths at clinical high risk for psychosis (CHR-P), with approximately 20% progressing to full-blown psychosis over 2 to 3 years and 30% achieving remission. Recent research efforts have focused on identifying biomarkers that precede psychosis onset and enhance the accuracy of clinical outcome prediction in CHR-P individuals, with the ultimate goal of developing staged treatment approaches based on the individual's level of risk. Identifying such biomarkers may also facilitate progress toward understanding pathogenic mechanisms underlying psychosis onset, which may support the development of mechanistically informed early interventions for psychosis. In recent years, electroencephalography-based event-related potential measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its clinical outcomes. In this review, we describe the evidence for event-related potential abnormalities in CHR-P and discuss how they inform our understanding of information processing deficits as vulnerability markers for emerging psychosis and as indicators of future outcomes. Among the measures studied, P300 and mismatch negativity are notable because deficits predict conversion to psychosis and/or CHR-P remission. However, the accuracy with which these and other measures predict outcomes in CHR-P has been obscured in the prior literature by the tendency to only report group-level differences, underscoring the need for inclusion of individual predictive accuracy metrics in future studies. Nevertheless, both P300 and mismatch negativity show promise as electrophysiological markers of risk for psychosis, as target engagement measures for clinical trials, and as potential translational bridges between human studies and animal models focused on novel drug development for early psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California
| | - Alison K Boos
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California.
| |
Collapse
|
32
|
Javitt DC, Siegel SJ, Spencer KM, Mathalon DH, Hong LE, Martinez A, Ehlers CL, Abbas AI, Teichert T, Lakatos P, Womelsdorf T. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 2020; 45:1411-1422. [PMID: 32375159 PMCID: PMC7360555 DOI: 10.1038/s41386-020-0697-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify similarity of effects across preclinical and clinical intervention. Traditional "time-domain" event-related potentials (ERP) have been used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and human studies. By contrast, neuro-oscillatory responses, analyzed within the "time-frequency" domain, are relatively preserved across species permitting more precise translational comparisons. Moreover, neuro-oscillatory responses are increasingly being mapped to local circuit mechanisms and may be useful for investigating effects of both pharmacological and neuromodulatory interventions on excitatory/inhibitory balance. The present paper provides a roadmap for development of neuro-oscillatory responses as translational biomarkers in neuropsychiatric treatment development.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin M Spencer
- Research Service, VA Boston Healthcare System, and Dept. of Psychiatry, Harvard Medical School, Boston, MA, 02130, USA
| | - Daniel H Mathalon
- VA San Francisco Healthcare System, University of California, San Francisco, San Francisco, CA, 94121, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antigona Martinez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Atheir I Abbas
- VA Portland Health Care System, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tobias Teichert
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Lakatos
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
33
|
Dondé C, Avissar M, Weber MM, Javitt DC. A century of sensory processing dysfunction in schizophrenia. Eur Psychiatry 2020; 59:77-79. [DOI: 10.1016/j.eurpsy.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/27/2022] Open
Abstract
Approximately 100 years ago, Bleuler famously declared that “Sensory response to external stimulus is quite normal” in schizophrenia, followed however by the cryptic statement: “Busch and Kraepelin have found in perception experiment (using the shutter and revolving drum apparatus) that schizophrenics show many more errors and particularly omissions than do the healthy … Using accurate apparatus, we were unable to substantiate these findings”.
Collapse
|
34
|
Jia W, Zhu H, Ni Y, Su J, Xu R, Jia H, Wan X. Disruptions of frontoparietal control network and default mode network linking the metacognitive deficits with clinical symptoms in schizophrenia. Hum Brain Mapp 2019; 41:1445-1458. [PMID: 31789478 PMCID: PMC7267896 DOI: 10.1002/hbm.24887] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/29/2022] Open
Abstract
The metacognitive deficit in awareness of one's own mental states is a core feature of schizophrenia (SZ). The previous studies suggested that the metacognitive deficit associates with clinical symptoms. However, the neural mechanisms underlying the relationship remain largely unknown. We here investigated the neural activities associated with the metacognitive deficit and the neural signatures associated with clinical symptoms in 38 patients with SZ using functional magnetic resonance imaging with a perceptual decision-making task accompanied with metacognition, in comparison to 38 age, gender, and education matched healthy control subjects. The metacognitive deficit in patients with SZ was associated with reduced regional activity in both the frontoparietal control network (FPCN) and the default mode network. Critically, the anticorrelational balance between the two disrupted networks was substantially altered during metacognition, and the extent of alteration positively scaled with negative symptoms. Conversely, decoupling between the two networks was impaired when metacognitive monitoring was not required, and the strength of excessive neural activity positively scaled with positive symptoms. Thus, disruptions of the FPCN and the default mode network underlie the metacognitive deficit, and alternations of network balance between the two networks correlate with clinical symptoms in SZ. These findings implicate that rebalancing these networks holds important clinical potential in developing more efficacious therapeutic treatments.
Collapse
Affiliation(s)
- Wenbin Jia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hong Zhu
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders and Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yinmei Ni
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jie Su
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Rui Xu
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders and Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Hongxiao Jia
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders and Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Wan
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
35
|
Martínez A, Tobe R, Dias EC, Ardekani BA, Veenstra-Vanderweele J, Patel G, Breland M, Lieval A, Silipo G, Javitt DC. Differential Patterns of Visual Sensory Alteration Underlying Face Emotion Recognition Impairment and Motion Perception Deficits in Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry 2019; 86:557-567. [PMID: 31301757 PMCID: PMC7197738 DOI: 10.1016/j.biopsych.2019.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Impaired face emotion recognition (FER) and abnormal motion processing are core features in schizophrenia (SZ) and autism spectrum disorder (ASD) that have been linked to atypical activity within the visual cortex. Despite overlaps, only a few studies have directly explored convergent versus divergent neural mechanisms of altered visual processing in ASD and SZ. We employed a multimodal imaging approach to evaluate FER and motion perception in relation to functioning of subcortical and cortical visual regions. METHODS Subjects were 20 high-functioning adults with ASD, 19 patients with SZ, and 17 control participants. Behavioral measures of coherent motion sensitivity and FER along with electrophysiological and functional magnetic resonance imaging measures of visual pattern and motion processing were obtained. Resting-state functional magnetic resonance imaging was used to assess the relationship between corticocortical and thalamocortical connectivity and atypical visual processing. RESULTS SZ and ASD participants had intercorrelated deficits in FER and motion sensitivity. In both groups, reduced motion sensitivity was associated with reduced functional magnetic resonance imaging activation in the occipitotemporal cortex and lower delta-band electroencephalogram power. In ASD, FER deficits correlated with hyperactivation of dorsal stream regions and increased evoked theta power. Activation of the pulvinar correlated with abnormal alpha-band modulation in SZ and ASD with under- and overmodulation, respectively, predicting increased clinical symptoms in both groups. CONCLUSIONS SZ and ASD participants showed equivalent deficits in FER and motion sensitivity but markedly different profiles of physiological dysfunction. The specific pattern of deficits observed in each group may help guide development of treatments designed to downregulate versus upregulate visual processing within the respective clinical groups.
Collapse
Affiliation(s)
- Antígona Martínez
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York; Department of Psychiatry, Columbia University Medical Center, New York, New York.
| | - Russell Tobe
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elisa C. Dias
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Babak A. Ardekani
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | - Gaurav Patel
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | - Melissa Breland
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Alexis Lieval
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gail Silipo
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C. Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, Columbia University Medical Center, New York, NY
| |
Collapse
|
36
|
Dondé C, Martínez A, Kantrowitz JT, Silipo G, Dias EC, Patel GH, Sanchez-Peña J, Corcoran CM, Medalia A, Saperstein A, Vail B, Javitt DC. Bimodal distribution of tone-matching deficits indicates discrete pathophysiological entities within the syndrome of schizophrenia. Transl Psychiatry 2019; 9:221. [PMID: 31492832 PMCID: PMC6731304 DOI: 10.1038/s41398-019-0557-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
To date, no measures are available that permit differentiation of discrete, clinically distinct subtypes of schizophrenia (SZ) with potential differential underlying pathophysiologies. Over recent years, there has been increasing recognition that SZ is heterogeneously associated with deficits in early auditory processing (EAP), as demonstrated using clinically applicable tasks such as tone-matching task (TMT). Here, we pooled TMT performances across 310 SZ individuals and 219 healthy controls (HC), along with clinical, cognitive, and resting-state functional-connectivity MRI (rsFC-MRI) measures. In addition, TMT was measured in a group of 24 patients at symptomatic clinical high risk (CHR) for SZ and 24 age-matched HC (age range 7-27 years). We provide the first demonstration that the EAP deficits are bimodally distributed across SZ subjects (P < 0.0001 vs. unimodal distribution), with one group showing entirely unimpaired TMT performance (SZ-EAP+), and a second showing an extremely large TMT impairment (SZ-EAP-), relative to both controls (d = 2.1) and SZ-EAP+ patients (d = 3.4). The SZ-EAP- group predominated among samples drawn from inpatient sites, showed higher levels of cognitive symptoms (PANSS), worse social cognition and a differential deficit in neurocognition (MATRICS battery), and reduced functional capacity. rsFC-MRI analyses showed significant reduction in SZ-EAP- relative to controls between subcortical and cortical auditory regions. As opposed to SZ, CHR patients showed intact EAP function. In HC age-matched to CHR, EAP ability was shown to increase across the age range of vulnerability preceding SZ onset. These results indicate that EAP measure segregates between discrete SZ subgroups. As TMT can be readily implemented within routine clinical settings, its use may be critical to account for the heterogeneity of clinical outcomes currently observed across SZ patients, as well as for pre-clinical detection and efficacious treatment selection.
Collapse
Affiliation(s)
- Clément Dondé
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, F-69000, France. .,University Lyon 1, Villeurbanne, F-69000, France. .,Centre Hospitalier Le Vinatier, Bron, France. .,Nathan Kline Institute, Orangeburg, NY, USA. .,Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY, USA.
| | - Antigona Martínez
- 0000 0001 2189 4777grid.250263.0Nathan Kline Institute, Orangeburg, NY USA ,0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA
| | - Joshua T. Kantrowitz
- 0000 0001 2189 4777grid.250263.0Nathan Kline Institute, Orangeburg, NY USA ,0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA
| | - Gail Silipo
- 0000 0001 2189 4777grid.250263.0Nathan Kline Institute, Orangeburg, NY USA
| | - Elisa C. Dias
- 0000 0001 2189 4777grid.250263.0Nathan Kline Institute, Orangeburg, NY USA
| | - Gaurav H. Patel
- 0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA
| | - Juan Sanchez-Peña
- 0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA
| | - Cheryl M. Corcoran
- 0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDepartment of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alice Medalia
- 0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA
| | - Alice Saperstein
- 0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA
| | - Blair Vail
- 0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA
| | - Daniel C. Javitt
- 0000 0001 2189 4777grid.250263.0Nathan Kline Institute, Orangeburg, NY USA ,0000 0001 2285 2675grid.239585.0Deppartment of Psychiatry, Columbia University Medical Center/New York State Psychiatric Institute, New York, NY USA
| |
Collapse
|
37
|
From basic perception deficits to facial affect recognition impairments in schizophrenia. Sci Rep 2019; 9:8958. [PMID: 31222063 PMCID: PMC6586813 DOI: 10.1038/s41598-019-45231-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
While impaired facial emotion recognition and magnocellular deficits in visual perception are core features of schizophrenia, their relationship is still unclear. Our aim was to analyze the oscillatory background of these processes and to investigate the connection between the magnocellular pathway deficit and the abnormal facial affect processing. Thirty-nine subjects with schizophrenia and forty socially matched healthy controls subjects were enrolled. A 128 channel EEG was recorded in three experimental tasks: first, participants viewed magnocellular biased low-spatial frequency (LSF) and parvocellular biased high-spatial frequency (HSF) Gabor-patches, then faces and houses were presented and in the third task a facial affect recognition task was presented with happy, sad and neutral faces. Event-related theta (4–7 Hz) synchronization (ERS) (i.e. an increase in theta power) by magnocellular biased stimuli was decreased in patients relative to controls, while no similar differences were found between groups in the parvocellular biased condition. ERS was significantly lower in patients compared to healthy controls both in the face and in the emotion recognition task. Theta ERS to magnocellular biased stimuli, but not to parvocellular biased stimuli, were correlated with emotion recognition performance. These findings indicate a bottom up disruption of face perception and emotion recognition in schizophrenia.
Collapse
|