1
|
Davis CN, Khan Y, Toikumo S, Jinwala Z, Boomsma DI, Levey DF, Gelernter J, Kember RL, Kranzler HR. Integrating HiTOP and RDoC frameworks part II: shared and distinct biological mechanisms of externalizing and internalizing psychopathology. Psychol Med 2025; 55:e137. [PMID: 40340892 DOI: 10.1017/s0033291725000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
BACKGROUND The Hierarchical Taxonomy of Psychopathology (HiTOP) and Research Domain Criteria (RDoC) frameworks emphasize transdiagnostic and mechanistic aspects of psychopathology. We used a multi-omics approach to examine how HiTOP's psychopathology spectra (externalizing [EXT], internalizing [INT], and shared EXT + INT) map onto RDoC's units of analysis. METHODS We conducted analyses across five RDoC units of analysis: genes, molecules, cells, circuits, and physiology. Using genome-wide association studies from the companion Part I article, we identified genes and tissue-specific expression patterns. We used drug repurposing analyses that integrate gene annotations to identify potential therapeutic targets and single-cell RNA sequencing data to implicate brain cell types. We then used magnetic resonance imaging data to examine brain regions and circuits associated with psychopathology. Finally, we tested causal relationships between each spectrum and physical health conditions. RESULTS Using five gene identification methods, EXT was associated with 1,759 genes, INT with 454 genes, and EXT + INT with 1,138 genes. Drug repurposing analyses identified potential therapeutic targets, including those that affect dopamine and serotonin pathways. Expression of EXT genes was enriched in GABAergic, cortical, and hippocampal neurons, while INT genes were more narrowly linked to GABAergic neurons. EXT + INT liability was associated with reduced gray matter volume in the amygdala and subcallosal cortex. INT genetic liability showed stronger causal effects on physical health - including chronic pain and cardiovascular diseases - than EXT. CONCLUSIONS Our findings revealed shared and distinct pathways underlying psychopathology. Integrating genomic insights with the RDoC and HiTOP frameworks advanced our understanding of mechanisms that underlie EXT and INT psychopathology.
Collapse
Affiliation(s)
- Christal N Davis
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yousef Khan
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zeal Jinwala
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, The Netherlands and Amsterdam Reproduction and Development Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel F Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
- Departments of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Christoffersen LAN, Quinn L, Brodersen T, Loft I, Jensen BA, Erikstrup C, Mikkelsen C, Sørensen E, Kranzler HR, Kaspersen KA, Didriksen M, Ostrowski SR, Werge T, Helenius D, Pedersen OB. Pre-pandemic psychiatric disorders, disease specific polygenic scores, and alcohol consumption patterns during the COVID-19 pandemic. J Psychiatr Res 2025; 187:163-173. [PMID: 40367587 DOI: 10.1016/j.jpsychires.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Pre-pandemic psychiatric disorders have been associated with elevated alcohol consumption during the COVID-19 pandemic, raising concerns about associated morbidity and mortality; however, insight into the mechanisms is lacking. METHODS In this prospective cohort study with multiple follow-ups of 27,208 participants from the Danish Blood Donor Study, the potential genetic influence on the associations of pre-pandemic alcohol use disorders (AUD) and major depressive disorder (MDD) with pandemic alcohol consumption patterns was assessed in Poisson regression models, using polygenic scores (PGS). Information on pre-pandemic psychiatric disorders was obtained from Danish national health registers, while information on alcohol consumption was obtained through questionnaires. RESULTS Adjustment for PGSs did not impact the association of pre-pandemic AUD with alcohol consumption patterns during the COVID-19 pandemic at any time points (e.g., unadjusted [B = 0.68; 95 %CI: 0.52; 0.84] vs. adjusted for AUD PGS [B = 0.66; 95 %CI: 0.50; 0.82]. However, higher AUD PGSs were associated with higher alcohol consumption among individuals without pre-pandemic AUD. Pre-pandemic MDD was unrelated to alcohol consumption patterns during the COVID-19 pandemic in all analyses. CONCLUSION Genetic liability to AUD was associated with increased alcohol consumption during the COVID-19 pandemic but only among individuals without pre-pandemic AUD.
Collapse
Affiliation(s)
- Lea Arregui Nordahl Christoffersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark; Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
| | - Liam Quinn
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Thorsten Brodersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Isabella Loft
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, USA; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kathrine Agergård Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus C, Denmark
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Khan Y, Davis CN, Jinwala Z, Feuer KL, Toikumo S, Hartwell EE, Sanchez-Roige S, Peterson RE, Hatoum AS, Kranzler HR, Kember RL. Transdiagnostic and Disorder-Level GWAS Enhance Precision of Substance Use and Psychiatric Genetic Risk Profiles in African and European Ancestries. Biol Psychiatry 2025:S0006-3223(25)01180-1. [PMID: 40345609 DOI: 10.1016/j.biopsych.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/20/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Substance use disorders (SUDs) and psychiatric disorders frequently co-occur, and their etiology likely reflects both transdiagnostic (i.e., common/shared) and disorder-level (i.e., independent/nonshared) genetic influences. Understanding the genetic influences that are shared and those that operate independently of the shared risk could enhance precision in diagnosis, prevention, and treatment, but this remains underexplored, particularly in non-European ancestry groups. METHODS We applied genomic structural equation modeling to examine the common and independent genetic architecture among SUDs and psychotic, mood, and anxiety disorders using summary statistics from genome-wide association studies (GWAS) conducted in European- (EUR) and African-ancestry (AFR) individuals. To characterize the biological and phenotypic associations, we used FUMA, conducted genetic correlations, and performed phenome-wide association studies (PheWAS). RESULTS In EUR individuals, transdiagnostic genetic factors represented SUDs, psychotic, and mood/anxiety disorders, with GWAS identifying two novel lead single-nucleotide polymorphisms (SNPs) for the mood factor. In AFR individuals, genetic factors represented SUDs and psychiatric disorders, and GWAS identified one novel lead SNP for the SUD factor. In EUR individuals, second-order factor models showed phenotypic and genotypic associations with a broad range of physical and mental health traits. Finally, genetic correlations and PheWAS highlighted how common and independent genetic factors for SUD and psychotic disorders were differentially associated with psychiatric, sociodemographic, and medical phenotypes. CONCLUSIONS Combining transdiagnostic and disorder-level genetic approaches can improve our understanding of co-occurring conditions and increase the specificity of genetic discovery, which is critical for identifying more effective prevention and treatment strategies to reduce the burden of these disorders.
Collapse
Affiliation(s)
- Yousef Khan
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christal N Davis
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kyra L Feuer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Sylvanus Toikumo
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Emily E Hartwell
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States; Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, United States; Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roseann E Peterson
- Institute for Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Alexander S Hatoum
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104.
| |
Collapse
|
4
|
Wildermuth E, Patton MS, Cortes-Gutierrez M, Jinwala Z, Grissom BH, Campbell RR, Kranzler HR, Lobo MK, Ament SA, Mathur BN. A single-cell genomic atlas for the effects of chronic ethanol exposure in the mouse dorsal striatum. Mol Psychiatry 2025:10.1038/s41380-025-03014-z. [PMID: 40240618 DOI: 10.1038/s41380-025-03014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Alcohol use disorder (AUD) is characterized by compulsive drinking, which is thought to be mediated by effects of chronic intermittent ethanol exposure on the dorsal striatum, the input nucleus of the basal ganglia. Despite significant efforts to understand the impact of ethanol on the dorsal striatum, the rich diversity of striatal cell types and multitude of ethanol targets expressed by them necessitates an unbiased, discovery-based approach. In this study, we used single-nuclei RNA-sequencing (snRNA-seq; n = 86,715 cells) to examine the impact of chronic intermittent ethanol exposure on the dorsal striatum in C57BL/6 male and female mice. We detected 462 differentially expressed genes at FDR < 0.05, the majority of which were mapped to spiny projection neurons (SPNs), the most prominent cell type in the striatum. Gene co-expression network analysis and functional annotation of differentially expressed genes revealed down-regulation of postsynaptic intracellular signaling cascades in SPNs. Inflammation-related genes were down-regulated across many neuronal and non-neuronal cell types. Gene set enrichment analyses also pointed to altered states of rare cell types, including the induction of angiogenesis-related genes in vascular cells. A gene module down-regulated specifically in canonical SPNs was enriched for calcium-signaling genes and components of glutamatergic synapses, as well as for genes associated with genetic risk for AUD. Genetic perturbations of six of this module's hub genes - Foxp1, Bcl11b, Pde10a, Rarb, Rgs9, and Itgr1 - had causal effects on its expression in the mouse striatum and/or on the broader set of differentially expressed genes in alcohol-exposed mice. These data provide important clues as to the impact of ethanol on striatal biology and provide a key resource for future investigation.
Collapse
Affiliation(s)
- Erin Wildermuth
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael S Patton
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zeal Jinwala
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Benjamin H Grissom
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rianne R Campbell
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Kahlert Institute for Addiction Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Kahlert Institute for Addiction Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Brian N Mathur
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Kahlert Institute for Addiction Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Bruxel EM, Rovaris DL, Belangero SI, Chavarría-Soley G, Cuellar-Barboza AB, Martínez-Magaña JJ, Nagamatsu ST, Nievergelt CM, Núñez-Ríos DL, Ota VK, Peterson RE, Sloofman LG, Adams AM, Albino E, Alvarado AT, Andrade-Brito D, Arguello-Pascualli PY, Bandeira CE, Bau CHD, Bulik CM, Buxbaum JD, Cappi C, Corral-Frias NS, Corrales A, Corsi-Zuelli F, Crowley JJ, Cupertino RB, da Silva BS, De Almeida SS, De la Hoz JF, Forero DA, Fries GR, Gelernter J, González-Giraldo Y, Grevet EH, Grice DE, Hernández-Garayua A, Hettema JM, Ibáñez A, Ionita-Laza I, Lattig MC, Lima YC, Lin YS, López-León S, Loureiro CM, Martínez-Cerdeño V, Martínez-Levy GA, Melin K, Moreno-De-Luca D, Muniz Carvalho C, Olivares AM, Oliveira VF, Ormond R, Palmer AA, Panzenhagen AC, Passos-Bueno MR, Peng Q, Pérez-Palma E, Prieto ML, Roussos P, Sanchez-Roige S, Santamaría-García H, Shansis FM, Sharp RR, Storch EA, Tavares MEA, Tietz GE, Torres-Hernández BA, Tovo-Rodrigues L, Trelles P, Trujillo-ChiVacuan EM, Velásquez MM, Vera-Urbina F, Voloudakis G, Wegman-Ostrosky T, Zhen-Duan J, Zhou H, Santoro ML, Nicolini H, Atkinson EG, Giusti-Rodríguez P, Montalvo-Ortiz JL. Psychiatric genetics in the diverse landscape of Latin American populations. Nat Genet 2025:10.1038/s41588-025-02127-z. [PMID: 40175716 DOI: 10.1038/s41588-025-02127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025]
Abstract
Psychiatric disorders are highly heritable and polygenic, influenced by environmental factors and often comorbid. Large-scale genome-wide association studies (GWASs) through consortium efforts have identified genetic risk loci and revealed the underlying biology of psychiatric disorders and traits. However, over 85% of psychiatric GWAS participants are of European ancestry, limiting the applicability of these findings to non-European populations. Latin America and the Caribbean, regions marked by diverse genetic admixture, distinct environments and healthcare disparities, remain critically understudied in psychiatric genomics. This threatens access to precision psychiatry, where diversity is crucial for innovation and equity. This Review evaluates the current state and advancements in psychiatric genomics within Latin America and the Caribbean, discusses the prevalence and burden of psychiatric disorders, explores contributions to psychiatric GWASs from these regions and highlights methods that account for genetic diversity. We also identify existing gaps and challenges and propose recommendations to promote equity in psychiatric genomics.
Collapse
Affiliation(s)
- Estela M Bruxel
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diego L Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sintia I Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Chavarría-Soley
- Escuela de Biología y Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry, School of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - José J Martínez-Magaña
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Sheila T Nagamatsu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diana L Núñez-Ríos
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Vanessa K Ota
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roseann E Peterson
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy M Adams
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Elinette Albino
- School of Health Professions, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Angel T Alvarado
- Research Unit in Molecular Pharmacology and Genomic Medicine, VRI, San Ignacio de Loyola University, La Molina, Perú
| | | | - Paola Y Arguello-Pascualli
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cibele E Bandeira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claiton H D Bau
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alejo Corrales
- Departamento de Psiquiatría, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Fabiana Corsi-Zuelli
- Department of Neuroscience, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bruna S da Silva
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Suzannah S De Almeida
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan F De la Hoz
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Gabriel R Fries
- Faillace Department of Psychiatry and Behavioral Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Yeimy González-Giraldo
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Eugenio H Grevet
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana Hernández-Garayua
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - John M Hettema
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY, USA
- Department of Statistics, Lund University, Lund, Sweden
| | | | - Yago C Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Yi-Sian Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sandra López-León
- Quantitative Safety Epidemiology, Novartis Pharma, East Hanover, NJ, USA
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Rutgers University, New Brunswick, NJ, USA
| | - Camila M Loureiro
- Department of Neuroscience, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gabriela A Martínez-Levy
- Department of Genetics, Subdirectorate of Clinical Research, National Institute of Psychiatry, México City, México
- Department of Cell and Tissular Biology, Medicine Faculty, National Autonomous University of Mexico, México City, México
| | - Kyle Melin
- School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Daniel Moreno-De-Luca
- Precision Medicine in Autism Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Alberta Health Services, CASA Mental Health, Edmonton, Alberta, Canada
| | | | - Ana Maria Olivares
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Victor F Oliveira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rafaella Ormond
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alana C Panzenhagen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Laboratório de Pesquisa Translacional em Comportamento Suicida, Universidade do Vale do Taquari, Lajeado, Brazil
| | - Maria Rita Passos-Bueno
- Departmento de Genetica e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Qian Peng
- Department of Neuroscience, the Scripps Research Institute, La Jolla, CA, USA
| | - Eduardo Pérez-Palma
- Facultad de Medicina Clínica Alemana, Centro de Genética y Genómica, Universidad del Desarrollo, Santiago, Chile
| | - Miguel L Prieto
- Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile
- Department of Psychiatry, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Panos Roussos
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hernando Santamaría-García
- PhD Program of Neuroscience, Pontificia Universidad Javeriana, Hospital San Ignacio, Center for Memory and Cognition, Intellectus, Bogotá, Colombia
| | - Flávio M Shansis
- Graduate Program of Medical Sciences, Universidade do Vale do Taquari, Lajeado, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rachel R Sharp
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Maria Eduarda A Tavares
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Grace E Tietz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Pilar Trelles
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva M Trujillo-ChiVacuan
- Research Department, Comenzar de Nuevo Eating Disorders Treatment Center, Monterrey, México
- Escuela de Medicina y Ciencias de la Salud Tecnológico de Monterrey, Monterrey, México
| | - Maria M Velásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Vera-Urbina
- School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jenny Zhen-Duan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Marcos L Santoro
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Humberto Nicolini
- Laboratorio de Enfermedades Psiquiátricas, Neurodegenerativas y Adicciones, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Center, Texas Children's Hospital, Houston, TX, USA.
| | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA.
- Department of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Doyle AE, Bearden CE, Gur RE, Ledbetter DH, Martin CL, McCoy TH, Pasaniuc B, Perlis RH, Smoller JW, Davis LK. Advancing Mental Health Research Through Strategic Integration of Transdiagnostic Dimensions and Genomics. Biol Psychiatry 2025; 97:450-460. [PMID: 39424167 DOI: 10.1016/j.biopsych.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Genome-wide studies are yielding a growing catalog of common and rare variants that confer risk for psychopathology. However, despite representing unprecedented progress, emerging data also indicate that the full promise of psychiatric genetics-including understanding pathophysiology and improving personalized care-will not be fully realized by targeting traditional dichotomous diagnostic categories. The current article provides reflections on themes that emerged from a 2021 National Institute of Mental Health-sponsored conference convened to address strategies for the evolving field of psychiatric genetics. As anticipated by the National Institute of Mental Health's Research Domain Criteria framework, multilevel investigations of dimensional and transdiagnostic phenotypes, particularly when integrated with biobanks and big data, will be critical to advancing knowledge. The path forward will also require more diverse representation in source studies. Additionally, progress will be catalyzed by a range of converging approaches, including capitalizing on computational methods, pursuing biological insights, working within a developmental framework, and engaging health care systems and patient communities.
Collapse
Affiliation(s)
- Alysa E Doyle
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences & Psychology, University of California at Los Angeles, Los Angeles, California
| | - Raquel E Gur
- Departments of Psychiatry, Neurology and Radiology, Perelman School of Medicine, University of Pennsylvania, and the Lifespan Brain Institute of Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - David H Ledbetter
- Departments of Pediatrics and Psychiatry, University of Florida College of Medicine, Jacksonville, Florida
| | - Christa L Martin
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, Pennsylvania
| | - Thomas H McCoy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bogdan Pasaniuc
- Departments of Computational Medicine, Pathology and Laboratory Medicine, and Human Genetics, University of California at Los Angeles, Los Angeles, California
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
7
|
Hill SY, Edenberg HJ, Corvin A, Thorgeirsson T, Below JE, Goldman D, Leal S, Almasy L, Cox NJ, Daly M, Neale B, Vrieze S, Zoghbi H. Whole Genome Sequencing of Pedigrees With High Density of Substance Use and Psychiatric Disorders: A Meeting Report. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70017. [PMID: 39935334 PMCID: PMC11814537 DOI: 10.1111/gbb.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/09/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
The National Institute of Drug Abuse convened a panel of scientists with expertise in substance use disorders (SUD) and genetic methodologies primarily to determine the feasibility of performing whole genome sequencing utilizing existing pedigree collections with a high density of SUD and psychiatric disorders. A major focus was on determining if there had been any successes in identifying genetic variants for complex traits in family-based designs. Such information could provide assurance that whole genome sequencing might provide significant pay-offs particularly in the pursuit of rare variants and copy number variants. An important goal was to discuss and evaluate optimal strategies for studying genetic variants in human samples. Specific topics were (a) to consider whether a smaller number of cases typically available in family studies versus the larger number available in biobanks can reveal unique information; (b) to identify potential gaps in information available in biobank data that might be supplemented with family data; (c) to consider the optimal SUD phenotypic definitions (e.g., quantity of use, problem-oriented) and data collection instruments (self-report or clinician administered) that are both practical and efficient to collect, and likely to provide important insights concerning prevention, intervention, and medication development. Conclusions reached by the panel included optimism about the successes that have occurred in the existing family studies ascertained to include densely affected pedigrees. Evaluation of methodologies led, overall, to a panel consensus that steps should be taken to utilize biobank collection in conjunction with family-based investigations for optimal variant discovery.
Collapse
Affiliation(s)
- Shirley Y. Hill
- Behavioral Genetics Research Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Aiden Corvin
- Trinity Translational Medicine Institute, Department of PsychiatryTrinity College DublinDublinIreland
| | | | - Jennifer E. Below
- Vanderbilt Memory and Alzheimers CenterVanderbilt UniversityNashvilleTennesseeUSA
| | - David Goldman
- Laboratory of NeurogeneticsNational Institute on Alcoholism and Alcohol AbuseBethesdaMarylandUSA
| | - Suzanne Leal
- Sergievsky Center, Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
| | - Laura Almasy
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nancy J. Cox
- Vanderbilt Genetics InstituteVanderbilt UniversityNashvilleTennesseeUSA
| | - Mark Daly
- Program in Medical and Population GeneticsBroad InstituteBostonMassachusettsUSA
| | - Benjamin Neale
- Program in Medical and Population GeneticsBroad InstituteBostonMassachusettsUSA
| | - Scott Vrieze
- Department of PsychologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Huda Zoghbi
- Department of Pediatrics, Department of Molecular and Human Genetics, Department of Neurology and NeuroscienceBaylor College of Medicine, Howard Hughes Medical Institute, Jan and Dan Duncan Neurological Research InstituteHoustonTexasUSA
| |
Collapse
|
8
|
Moe JS, Bramness JG, Bolstad I, Mørland JG, Gorwood P, Ramoz N. Association Between GABRG2 and Self-Rating of the Effects of Alcohol in a French Young Adult Sample. Risk Manag Healthc Policy 2025; 18:291-304. [PMID: 39882063 PMCID: PMC11775821 DOI: 10.2147/rmhp.s483830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025] Open
Abstract
Purpose Alcohol use is a leading risk factor for preventable death, injury, and disease globally. Low sensitivity to the effects of alcohol is influenced by genes and predicts risk for harmful alcohol use and alcohol use disorder (AUD). Alcohol induces effects partly by modulation of gamma-aminobutyric acid receptors type A (GABAARs). This study investigates the relationship between genetic variation in GABAAR subunit genes and individual alcohol sensitivity among French university students. Patients and Methods The study involved 1,409 French university students (34.5% women; mean age 20.3 years). Alcohol sensitivity was measured by the Self-Rating of the Effects of Alcohol Scale (SRE). SRE-scores from initial drinking, regular drinking, and heavy drinking were investigated for correlations with alcohol consumption and for associations with single nucleotide polymorphisms (SNPs) in GABAAR subunit genes (GABRA2, GABRG2, GABRA6). Results We replicated correlations between low alcohol sensitivity and high alcohol consumption. We further found an association between the minor allele in rs211014 (GABRG2) and higher SRE-scores, linked to dizziness and motor incoordination. Genetic variation in GABRG2 has previously been associated with processes involving motor coordination (alcohol withdrawal, febrile- and epileptic seizures). Conclusion The results from our study suggest that genetic variation in GABRG2 may influence alcohol sensitivity, which could inform strategies for assessing risk for harmful alcohol use and AUD.
Collapse
Affiliation(s)
- Jenny Skumsnes Moe
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Institute for Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Jørgen G Bramness
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Institute for Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Department of Alcohol, Tobacco, and Drugs, Norwegian Institute of Public Health, Oslo, Norway
- Section for Clinical Addiction Research, Oslo University Hospital, Oslo, Norway
| | - Ingeborg Bolstad
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Department of Health and Social Science, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Jørg Gustav Mørland
- Department of Alcohol, Tobacco, and Drugs, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Philip Gorwood
- Université Paris Cité, Inserm U1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP), Team Vulnerability of Psychiatric and Addictive Disorders, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Hôpital Sainte-Anne, CMME, Paris, France
| | - Nicolas Ramoz
- Université Paris Cité, Inserm U1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP), Team Vulnerability of Psychiatric and Addictive Disorders, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Hôpital Sainte-Anne, CMME, Paris, France
| |
Collapse
|
9
|
Clark SL, Hartwell EE, Choi DS, Krystal JH, Messing RO, Ferguson LB. Next-generation biomarkers for alcohol consumption and alcohol use disorder diagnosis, prognosis, and treatment: A critical review. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:5-24. [PMID: 39532676 PMCID: PMC11747793 DOI: 10.1111/acer.15476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
This critical review summarizes the current state of omics-based biomarkers in the alcohol research field. We first provide definitions and background information on alcohol and alcohol use disorder (AUD), biomarkers, and "omic" technologies. We next summarize using (1) genetic information as risk/prognostic biomarkers for the onset of alcohol-related problems and the progression from regular drinking to problematic drinking (including AUD), (2) epigenetic information as diagnostic biomarkers for AUD and risk biomarkers for alcohol consumption, (3) transcriptomic information as diagnostic biomarkers for AUD, risk biomarkers for alcohol consumption, and (4) metabolomic information as diagnostic biomarkers for AUD, risk biomarkers for alcohol consumption, and predictive biomarkers for response to acamprosate in subjects with AUD. In the final section, the clinical implications of the findings are discussed, and recommendations are made for future research.
Collapse
Affiliation(s)
- Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Emily E. Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Poore HE, Chatzinakos C, Mallard TT, Sanchez-Roige S, Aliev F, Hatoum A, COGA Collaborators, Waldman ID, Palme AA, Harden KP, Barr PB, Dick DM. Advancing Gene Discovery for Substance Use Disorders Using Additional Traits Related to Behavioral Disinhibition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.26.24318011. [PMID: 39649581 PMCID: PMC11623735 DOI: 10.1101/2024.11.26.24318011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Importance Substance use disorders (SUDs) frequently co-occur with each other and with other traits related to behavioral disinhibition, a spectrum of outcomes referred to as externalizing. Nevertheless, genome-wide association studies (GWAS) typically study individual SUDs separately. This single-disorder approach ignores genetic covariance between SUDs and other traits and may contribute to the relatively limited genetic discoveries to date. Objective To identify the most effective model for capturing genetic relationships between SUDs and externalizing phenotypes, optimizing the detection of genetic influences on SUDs while maintaining specificity. Design We used Genomic SEM to estimate SNP effects on a broad factor representing liability to externalizing and SUDs, on factors representing liability to behavioral disinhibition and SUDs separately, and on residualized SUDs. Subsequent gene-based, tissue expression, and polygenic score (PGS) analyses were used to compare the ability of these alternative approaches to identify genetic influences on SUDs. Setting This study was carried out from May 2023 - September 2024. Participants We used GWAS summary statistics based on samples of European ancestry from previous studies of externalizing and SUD phenotypes in the main multivariate GWAS (N > 2.2 million). We used two independent samples to estimate polygenic associations, a family-based sample enriched for substance use problems (COGA; N = 7,530) and a population-based sample representative of the United States, (All of Us; N = 77,442). Exposures N/A. Main Outcomes and Measures Across the three factors (Externalizing; SUDs; Behavioral Disinhibition) and four residualized SUDs (alcohol, tobacco, opioid, and cannabis), we compared the number, putative function, previous associations of significant genomic risk loci and genes, and variance explained by polygenic scores in substance use outcomes. Results We identified genomic risk loci and genes uniquely associated with Externalizing that are relevant to the neurobiology of substance use. Genes identified for residual SUDs were involved in substance-specific processes (e.g., metabolism). The Externalizing PGS accounted for the most variance in substance outcomes relative to the PGS for the other factors and residual PGS appeared to capture substance specific signals. Conclusions and Relevance Our findings suggest that modeling both a broad genetic liability to externalizing behaviors and substance-specific liabilities enhances the detection of genetic effects related to SUDs and explains more variance in substance use outcomes.
Collapse
Affiliation(s)
- Holly E. Poore
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| | - Chris Chatzinakos
- Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University
| | - Travis T. Mallard
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital
- Department of Psychiatry, Harvard Medical School
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego
- Department of Medicine, Vanderbilt University Medical Center
- Institute for Genomic Medicine, University of California San Diego
| | - Fazil Aliev
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| | - Alexander Hatoum
- Department of Psychiatry, Washington University School of Medicine
| | | | | | - Abraham A. Palme
- Department of Psychiatry, University of California San Diego
- Institute for Genomic Medicine, University of California San Diego
| | - K. Paige Harden
- Department of Psychology, University of Texas at Austin
- Population Research Center, University of Texas at Austin
| | - Peter B. Barr
- Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University
| | - Danielle M. Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| |
Collapse
|
11
|
Kalin NH. Substance Use Disorders. Am J Psychiatry 2024; 181:941-944. [PMID: 39482954 DOI: 10.1176/appi.ajp.20240888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Affiliation(s)
- Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
12
|
Kember RL, Davis CN, Feuer KL, Kranzler HR. Considerations for the application of polygenic scores to clinical care of individuals with substance use disorders. J Clin Invest 2024; 134:e172882. [PMID: 39403926 PMCID: PMC11473164 DOI: 10.1172/jci172882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Substance use disorders (SUDs) are highly prevalent and associated with excess morbidity, mortality, and economic costs. Thus, there is considerable interest in the early identification of individuals who may be more susceptible to developing SUDs and in improving personalized treatment decisions for those who have SUDs. SUDs are known to be influenced by both genetic and environmental factors. Polygenic scores (PGSs) provide a single measure of genetic liability that could be used as a biomarker in predicting disease development, progression, and treatment response. Although PGSs are rapidly being integrated into clinical practice, there is little information to guide clinicians in their responsible use and interpretation. In this Review, we discuss the potential benefits and pitfalls of the use of PGSs in the clinical care of SUDs, highlighting current research. We also provide suggestions for important considerations prior to implementing the clinical use of PGSs and recommend future directions for research.
Collapse
|
13
|
Horwitz TB, Zorina-Lichtenwalter K, Gustavson DE, Grotzinger AD, Stallings MC. Partitioning the Genomic Components of Behavioral Disinhibition and Substance Use (Disorder) Using Genomic Structural Equation Modeling. Behav Genet 2024; 54:386-397. [PMID: 38981971 DOI: 10.1007/s10519-024-10188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/02/2024] [Indexed: 07/11/2024]
Abstract
Externalizing behaviors encompass manifestations of risk-taking, self-regulation, aggression, sensation-/reward-seeking, and impulsivity. Externalizing research often includes substance use (SUB), substance use disorder (SUD), and other (non-SUB/SUD) "behavioral disinhibition" (BD) traits. Genome-wide and twin research have pointed to overlapping genetic architecture within and across SUB, SUD, and BD. We created single-factor measurement models-each describing SUB, SUD, or BD traits-based on mutually exclusive sets of European ancestry genome-wide association study (GWAS) statistics exploring externalizing variables. We then assessed the partitioning of genetic covariance among the three facets using correlated factors models and Cholesky decomposition. Even when the residuals for indicators relating to the same substance were correlated across the SUB and SUD factors, the two factors yielded a large correlation (rg = 0.803). BD correlated strongly with the SUD (rg = 0.774) and SUB (rg = 0.778) factors. In our initial decompositions, 33% of total BD variance remained after partialing out SUD and SUB. The majority of covariance between BD and SUB and between BD and SUD was shared across all factors, and, within these models, only a small fraction of the total variation in BD operated via an independent pathway with SUD or SUB outside of the other factor. When only nicotine/tobacco, cannabis, and alcohol were included for the SUB/SUD factors, their correlation increased to rg = 0.861; in corresponding decompositions, BD-specific variance decreased to 27%. Further research can better elucidate the properties of BD-specific variation by exploring its genetic/molecular correlates.
Collapse
Affiliation(s)
- Tanya B Horwitz
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA.
| | | | - Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
| | - Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, 80309, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
14
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Reiner BC, Chehimi SN, Merkel R, Toikumo S, Berrettini WH, Kranzler HR, Sanchez-Roige S, Kember RL, Schmidt HD, Crist RC. A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens. Sci Rep 2024; 14:18258. [PMID: 39107568 PMCID: PMC11303397 DOI: 10.1038/s41598-024-69255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Merkel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, San Diego, CA, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Room 2207, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Miller AP, Bogdan R, Agrawal A, Hatoum AS. Generalized genetic liability to substance use disorders. J Clin Invest 2024; 134:e172881. [PMID: 38828723 PMCID: PMC11142744 DOI: 10.1172/jci172881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Lifetime and temporal co-occurrence of substance use disorders (SUDs) is common and compared with individual SUDs is characterized by greater severity, additional psychiatric comorbidities, and worse outcomes. Here, we review evidence for the role of generalized genetic liability to various SUDs. Coaggregation of SUDs has familial contributions, with twin studies suggesting a strong contribution of additive genetic influences undergirding use disorders for a variety of substances (including alcohol, nicotine, cannabis, and others). GWAS have documented similarly large genetic correlations between alcohol, cannabis, and opioid use disorders. Extending these findings, recent studies have identified multiple genomic loci that contribute to common risk for these SUDs and problematic tobacco use, implicating dopaminergic regulatory and neuronal development mechanisms in the pathophysiology of generalized SUD genetic liability, with certain signals demonstrating cross-species and translational validity. Overlap with genetic signals for other externalizing behaviors, while substantial, does not explain the entirety of the generalized genetic signal for SUD. Polygenic scores (PGS) derived from the generalized genetic liability to SUDs outperform PGS for individual SUDs in prediction of serious mental health and medical comorbidities. Going forward, it will be important to further elucidate the etiology of generalized SUD genetic liability by incorporating additional SUDs, evaluating clinical presentation across the lifespan, and increasing the granularity of investigation (e.g., specific transdiagnostic criteria) to ultimately improve the nosology, prevention, and treatment of SUDs.
Collapse
Affiliation(s)
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Alexander S. Hatoum
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Reiner BC, Chehimi SN, Merkel R, Toikumo S, Berrettini WH, Kranzler HR, Sanchez-Roige S, Kember RL, Schmidt HD, Crist RC. A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595949. [PMID: 38826289 PMCID: PMC11142250 DOI: 10.1101/2024.05.26.595949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.
Collapse
|
18
|
Khan Y, Davis CN, Jinwala Z, Feuer KL, Toikumo S, Hartwell EE, Sanchez-Roige S, Peterson RE, Hatoum AS, Kranzler HR, Kember RL. Combining Transdiagnostic and Disorder-Level GWAS Enhances Precision of Psychiatric Genetic Risk Profiles in a Multi-Ancestry Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307111. [PMID: 38766259 PMCID: PMC11100926 DOI: 10.1101/2024.05.09.24307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The etiology of substance use disorders (SUDs) and psychiatric disorders reflects a combination of both transdiagnostic (i.e., common) and disorder-level (i.e., independent) genetic risk factors. We applied genomic structural equation modeling to examine these genetic factors across SUDs, psychotic, mood, and anxiety disorders using genome-wide association studies (GWAS) of European- (EUR) and African-ancestry (AFR) individuals. In EUR individuals, transdiagnostic genetic factors represented SUDs (143 lead single nucleotide polymorphisms [SNPs]), psychotic (162 lead SNPs), and mood/anxiety disorders (112 lead SNPs). We identified two novel SNPs for mood/anxiety disorders that have probable regulatory roles on FOXP1, NECTIN3, and BTLA genes. In AFR individuals, genetic factors represented SUDs (1 lead SNP) and psychiatric disorders (no significant SNPs). The SUD factor lead SNP, although previously significant in EUR- and cross-ancestry GWAS, is a novel finding in AFR individuals. Shared genetic variance accounted for overlap between SUDs and their psychiatric comorbidities, with second-order GWAS identifying up to 12 SNPs not significantly associated with either first-order factor in EUR individuals. Finally, common and independent genetic effects showed different associations with psychiatric, sociodemographic, and medical phenotypes. For example, the independent components of schizophrenia and bipolar disorder had distinct associations with affective and risk-taking behaviors, and phenome-wide association studies identified medical conditions associated with tobacco use disorder independent of the broader SUDs factor. Thus, combining transdiagnostic and disorder-level genetic approaches can improve our understanding of co-occurring conditions and increase the specificity of genetic discovery, which is critical for psychiatric disorders that demonstrate considerable symptom and etiological overlap.
Collapse
Affiliation(s)
- Yousef Khan
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christal N. Davis
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kyra L. Feuer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Sylvanus Toikumo
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Emily E. Hartwell
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, United States
- Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roseann E. Peterson
- Institute for Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Alexander S. Hatoum
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Rachel L. Kember
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| |
Collapse
|
19
|
Jennings MV, Martínez-Magaña JJ, Courchesne-Krak NS, Cupertino RB, Vilar-Ribó L, Bianchi SB, Hatoum AS, Atkinson EG, Giusti-Rodriguez P, Montalvo-Ortiz JL, Gelernter J, Artigas MS, Elson SL, Edenberg HJ, Fontanillas P, Palmer AA, Sanchez-Roige S. A phenome-wide association and Mendelian randomisation study of alcohol use variants in a diverse cohort comprising over 3 million individuals. EBioMedicine 2024; 103:105086. [PMID: 38580523 PMCID: PMC11121167 DOI: 10.1016/j.ebiom.2024.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).
Collapse
Affiliation(s)
- Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - José Jaime Martínez-Magaña
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, Orange, West Haven, CT, USA
| | | | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Hatoum
- Department of Psychology & Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Janitza L Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, Orange, West Haven, CT, USA; National Center of Posttraumatic Stress Disorder, VA CT Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- VA CT Healthcare Center, Department Psychiatry, West Haven, CT, USA; Departments Psychiatry, Genetics, and Neuroscience, Yale Univ. School of Medicine, New Haven, CT, USA
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Chen AB, Yu X, Thapa KS, Gao H, Reiter JL, Xuei X, Tsai AP, Landreth GE, Lai D, Wang Y, Foroud TM, Tischfield JA, Edenberg HJ, Liu Y. Functional 3'-UTR Variants Identify Regulatory Mechanisms Impacting Alcohol Use Disorder and Related Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578270. [PMID: 38370821 PMCID: PMC10871301 DOI: 10.1101/2024.01.31.578270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Although genome-wide association studies (GWAS) have identified loci associated with alcohol consumption and alcohol use disorder (AUD), they do not identify which variants are functional. To approach this, we evaluated the impact of variants in 3' untranslated regions (3'-UTRs) of genes in loci associated with substance use and neurological disorders using a massively parallel reporter assay (MPRA) in neuroblastoma and microglia cells. Functionally impactful variants explained a higher proportion of heritability of alcohol traits than non-functional variants. We identified genes whose 3'UTR activities are associated with AUD and alcohol consumption by combining variant effects from MPRA with GWAS results. We examined their effects by evaluating gene expression after CRISPR inhibition of neuronal cells and stratifying brain tissue samples by MPRA-derived 3'-UTR activity. A pathway analysis of differentially expressed genes identified inflammation response pathways. These analyses suggest that variation in response to inflammation contributes to the propensity to increase alcohol consumption.
Collapse
Affiliation(s)
- Andy B. Chen
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xuhong Yu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kriti S. Thapa
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jill L Reiter
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dongbing Lai
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yue Wang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tatiana M. Foroud
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Howard J. Edenberg
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
21
|
Zhou H, Kember RL, Deak JD, Xu H, Toikumo S, Yuan K, Lind PA, Farajzadeh L, Wang L, Hatoum AS, Johnson J, Lee H, Mallard TT, Xu J, Johnston KJA, Johnson EC, Nielsen TT, Galimberti M, Dao C, Levey DF, Overstreet C, Byrne EM, Gillespie NA, Gordon S, Hickie IB, Whitfield JB, Xu K, Zhao H, Huckins LM, Davis LK, Sanchez-Roige S, Madden PAF, Heath AC, Medland SE, Martin NG, Ge T, Smoller JW, Hougaard DM, Børglum AD, Demontis D, Krystal JH, Gaziano JM, Edenberg HJ, Agrawal A, Justice AC, Stein MB, Kranzler HR, Gelernter J. Multi-ancestry study of the genetics of problematic alcohol use in over 1 million individuals. Nat Med 2023; 29:3184-3192. [PMID: 38062264 PMCID: PMC10719093 DOI: 10.1038/s41591-023-02653-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023]
Abstract
Problematic alcohol use (PAU), a trait that combines alcohol use disorder and alcohol-related problems assessed with a questionnaire, is a leading cause of death and morbidity worldwide. Here we conducted a large cross-ancestry meta-analysis of PAU in 1,079,947 individuals (European, N = 903,147; African, N = 122,571; Latin American, N = 38,962; East Asian, N = 13,551; and South Asian, N = 1,716 ancestries). We observed a high degree of cross-ancestral similarity in the genetic architecture of PAU and identified 110 independent risk variants in within- and cross-ancestry analyses. Cross-ancestry fine mapping improved the identification of likely causal variants. Prioritizing genes through gene expression and chromatin interaction in brain tissues identified multiple genes associated with PAU. We identified existing medications for potential pharmacological studies by a computational drug repurposing analysis. Cross-ancestry polygenic risk scores showed better performance of association in independent samples than single-ancestry polygenic risk scores. Genetic correlations between PAU and other traits were observed in multiple ancestries, with other substance use traits having the highest correlations. This study advances our knowledge of the genetic etiology of PAU, and these findings may bring possible clinical applicability of genetics insights-together with neuroscience, biology and data science-closer.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA.
| | - Rachel L Kember
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Yuan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Leila Farajzadeh
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Lu Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jessica Johnson
- Pamela Sklar Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyunjoon Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Travis T Mallard
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiayi Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Trine Tollerup Nielsen
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Marco Galimberti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Cecilia Dao
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Enda M Byrne
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nathan A Gillespie
- Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lea K Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tian Ge
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jordan W Smoller
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Anders D Børglum
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ditte Demontis
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), Boston Veterans Affairs Healthcare System, Boston, MA, USA
- Department of Medicine, Divisions of Aging and Preventative Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Henry R Kranzler
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
White JD, Bierut LJ. Alcohol Consumption and Alcohol Use Disorder: Exposing an Increasingly Shared Genetic Architecture. Am J Psychiatry 2023; 180:530-532. [PMID: 37525606 PMCID: PMC10765608 DOI: 10.1176/appi.ajp.20230456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Affiliation(s)
- Julie D White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, N.C. (White); Department of Psychiatry, Washington University School of Medicine, St. Louis (Bierut)
| | - Laura J Bierut
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, N.C. (White); Department of Psychiatry, Washington University School of Medicine, St. Louis (Bierut)
| |
Collapse
|